[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2715645B2 - Semiconductor closed tube diffusion method and closed tube diffusion device - Google Patents

Semiconductor closed tube diffusion method and closed tube diffusion device

Info

Publication number
JP2715645B2
JP2715645B2 JP2246563A JP24656390A JP2715645B2 JP 2715645 B2 JP2715645 B2 JP 2715645B2 JP 2246563 A JP2246563 A JP 2246563A JP 24656390 A JP24656390 A JP 24656390A JP 2715645 B2 JP2715645 B2 JP 2715645B2
Authority
JP
Japan
Prior art keywords
tube
vacuum
furnace
diffusion
closed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2246563A
Other languages
Japanese (ja)
Other versions
JPH04125922A (en
Inventor
雅英 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2246563A priority Critical patent/JP2715645B2/en
Publication of JPH04125922A publication Critical patent/JPH04125922A/en
Application granted granted Critical
Publication of JP2715645B2 publication Critical patent/JP2715645B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、シリコンなどの半導体基体にアルミニウム
などを拡散するための半導体閉管拡散方法およびそれに
用いる閉管拡散装置に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a closed-tube diffusion method for diffusing aluminum or the like into a semiconductor substrate such as silicon, and a closed-tube diffusion device used therefor.

〔従来の技術〕[Conventional technology]

シリコン半導体基体へのアルミニウム拡散は、例えば
サイリスタのような高耐圧を必要とする半導体装置に利
用されている。アルミニウム拡散は、開管拡散法で行う
と外方拡散が生じ、シリコン半導体中へ所要の濃度まで
拡散されていかない。このため、従来、石英アンプル中
にシリコン半導体基板およびアルミニウム拡散源を入れ
て、10-6Torr以下の圧力下で石英アンプルを封じ、この
石英アンプルを加熱炉へ入れて拡散する、いわゆる閉管
拡散法がとられている。第2図はそのような閉管拡散法
の実施状態を示し、シリコン基板1とアルミニウム拡散
源2を一端を閉じた石英アンプル21の中に収容し、真空
下で他端に石英キャツプ22を溶接して封じ切り、加熱炉
3の中に入れて例えば1250℃で熱処理する。
Aluminum diffusion into a silicon semiconductor substrate is used for a semiconductor device requiring a high breakdown voltage, such as a thyristor. When aluminum is diffused by the open-tube diffusion method, outward diffusion occurs, and the aluminum is not diffused into a silicon semiconductor to a required concentration. For this reason, conventionally, a so-called closed tube diffusion method in which a silicon semiconductor substrate and an aluminum diffusion source are put in a quartz ampule, the quartz ampule is sealed under a pressure of 10 -6 Torr or less, and the quartz ampule is put into a heating furnace and diffused. Has been taken. FIG. 2 shows an embodiment of such a closed tube diffusion method, in which a silicon substrate 1 and an aluminum diffusion source 2 are housed in a quartz ampule 21 having one end closed, and a quartz cap 22 is welded to the other end under vacuum. And heat-treated at 1250 ° C. in a heating furnace 3.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

近年のサイリスタの高電流容量化に伴い、シリコン半
導体基板は直径4インチに達するものもある。このた
め、石英アンプルも外径100mmを超えることになり、上
記のように10-6Torr以下の圧力下にしては1250℃で10時
間程度の拡散を行うと、石英アンプル21がつぶれてシリ
コン基板1が破壊することがある。
With the recent increase in current capacity of thyristors, some silicon semiconductor substrates have a diameter of 4 inches. For this reason, the quartz ampoule also exceeds the outer diameter of 100 mm, and if the diffusion is performed at 1250 ° C. for about 10 hours under the pressure of 10 −6 Torr or less as described above, the quartz ampule 21 is crushed and the silicon substrate is broken. 1 may be destroyed.

