[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH01187768A - Nickel electrode for alkali battery - Google Patents

Nickel electrode for alkali battery

Info

Publication number
JPH01187768A
JPH01187768A JP63010489A JP1048988A JPH01187768A JP H01187768 A JPH01187768 A JP H01187768A JP 63010489 A JP63010489 A JP 63010489A JP 1048988 A JP1048988 A JP 1048988A JP H01187768 A JPH01187768 A JP H01187768A
Authority
JP
Japan
Prior art keywords
nickel hydroxide
nickel
active material
electrode
cadmium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63010489A
Other languages
Japanese (ja)
Other versions
JPH0568068B2 (en
Inventor
Masahiko Oshitani
政彦 押谷
Hiroshi Yufu
宏 油布
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Battery Corp filed Critical Yuasa Battery Corp
Priority to JP63010489A priority Critical patent/JPH01187768A/en
Publication of JPH01187768A publication Critical patent/JPH01187768A/en
Publication of JPH0568068B2 publication Critical patent/JPH0568068B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide high energy density and prolong the lifetime by specifying bore radius of nickel hydroxide, volume of voids, and the specific surface area, and thereby preventing production of higher order oxide gamma-NiOOH. CONSTITUTION:In paste type Ni electrode using a porous alkali resistant metal base plate as current collector and a powder of nickel hydroxide as active substance main component, the nickel hydroxide has a bore radius of 15-30Angstrom , a void volume of less than 0.05ml/g, and a specific surface area of 15-30m<2>/g. This equips the Ni electrode with high energy density and long life, in which production of higher order oxide gamma-NiOOH is prevented.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アルカリ電池用二、ノケルyiwに関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a battery for alkaline batteries.

従来技術とその問題点 一般に用いられているアルカリ電池のニッケル極は、焼
結式電極と称し、その製法として通常のニッケル粉末を
穿孔鋼板等に焼結した微孔基板に硝酸ニッケル塩溶液を
含浸させ、アルカリ溶液中で水酸化ニッケルに変化させ
る工程を数回繰り返し、所定爪の水酸化ニッケルを充填
させる方法である。
Conventional technology and its problems Nickel electrodes in alkaline batteries that are commonly used are called sintered electrodes, and their manufacturing method involves impregnating a microporous substrate made by sintering ordinary nickel powder into a perforated steel plate or the like with a nickel nitrate salt solution. In this method, the process of converting the nail to nickel hydroxide in an alkaline solution is repeated several times to fill a predetermined nail with nickel hydroxide.

しかし、この充填方法は工程を何度も繰り返し非常に煩
雑であり、コストを高くする一因となっている。しかも
用いる基板の多孔度が実用上80%以下に制限されるた
め、活物質の充填密度が低く、電極のエネルギー密度が
400mAh/ cc程度の低いものしか生産できない
とり1う現状であった。
However, this filling method is very complicated and involves repeating the steps many times, which is one of the causes of high costs. Moreover, since the porosity of the substrate used is practically limited to 80% or less, the packing density of the active material is low, and the current situation is that only electrodes with a low energy density of about 400 mAh/cc can be produced.

この欠点を改良する試みとして、例えば上記基板に替わ
る95%の高多孔度の金属繊維基板を用いて、水酸ニッ
ケ7tz粉末の充填工程を繰り返すことなく、1回で充
填できるペースト式ニッケル極が実用化されつつある。
In an attempt to improve this drawback, we have developed a paste-type nickel electrode that can be filled in one time without repeating the filling process of nickel hydroxide 7tz powder, using a 95% high porosity metal fiber substrate instead of the above-mentioned substrate. It is being put into practical use.

上記ペースト式ニッケル極は、特開昭61−13845
8号に開示された如く、硝酸ニッケ/I/塩水溶液と水
酸化すl−リウム水溶液から作成された水酸化ニッケル
粉末活物質に、活物質問導電性のネットワークを形成す
るCoo粉末を添加し、カルボキシメチルセルローズを
水に溶解した粘稠液を加えペースト状態で繊維基板に充
填して作成される。このニッケル極は焼結式のものに比
べ、かなり安価でエネルギー密度も500mAhlcc
 &[ト高イ。
The above paste type nickel electrode is disclosed in Japanese Patent Application Laid-Open No. 61-13845.
As disclosed in No. 8, a nickel hydroxide powder active material prepared from a nickel nitrate/I/salt aqueous solution and a sulfur hydroxide aqueous solution was added with a Coo powder that forms an active conductive network. It is created by adding a viscous solution of carboxymethyl cellulose dissolved in water and filling it in a paste state into a fiber substrate. This nickel electrode is considerably cheaper than the sintered type and has an energy density of 500mAhlcc.
&[To high.

しかし、近年のポータプルエレクトロニクス機器の軽量
化に伴い、市場ニーズとして600mAh/CC程度の
高エネルギー密度が要求されている。このニーズに対応
するためには、基板の多孔度に限界があることから、水
酸化ニッケIし粉末そのものを高密度化する必要がある
。よく知られているように水酸化ニッケ/I/電極の充
放電反応は、水酸化ニッケルの結晶内をプロトン(H+
)が自由に移動することによって起こる。
However, as portable electronic devices have become lighter in weight in recent years, a high energy density of about 600 mAh/CC is required as a market need. In order to meet this need, since there is a limit to the porosity of the substrate, it is necessary to increase the density of the nickel hydroxide powder itself. As is well known, the charge/discharge reaction of nickel hydroxide/I/electrode causes protons (H+
) is caused by free movement.

ところが水酸化ニッケルの高密度化に伴う結晶の緻密性
により、結晶内のプロトンの移動の自由さが束縛され、
且つ比表面積の減少により、電流密度が増大し、2段放
電及びJ1極の膨4ツと言った放電並びに寿命特性の悪
化原因となる高次酸化物γ−NiOOHが多量に生成す
るようになる。
However, due to the denseness of the crystal that accompanies the high density of nickel hydroxide, the freedom of movement of protons within the crystal is restricted.
In addition, due to the decrease in specific surface area, the current density increases, and a large amount of higher order oxide γ-NiOOH is generated, which causes two-stage discharge and discharge such as swelling of the J1 pole, as well as deterioration of life characteristics. .

発明の目的 本発明は、高密度化水酸化ニッケルを用いたニッケル極
において、高次酸化物r−NiOOHの生成を防止した
、高エネルギー密度、且つ長寿命のニッケル極を提供す
るものである。
OBJECTS OF THE INVENTION The present invention provides a nickel electrode using high-density nickel hydroxide, which prevents the formation of higher order oxide r-NiOOH, has a high energy density, and has a long life.

発明の構成 本発明は、多孔性の耐アルカリ性金属基板を集電体とし
、水酸化ニッケル粉末を活物質主成分とするペースト式
二ソケ/L’極において、水酸化ニッケルが15〜60
人の細孔半径を有し、その空孔容積が0.05g?/り
以下で且つ比表面積が15〜60ぜ/りであることを特
徴とするアルカリ電池用ニッケ/L’[である。
Structure of the Invention The present invention provides a paste-type two-socket/L' electrode in which a porous alkali-resistant metal substrate is used as a current collector and nickel hydroxide powder is the main active material.
Does it have a human pore radius and a pore volume of 0.05g? nickel/L' for alkaline batteries, which is characterized by having a specific surface area of 15 to 60 z/l or less and a specific surface area of 15 to 60 z/l.

水酸化ニッケル活物質がカドミウムを2〜7wt%含有
し、且つカドミウムが水酸化ニッケルの結晶中で固溶状
態である前記のアルカリ電池用ニラゲル極である。
The above-mentioned Nilagel electrode for an alkaline battery is such that the nickel hydroxide active material contains 2 to 7 wt% of cadmium, and the cadmium is in a solid solution state in the nickel hydroxide crystal.