この問題を解決する1つの方法として、石英アンプル
21の石英厚さを厚くする方法がある。上記の1250℃にお
ける10時間程度の拡散で石英アンプルをつぶさないため
には、計算上石英厚さを4.5mm以上にする必要がある。
ところが石英厚さが4.5mm以上あると、真空封じする時
の溶接に困難をきたし、また石英アンプル重量を大きく
する欠点がある。
One solution to this problem is a quartz ampoule.
There is a method of increasing the thickness of the quartz of 21. In order to prevent the quartz ampoule from being crushed by the above-mentioned diffusion at about 1250 ° C. for about 10 hours, it is necessary to calculate the quartz thickness to be 4.5 mm or more.
However, when the quartz thickness is 4.5 mm or more, there is a problem in that welding at the time of vacuum sealing becomes difficult, and the weight of the quartz ampule increases.

あるいは解決のための別の方法として、真空封じした
石英アンプルを圧力ミリTorr程度の減圧炉で石英アンプ
ル内外の圧力差の小さい状態で熱処理をし、アンプルを
つぶさないようにする方法がある。現在、世の中に減圧
CVD装置は存在するが、その温度は500℃程度で石英密閉
炉心管を使用しているため、1250℃程度の温度で熱処理
することは不可能である。
Alternatively, as another method for solving the problem, there is a method in which a vacuum-sealed quartz ampule is subjected to a heat treatment in a reduced pressure furnace of a pressure of about milliTorr with a small pressure difference between the inside and outside of the quartz ampule so that the ampule is not crushed. Currently, the world is decompressed
Although there is a CVD apparatus, its temperature is about 500 ° C, and it is impossible to heat-treat at a temperature of about 1250 ° C because it uses a quartz sealed furnace tube.

本発明の目的は、半導体基体と拡散源とを真空封じし
た石英アンプルを熱処理して石英アンプルをつぶさすこ
となく半導体基体へ不純物を拡散する半導体閉管拡散方
法およびその方法に用いる閉管拡散装置を提供すること
にある。
An object of the present invention is to provide a semiconductor closed-tube diffusion method for heat-treating a quartz ampoule in which a semiconductor base and a diffusion source are vacuum-sealed to diffuse impurities into the semiconductor base without crushing the quartz ampule, and a closed-tube diffusion apparatus used in the method. Is to do.

〔課題を解決するための手段〕[Means for solving the problem]

上記の目的を達成するために、本発明の半導体閉管拡
散方法は、半導体基体と拡散源とを真空封じした石英ア
ンプルを炭化けい素(SiC)よりなり、内部の圧力が1
×10-3Torr以上の真空に保持された真空気密炉心管内に
収容して加熱炉内で熱処理するものとする。半導体基体
がシリコンよりなり、拡散源がアルミニウムを含む場合
が特に有効である。また、本発明の閉管拡散装置は、中
空部を有する加熱炉と、その中空部より長いSiCよりな
る炉心管と、その炉心管の両端を真空気密に密閉する蓋
体と、少なくとも一方の蓋体を貫通して真空排気装置に
連通する排気管とを備えたものとする。そして蓋体が水
冷機構を備えたものであること、および蓋体がステンレ
ス鋼よりなることが有効である。
In order to achieve the above object, a semiconductor tube diffusion method according to the present invention comprises a quartz ampoule in which a semiconductor substrate and a diffusion source are vacuum-sealed and made of silicon carbide (SiC), and an internal pressure of 1%.
It shall be housed in a vacuum hermetic core tube maintained at a vacuum of × 10 -3 Torr or more and heat-treated in a heating furnace. It is particularly effective when the semiconductor substrate is made of silicon and the diffusion source contains aluminum. Further, the closed tube diffusion device of the present invention is a heating furnace having a hollow portion, a furnace tube made of SiC longer than the hollow portion, a lid for sealing both ends of the furnace tube in a vacuum-tight manner, and at least one lid. And an exhaust pipe penetrating therethrough and communicating with the vacuum exhaust device. It is effective that the lid has a water cooling mechanism and that the lid is made of stainless steel.