内部細孔容積を最小限にした高密度水酸化ニッケル粉末
は、高次酸化物γ−NiOOHが多量に発生するが、異
種金属イオン、特にカドミウムイオンを水酸化ニッケル
の結晶中に配置すると結晶に歪みを生じ、プロトンの動
きに自由さが増し利用率の向上及びγ−NiOOHの生
成を減少させる。一方、結晶外においては、水酸化ニッ
ケルの粒子間を0oOOH粒子によって接続すると、集
電体ニッケル繊維と水酸化ニッケル粒子間の電子の流れ
をスムーズにし、利用率を増大させる。
High-density nickel hydroxide powder with minimized internal pore volume generates a large amount of higher-order oxide γ-NiOOH, but when dissimilar metal ions, especially cadmium ions, are placed in the nickel hydroxide crystal, it forms a crystal. This causes distortion and increases the freedom of proton movement, improving the utilization rate and reducing the production of γ-NiOOH. On the other hand, outside the crystal, connecting nickel hydroxide particles with OoOOH particles smoothes the flow of electrons between the current collector nickel fibers and the nickel hydroxide particles, increasing the utilization rate.

実施例 以下、本発明における詳細について実施例により説明す
る。
EXAMPLES Hereinafter, details of the present invention will be explained using examples.

硝酸ニッケルに少量の硝酸カドミウムを加えた水溶液に
硝酸アンモニウムを添加し、ニッケルおよびカドミウム
のアンミン錯イオンを形成させる。この液に水酸化ナト
リウム水溶液を滴下しながら激しく攪拌を行い、錯イオ
ンを分解させてカドミウムの固溶体化した水酸化ニッケ
ル粒子を徐々に析出成長させる。従来の如く、PH14
以上の高濃度アルカリ溶液では無秩序に水酸化ニッケ/
し粒子が析出するのみであり、空孔容積が増大する。そ
こで、PH10〜12程度の薄いアルカリ濃度にして、
温度20〜90℃の範囲で徐々に析出させることが必要
である。
Ammonium nitrate is added to an aqueous solution of nickel nitrate and a small amount of cadmium nitrate to form an ammine complex ion of nickel and cadmium. Aqueous sodium hydroxide solution is added dropwise to this solution while vigorously stirring to decompose the complex ions and gradually precipitate and grow nickel hydroxide particles containing cadmium as a solid solution. As before, PH14
In high concentration alkaline solutions above, nickel hydroxide/
In this case, only particles are precipitated, and the pore volume increases. Therefore, the pH was set to a low alkaline concentration of about 10 to 12.
It is necessary to cause the precipitation to occur gradually at a temperature in the range of 20 to 90°C.

PH及び温度の調節によって種々の比表面積、細孔容積
をもった水酸化ニッケ/I/粒子が得られた。
By adjusting the pH and temperature, nickel hydroxide/I/particles with various specific surface areas and pore volumes were obtained.

第1図に水酸化ニッケル粒子の細孔容積と比表面積との
関係を示した図である。図におけるA s B r C
+ D + Eが水酸化ニッケルのみで、Fが5%のカ
ドミウムを固溶状態で添加したものであり、Gが従来法
による水酸化ニッケルのみのものである。
FIG. 1 is a diagram showing the relationship between pore volume and specific surface area of nickel hydroxide particles. A s B r C in the diagram
+D+E is only nickel hydroxide, F is added with 5% cadmium in solid solution, and G is only nickel hydroxide according to the conventional method.

比表面積と細孔容積との間には相関々係があり、比表面
積の増大に伴い粒子内部の細孔容積が増大する傾向を示
している。細孔容積の少ない高密度活物質は取りも直さ
ず比表面積が少ない宿命にあると言える。
There is a correlation between the specific surface area and the pore volume, and the pore volume inside the particles tends to increase as the specific surface area increases. It can be said that high-density active materials with a small pore volume are destined to have a small specific surface area.

周知の従来方法により、硝酸ニッケル塩溶液を90℃、
PH−14,5の高濃度アルカリ溶液中に滴下し析出さ
せた約70 tr17gの水酸化ニッケルの細孔径分布
を第2図のGに、上記高密度活物質Fの細孔径分布を第
2図のFに示した。
By a well-known conventional method, a nickel nitrate salt solution was heated at 90°C.
The pore size distribution of about 70 tr17g of nickel hydroxide dropped into a high concentration alkaline solution of PH-14.5 is shown in G in Figure 2, and the pore size distribution of the high-density active material F is shown in Figure 2. It is shown in F.