〔作用〕[Action]

SiCからなる真空炉心管内に半導体基板と拡散源とを
真空封じした石英アンプルを収容して拡散を行うことに
より、拡散温度での変形がなくなり、また炉心管内の圧
力をSiCからSiが分離する10-4Torr以下の高真空にしな
いで、1×10-3Torr以上の真空にすることにより半導体
基体の汚染のおそれもない。そして炉心管を加熱炉の中
空部より長くして、その両端の温度の低い部分で、例え
ば水冷された蓋体で密閉することにより、真空気密も容
易に保持できる。それ故、密閉のための蓋体に石英に比
して熱膨脹係数の大きいSiCに近い熱膨脹係数をもつス
テンレス鋼を用いても、蓋体の温度が高くならないので
半導体基体へのステンレス鋼からの鉄,ニッケル,クロ
ムなどによる汚染のおそれがない。
By carrying out diffusion while accommodating a quartz ampoule in which a semiconductor substrate and a diffusion source are vacuum-sealed in a vacuum furnace tube made of SiC, deformation at the diffusion temperature is eliminated, and the pressure in the furnace tube is separated from Si by Si. By setting the vacuum to 1 × 10 −3 Torr or more without setting the high vacuum to -4 Torr or less, there is no possibility of contamination of the semiconductor substrate. By making the furnace tube longer than the hollow portion of the heating furnace and sealing the lower ends of the furnace tube with, for example, a water-cooled lid, vacuum airtightness can be easily maintained. Therefore, even if stainless steel having a coefficient of thermal expansion close to SiC, which has a larger coefficient of thermal expansion than quartz, is used for the lid for sealing, the temperature of the lid does not increase, so the iron from the stainless steel to the semiconductor substrate is not increased. No risk of contamination by nickel, chromium, etc.

〔実施例〕〔Example〕

第1図は本発明の一実施例の閉管拡散装置を示し、第
2図と共通の部分には同一の符号が付されている。図に
おいて、加熱炉3の炉心管としてSiCからなる管4が入
れられている。SiC管4の長さは、後述の水冷フランジ
とSiC管の接触部の温度差が大きくならないように加熱
炉3よりも片側で300mm長くなる様にした。フランジ5
はステンレス鋼で作成され、SiC管4との間に介在する
Oリング6によりSiC管との間の気密を保持している。
フランジ5には、焼きつき防止のための水冷管7が取り
つけられている。一方のフランジ5の外側には戸8が備
えられ、戸8とフランジ5の間にもOリング6が挿入さ
れて、フランジの開口部51を密閉している。他方のフラ
ンジ5には排気管9が連結されており、電磁弁10を介し
て排気装置11に接続されている。SiC管4の内部を圧力
1×10-3Torr以上の真空にすればよいので、排気装置11
はロータリーポンプで構成している。排気管9にはまた
電磁弁12を備えたN2ガス導入管13も接続している。さら
に排気管9には真空計14がとりつけられており、圧力が
SiCからのSiの分離のおそれのある10-4Torr以下の高真
空になった場合、フィードバック回路15を介して自動的
に二つの電磁弁が作動し、排気管9側の電磁弁10が閉
じ、N2導入管13側の電磁弁12が開くので、10-3Torrの範
囲になる。
FIG. 1 shows a closed-tube diffuser according to one embodiment of the present invention, and the same parts as those in FIG. 2 are denoted by the same reference numerals. In the figure, a tube 4 made of SiC is inserted as a furnace tube of the heating furnace 3. The length of the SiC tube 4 was set to be 300 mm longer on one side than the heating furnace 3 so as to prevent a temperature difference between a contact portion between a water-cooled flange and a SiC tube described later from increasing. Flange 5
Is made of stainless steel, and is kept airtight with the SiC pipe by an O-ring 6 interposed between the stainless steel and the SiC pipe 4.
A water cooling tube 7 for preventing seizure is attached to the flange 5. A door 8 is provided outside one of the flanges 5, and an O-ring 6 is inserted between the door 8 and the flange 5 to seal the opening 51 of the flange. An exhaust pipe 9 is connected to the other flange 5 and is connected to an exhaust device 11 via a solenoid valve 10. The interior of the SiC tube 4 may be evacuated to a pressure of 1 × 10 −3 Torr or more.
Is composed of a rotary pump. The exhaust pipe 9 is also connected to an N 2 gas introduction pipe 13 having a solenoid valve 12. Further, a vacuum gauge 14 is attached to the exhaust pipe 9, and the pressure is reduced.
When a high vacuum of 10 -4 Torr or less, at which there is a risk of separation of Si from SiC, the two solenoid valves are automatically operated via the feedback circuit 15 and the solenoid valve 10 on the exhaust pipe 9 side is closed. , since the electromagnetic valve 12 of the N 2 inlet pipe 13 side is opened, in the range of 10 -3 Torr.