従来方式で析出させた粉末Gの空孔は、細孔半径15〜
100人の幅広い範囲に渡り多量且つ無秩序に存在し、
その容積は0.15st/9と粒子容積(0,41ml
/9 )の60〜40%にも達し、かなり空隙の大きい
粒子であることを示している。
The pores of powder G precipitated by the conventional method have a pore radius of 15 to
Existing in large numbers and disorderly over a wide range of 100 people,
Its volume is 0.15st/9 and the particle volume (0.41ml
/9) reaching 60 to 40%, indicating that the particles have considerably large voids.

一方、Fの粒子の場合、その容積は0.04st/りと
小さく、0粒子の%程度に過ぎない。この結果は7粒子
が0粒子よりも20〜60%高密度であることを示して
いる。
On the other hand, in the case of F particles, the volume is as small as 0.04 st/m, which is only about 0% of particles. The results show that 7 particles are 20-60% more dense than 0 particles.

即ち、活物質粒子が高密度であるためには、できるかぎ
り比表面積、及び空孔容積が小さなものでなければなら
ないことを示している。
That is, in order for the active material particles to have high density, the specific surface area and pore volume must be as small as possible.

これらの水酸化ニッケル粉末に少ユのコバルト化合物、
Coo l a  Go(OH)2 rβ−Co(OH
)2あるいは酢酸コバルト等の粉末を混合し、しかる後
1%のカルボキシメチルセルローズの溶解した水溶液を
加えて流動性のあるペーストwを調製した。このペース
ト液を多孔度95%の耐アルカリ繊維基板、例えばニッ
ケル繊維基板等に所定量充填させ、乾燥後二ソケル極と
した。
These nickel hydroxide powders contain a small amount of cobalt compound,
Coo l a Go(OH)2 rβ-Co(OH
) 2 or cobalt acetate were mixed, and then an aqueous solution containing 1% carboxymethyl cellulose was added to prepare a fluid paste w. A predetermined amount of this paste liquid was filled into an alkali-resistant fiber substrate having a porosity of 95%, such as a nickel fiber substrate, and after drying, a two-Sokel electrode was obtained.

活物質利用率並びに充放電によるr −Ni0OHの生
成率を知るためにこのニッケ/L’Wを対極としてカド
ミウム極をポリプロピレン不織布セパレータを介して組
立て、比重1.27の水酸化カリウム電解液を注入し、
電池とした。電解液注入後、添加剤であるコバルト化合
物を腐食電位で溶解させ、水酸化ニッケル粉末間を接続
させるために、24時間放置した。放背後充放電を行い
比表面積と活物質利用率の関係を第3図に示した。
In order to know the active material utilization rate and the generation rate of r -Ni0OH due to charging and discharging, a cadmium electrode was assembled using this nickel/L'W as a counter electrode via a polypropylene nonwoven fabric separator, and a potassium hydroxide electrolyte with a specific gravity of 1.27 was injected. death,
It was used as a battery. After the electrolytic solution was injected, the cobalt compound as an additive was dissolved at a corrosion potential, and the nickel hydroxide powder was left for 24 hours to form a connection. After charging and discharging, the relationship between specific surface area and active material utilization rate is shown in Figure 3.

活物質組成が水酸化ニッケルのみから成るものは、比例
関係が存在する。この事実は、高い活物質利用率を得る
ためには高い比表面積が必要であることを示しており、
それは取りも直さす空孔容積の大きい低密度活物質の方
が良いことを意味している。しかしながら、水酸化ニッ
ケルの結晶中に夕景のカドミウムを添加した1は、比表
面積が小さいにも係わらず従来粉末Gと変わらない高い
利用率を示している。
When the active material composition consists only of nickel hydroxide, a proportional relationship exists. This fact indicates that a high specific surface area is necessary to obtain a high active material utilization rate.
This means that a low-density active material with a large pore volume is better. However, 1, in which cadmium from Sunset Scene is added to nickel hydroxide crystals, shows a high utilization rate similar to that of conventional powder G, despite having a small specific surface area.

表     1 一方、極板単位体積あたりのエネルギー密度は、表1の
如〈従来粉末Gが504 tnAh/cc、高密度粉末
Fが590mAh/ccとFがGよりも15〜20%高
い数値を示している。
Table 1 On the other hand, the energy density per unit volume of the electrode plate is as shown in Table 1 (Conventional powder G is 504 tnAh/cc, high-density powder F is 590 mAh/cc, and F is 15 to 20% higher than G. ing.

この結果は、上記理由により、従来粉末に比べ高密度粉
末が、同一体積基板ではより多くを充填できることによ
る。
This result is due to the fact that, for the above-mentioned reasons, more high-density powder can be filled in the same volume substrate than conventional powder.

要求される6 00 ”h/ 程度のエネルギー密度C を満たす高密度活物質粉末の空孔容積は、0.05耐/
9以下でなければならず、同時に空孔容積と相関々係に
ある比表面積は15〜60″′/。
The pore volume of high-density active material powder that satisfies the required energy density C of about 600 ” h/ is 0.05 h/
9, and at the same time the specific surface area, which is correlated with the pore volume, is from 15 to 60''/.

である。カドミウム添加のこの効果は、比表面積の減少
により電解液から反応種プロトンの出入り口が縮小する
が、水酸化ニッケル結晶に歪みを持たせることにより、
固相でのプロトン移動をスムーズにすることにより補わ
れたためと考察される。
It is. This effect of cadmium addition is due to the reduction of the specific surface area, which reduces the entrance and exit of reactive species protons from the electrolyte, but by straining the nickel hydroxide crystal,
This is thought to be due to compensation by smoothing proton transfer in the solid phase.

即ち、活物質の利用率はプロトンの移動量を意味するが
、これは粒子の比表面積と結晶内部(。固相)での拡散
速度の二つの因子に支配されており、結晶が同一の場合
は、比表面積に支配され、結晶が異なる場合は内部歪み
に支配されるものと考察される。
In other words, the utilization rate of the active material refers to the amount of proton transfer, which is governed by two factors: the specific surface area of the particle and the diffusion rate inside the crystal (solid phase). is considered to be dominated by the specific surface area, and in the case of different crystals, by internal strain.

活物質が反応するためには集電体から活物質粒子表面に
ヌムーズに電子を移動させる必要があり、上述した如く
遊離状態(水酸化ニッケルに固溶することなく粒子表面
に存在)にある導電性を持ったCooOH粒子のネット
ワークが不可欠である。
In order for the active material to react, it is necessary to move electrons smoothly from the current collector to the surface of the active material particles. A network of CooOH particles with properties is essential.

このネットワークを作るCoo添加剤については、第4
図にCoo添加量と活物質利用率、極板体積あたりのエ
ネルギー密度関係を示し島Co O添加剤の量を増加さ
せると、活物質の利用率も高くなる。しかし添加剤その
ものは導電性に寄与するのみで実際には放電しないため
、実質の極板エネルギー密度は、15%付近より低下す
る傾向を示している。第5図は活物質組成とγ−NiO
OHの生産量の関係を3次元的に示したものである。1
Cの高電流密度で充電し、充電末期の極板をX線解析に
より、粉末の種類とγ−NiOOH生成量との関係をみ
ると、水酸化ニッケルの結晶中にカドミウムな固溶状態
で添加すれば、添加量に反比例してγ−NiOOHの生
産量が減少することが分かる。第6図に1−Ni0OH
の多量に生成した電極と本発明の電極との放電々正特性
の比較を示した。カドミウムを含まない高密度粉末Aの
場合、多量に生成するr−NiOOHにより、放電々圧
は2段放電特性となる。第5図よりγ−NiOOH生成
防止効果が、カドミウムの2%添加から認められ、7%
添加で完全γ−NiOOHは消滅する。
Regarding the Coo additive that creates this network, see the fourth section.
The figure shows the relationship between the amount of Co added, the active material utilization rate, and the energy density per electrode plate volume, and as the amount of the CoO additive increases, the active material utilization rate also increases. However, since the additive itself only contributes to conductivity and does not actually cause discharge, the actual plate energy density tends to decrease below about 15%. Figure 5 shows active material composition and γ-NiO
This is a three-dimensional diagram showing the relationship between OH production amounts. 1
Charging at a high current density of C, the relationship between the type of powder and the amount of γ-NiOOH produced was determined by X-ray analysis of the plate at the end of charging. It can be seen that the production amount of γ-NiOOH decreases in inverse proportion to the amount added. Figure 6 shows 1-Ni0OH
A comparison of the discharge characteristics between an electrode produced in large amounts and the electrode of the present invention is shown. In the case of high-density powder A that does not contain cadmium, the discharge pressure has a two-stage discharge characteristic due to the large amount of r-NiOOH produced. From Figure 5, the effect of preventing γ-NiOOH generation was observed with the addition of 2% cadmium, and with the addition of 7% cadmium.
Complete γ-NiOOH disappears upon addition.