この閉管拡散装置を用いて閉管拡散方法の一実施例を
第3図に示す。第3図の線31は温度のフローチャート
を、線32は真空度のフローチャートを示す。先ず、加熱
炉3の温度が700℃になった状態で戸8を開いて第2図
に示したような石英アンプル21の炉入れを行う。炉入れ
後、排気装置11を稼働させ、10-3Torrの真空度にする。
10-3Torrにするまで約10分要した。10-3Torrになったこ
とを確認して、炉を1250℃まで10℃/分の速度で昇温さ
せ、1250℃で10時間拡散させた。拡散後、炉を−5℃/
分で冷却させ、700℃になったところで炉を切り、自然
冷却に切り換えるのと同時に排気装置11を停止させ、導
入管13からN2ガスを炉内に入れ、大気状態とした。炉が
200℃以下になったところで戸8から石英アンプルのと
りだしを行った。
FIG. 3 shows an embodiment of a closed pipe diffusion method using this closed pipe diffusion apparatus. The line 31 in FIG. 3 shows the flow chart of the temperature, and the line 32 shows the flow chart of the degree of vacuum. First, with the temperature of the heating furnace 3 at 700 ° C., the door 8 is opened and the quartz ampule 21 as shown in FIG. After the furnace is put in, the exhaust device 11 is operated to make the degree of vacuum 10 -3 Torr.
It took about 10 minutes to reach 10 -3 Torr. After confirming that the pressure reached 10 −3 Torr, the furnace was heated to 1250 ° C. at a rate of 10 ° C./min, and diffused at 1250 ° C. for 10 hours. After diffusion, the furnace was cooled to -5 ° C /
Allowed to cool minute, cut the furnace upon reaching a 700 ° C., quenched at the same time the exhaust device 11 as switching to natural cooling, the N 2 gas put into the furnace from the inlet pipe 13, and the atmospheric conditions. Furnace
When the temperature reached 200 ° C. or lower, the quartz ampule was taken out from the door 8.

本実施例に使用した石英アンプル21は、4インチ径の
シリコン基板が内部に収容されており、石英アンプルの
径は130mmになる。また石英の厚さは3mmであった。石英
アンプル取り出し後、石英アンプルのつぶれ状況を調べ
たが、全くつぶれは生じていなかった。またSiC管の熱
膨脹による支障も生じず、SiCからのSiの分離の問題も
全く生じなかった。
The quartz ampule 21 used in this embodiment has a 4-inch diameter silicon substrate housed inside, and the diameter of the quartz ampule is 130 mm. The thickness of the quartz was 3 mm. After the quartz ampule was taken out, the crushed state of the quartz ampule was examined, but no crushing occurred. In addition, no trouble was caused by thermal expansion of the SiC tube, and no problem of separation of Si from SiC occurred.