このカドミウムの効果は、他の異種元素例えばコバルト
が固溶状態で共存していても同じである。コバルトにも
わずかながらカドミウムに似た挙動が認められる。カド
ミウムとコバルトの両者の固溶体添加については、γ−
Ni00Hの生成率に対する影響以外に特開昭59−2
24062号公報に開示された高温性能の向上が認めら
れた。
This effect of cadmium is the same even if other different elements such as cobalt coexist in a solid solution state. Cobalt also exhibits slightly similar behavior to cadmium. For solid solution addition of both cadmium and cobalt, γ-
In addition to the influence on the production rate of Ni00H, JP-A-59-2
The improvement in high temperature performance disclosed in Publication No. 24062 was recognized.

又、活物質の利用率に対しても、Coo添加剤について
示したが、C000Hのネットワークな形成させる上記
に記載した他の添加剤についても同様の傾向を示した。
Further, regarding the utilization rate of the active material, the same tendency was shown for the Coo additive, but the other additives described above that form a C000H network also showed a similar tendency.

更に基板として金属繊維焼結体を例に示したがこれらに
限定されるものではない。
Furthermore, although a metal fiber sintered body is shown as an example as a substrate, the present invention is not limited to this.

発明の効果 上述した如く、本発明は高密度化水酸化ニッケルを用い
たニッケル極において、高次酸化物r  Ni0OHの
生成を防止した、高エネルギー密度、且つ長寿命のニッ
ケル極を提供するものである。
Effects of the Invention As described above, the present invention provides a nickel electrode using high-density nickel hydroxide that has a high energy density and a long life, preventing the formation of higher order oxides rNi0OH. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は水酸化ニッケル粒子の比表面積と細孔容積との
関係を示した図、第2図は従来の水酸化ニッケル粉末と
本発明の高密度水酸化ニッケル粉末の細孔径分布曲線図
、第3図は活物質の比表面積と利用率の関係を示した図
、第4図はCoo添加剤量と活物質利用率及び極板体積
あたりのエネルギー密度との関係を示した図、第5図は
活物質組成とγ−NiOOHの生成量の関係を示した図
、第6図は放電々正特性を比較した図である。
Figure 1 is a diagram showing the relationship between specific surface area and pore volume of nickel hydroxide particles, Figure 2 is a diagram of pore size distribution curves of conventional nickel hydroxide powder and high-density nickel hydroxide powder of the present invention, Figure 3 is a diagram showing the relationship between the specific surface area of the active material and the utilization rate, Figure 4 is a diagram showing the relationship between the amount of Coo additive, the active material utilization rate, and the energy density per plate volume. The figure shows the relationship between the active material composition and the amount of γ-NiOOH produced, and FIG. 6 shows a comparison of discharge characteristics.