〔発明の効果〕〔The invention's effect〕

本発明によれば、減圧炉の炉心管の材料にSiCを用い
ることにより、1250℃程度の高温にすることができ、真
空封じ切りをした石英アンプルを真空にした炉心管内で
熱処理することにより石英アンプルがつぶれることなく
半導体閉管拡散を行うことが可能になった。従って大口
径の半導体基体に対する閉管拡散もでき、特に開管拡散
の適用の不可能なシリコン基板へのAl拡散の実施に極め
て有効である。なお、SiC炉心管の両端に水冷蓋体ある
いはステンレス鋼蓋体を用いるより高温拡散にも支障の
ない密閉ができる。
According to the present invention, by using SiC for the material of the furnace tube of the decompression furnace, the temperature can be raised to about 1250 ° C., and the quartz ampoule that has been vacuum-sealed is heat-treated in the vacuumed furnace tube to produce quartz. It has become possible to perform semiconductor tube diffusion without crushing the ampoule. Therefore, it is possible to perform closed-tube diffusion on a semiconductor substrate having a large diameter, and it is extremely effective especially for performing Al diffusion on a silicon substrate to which open-tube diffusion cannot be applied. In addition, since a water-cooled lid or a stainless steel lid is used at both ends of the SiC core tube, a hermetic seal that does not hinder high-temperature diffusion can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の閉管拡散装置の断面図、第
2図は従来の閉管拡散方法を示す断面図、第3図は本発
明の一実施例の閉管拡散方法における温度および真空度
のフローチャートである。 1:シリコン基板、2:アルミニウム拡散源、3:加熱炉、4:
SiC管、5:フランジ、6:Oリング、7:水冷管、8:戸、9:排
気管、11:排気装置、21:石英アンプル。
FIG. 1 is a cross-sectional view of a closed-tube diffusion apparatus according to one embodiment of the present invention, FIG. 2 is a cross-sectional view showing a conventional closed-tube diffusion method, and FIG. It is a flowchart of a degree. 1: silicon substrate, 2: aluminum diffusion source, 3: heating furnace, 4:
SiC pipe, 5: flange, 6: O-ring, 7: water cooling pipe, 8: door, 9: exhaust pipe, 11: exhaust device, 21: quartz ampule.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体基体と拡散源とを真空封じした石英
アンプルを、炭化けい素よりなり、内部の圧力が1×10
-3Torr以上の真空に保持された真空気密炉心管内に収容
して加熱炉内で熱処理することを特徴とする半導体閉管
拡散方法。
A quartz ampoule in which a semiconductor substrate and a diffusion source are vacuum-sealed is made of silicon carbide and has an internal pressure of 1 × 10 4.
A semiconductor closed-tube diffusion method characterized in that it is housed in a vacuum hermetic furnace tube maintained at a vacuum of -3 Torr or more and heat-treated in a heating furnace.
【請求項2】請求項1記載の半導体閉管拡散方法におい
て、半導体基体がシリコンよりなり、拡散源がアルミニ
ウムを含むことを特徴とする半導体閉管拡散方法。
2. The method according to claim 1, wherein the semiconductor substrate is made of silicon, and the diffusion source contains aluminum.
【請求項3】中空部を有する加熱炉と、その中空部より
長い炭化けい素よりなる炉心管と、その炉心管の両端を
真空気密に密閉する蓋体と、少なくとも一方の蓋体を貫
通して真空排気装置に連通する排気管と、炉心管内に設
けられ半導体基体と拡散源とを真空封じする反応管とを
備えたことを特徴とする閉管拡散装置。
3. A heating furnace having a hollow portion, a furnace tube made of silicon carbide longer than the hollow portion, a lid for sealing both ends of the furnace tube in a vacuum-tight manner, and at least one of the lids penetrating therethrough. And a reaction tube provided in the furnace tube for vacuum-sealing the semiconductor substrate and the diffusion source.
【請求項4】請求項3記載の閉管拡散装置において、蓋
体が水冷機構を備えたことを特徴とする閉管拡散装置。
4. The closed-tube diffuser according to claim 3, wherein the lid has a water cooling mechanism.
【請求項5】請求項3あるいは4記載の閉管拡散装置に
おいて、蓋体がステンレス鋼よりなる閉管拡散装置。
5. The closed-tube diffuser according to claim 3, wherein the lid is made of stainless steel.
JP2246563A 1990-09-17 1990-09-17 Semiconductor closed tube diffusion method and closed tube diffusion device Expired - Lifetime JP2715645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2246563A JP2715645B2 (en) 1990-09-17 1990-09-17 Semiconductor closed tube diffusion method and closed tube diffusion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2246563A JP2715645B2 (en) 1990-09-17 1990-09-17 Semiconductor closed tube diffusion method and closed tube diffusion device

Publications (2)

Publication Number Publication Date
JPH04125922A JPH04125922A (en) 1992-04-27
JP2715645B2 true JP2715645B2 (en) 1998-02-18

Family

ID=17150277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2246563A Expired - Lifetime JP2715645B2 (en) 1990-09-17 1990-09-17 Semiconductor closed tube diffusion method and closed tube diffusion device

Country Status (1)

Country Link
JP (1) JP2715645B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2538027C2 (en) * 2012-05-28 2015-01-10 Открытое акционерное общество "Новосибирский завод полупроводниковых приборов с ОКБ" (ОАО "НЗПП с ОКБ") Control and stabilisation of post diffusion (antinomy diffusion) cooling of low-voltage (~6 v) silicon planar structures of vrd and device to this end
RU2522786C2 (en) * 2012-05-28 2014-07-20 Открытое Акционерное Общество "Новосибирский Завод Полупроводниковых Приборов С Окб" (Оао"Нзпп С Окб") Quartz ampoule design for diffusion of dopants into silicon (arsenic diffusion) with built-in tool for controlling rate of post-diffusion cooling of silicon p-n structures
CN103088430A (en) * 2013-01-17 2013-05-08 陈功 Improved structure of device for eliminating phosphorus oxychloride in phosphorus diffusion furnace

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53142387A (en) * 1977-05-18 1978-12-12 Hitachi Ltd Growth method for epitaxial layer
JPS6010621A (en) * 1983-06-29 1985-01-19 Gijutsu Joho Kenkyusho:Kk Depressurized epitaxial growing equipment
JPS6018541U (en) * 1983-07-18 1985-02-07 日本電気株式会社 Vapor phase growth equipment
JP2645359B2 (en) * 1988-09-22 1997-08-25 東京エレクトロン株式会社 Heat treatment equipment
JPH02142119A (en) * 1988-11-22 1990-05-31 Fujitsu Ltd Chemical vapor growth device

Also Published As

Publication number Publication date
JPH04125922A (en) 1992-04-27

Similar Documents

Publication Publication Date Title
US5368648A (en) Sealing apparatus
US4275094A (en) Process for high pressure oxidation of silicon
US5533736A (en) Thermal processing apparatus
US4599247A (en) Semiconductor processing facility for providing enhanced oxidation rate
JP2715645B2 (en) Semiconductor closed tube diffusion method and closed tube diffusion device
JP4582816B2 (en) Vacuum heating device
US3868924A (en) Apparatus for indiffusing dopants into semiconductor material
JP5656400B2 (en) Vacuum heat treatment apparatus and semiconductor device manufacturing method
JP3240180B2 (en) Heat treatment equipment
JP4144259B2 (en) Semiconductor heat treatment equipment
KR20030016188A (en) Apparatus and method for insulating a seal in a process chamber
JPH0729841A (en) Heat treatment furnace
JP3116339B2 (en) Quartz ampoule for diffusion
JP3119708B2 (en) Heat treatment apparatus and heat treatment method
JPH03208334A (en) Manufacturing device for semiconductor
JP2001093841A (en) Apparatus for thermally treating at high temperature and under high vacuum
JP3463785B2 (en) Sealing device and processing device
JP2849772B2 (en) Sealing device and sealing method
JPS6230686B2 (en)
JPH04186616A (en) Heat treating apparatus
JPH0119266B2 (en)
JPH05315275A (en) Heat treatment device for compound semiconductor substrate
JP2001183065A (en) Heating equipment and method of using it
JPH0745549A (en) Heat treatment device
JPH03106438A (en) Oxidizing method