Claims (4)

【特許請求の範囲】[Claims] (1)多孔性の耐アルカリ性金属基板を集電体とし、水
酸化ニッケル粉末を活物質主成分とするペースト式ニッ
ケル極において、水酸化ニッケルが15〜30Åの細孔
半径を有し、その空孔容積が0.05ml/g以下で且
つ比表面積が15〜30m^2/gであることを特徴と
するアルカリ電池用ニッケル極。
(1) In a paste-type nickel electrode in which a porous alkali-resistant metal substrate is used as a current collector and nickel hydroxide powder is the main active material, the nickel hydroxide has a pore radius of 15 to 30 Å, and the vacancies are A nickel electrode for an alkaline battery, having a pore volume of 0.05 ml/g or less and a specific surface area of 15 to 30 m^2/g.
(2)水酸化ニッケル活物質がカドミウムを2〜7wt
%含有し、且つカドミウムが水酸化ニッケルの結晶中で
固溶状態である特許請求の範囲第1項記載のアルカリ電
池用ニッケル極。
(2) Nickel hydroxide active material contains 2 to 7 wt of cadmium
%, and cadmium is in a solid solution state in crystals of nickel hydroxide.
(3)アルカリ電解液に溶解し、コバルト錯イオンを生
成する、コバルト化合物を5〜15wt%添加し、且つ
該コバルト化合物が活物質と遊離状態にある特許請求の
範囲第2項記載のアルカリ電池用ニッケル極。
(3) The alkaline battery according to claim 2, in which 5 to 15 wt% of a cobalt compound is added that dissolves in an alkaline electrolyte to generate cobalt complex ions, and the cobalt compound is in a free state with the active material. For nickel electrodes.
(4)カドミウム以外に少量のコバルトが固溶状態で共
存する特許請求の範囲第2項記載のアルカリ電池用ニッ
ケル極。
(4) The nickel electrode for an alkaline battery according to claim 2, in which a small amount of cobalt in addition to cadmium coexists in a solid solution state.
JP63010489A 1988-01-19 1988-01-19 Nickel electrode for alkali battery Granted JPH01187768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63010489A JPH01187768A (en) 1988-01-19 1988-01-19 Nickel electrode for alkali battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63010489A JPH01187768A (en) 1988-01-19 1988-01-19 Nickel electrode for alkali battery

Publications (2)

Publication Number Publication Date
JPH01187768A true JPH01187768A (en) 1989-07-27
JPH0568068B2 JPH0568068B2 (en) 1993-09-28

Family

ID=11751588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63010489A Granted JPH01187768A (en) 1988-01-19 1988-01-19 Nickel electrode for alkali battery

Country Status (1)

Country Link
JP (1) JPH01187768A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01260762A (en) * 1988-04-11 1989-10-18 Yuasa Battery Co Ltd Nickel electrode for alkaline battery and battery using same
JPH04349353A (en) * 1991-05-27 1992-12-03 Yuasa Corp Nickel electrode active mass for alkali storage battery
KR100360489B1 (en) * 1995-10-26 2003-07-07 삼성전자 주식회사 Nickel electrode and manufacturing method thereof

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5045246A (en) * 1973-08-13 1975-04-23
JPS5186099A (en) * 1975-01-28 1976-07-28 Tokyo Shibaura Electric Co
JPS536119A (en) * 1976-07-01 1978-01-20 Hy Grip Products Co Sheet feeding mechanism for automatic typewriter
JPS56143671A (en) * 1980-04-09 1981-11-09 Sanyo Electric Co Ltd Manufacture of positive active material for alkaline storage battery
JPS58152372A (en) * 1982-03-05 1983-09-09 Japan Storage Battery Co Ltd Manufacturing method for positive plate of alkaline battery
JPS59163754A (en) * 1983-03-08 1984-09-14 Yuasa Battery Co Ltd Pasted positive plate for alkaline storage battery
JPS6012742A (en) * 1983-07-01 1985-01-23 Toshiba Corp Semiconductor device
JPS60131766A (en) * 1983-12-20 1985-07-13 Japan Storage Battery Co Ltd Positive plate for alkaline battery
JPS60255632A (en) * 1984-05-30 1985-12-17 Sumitomo Metal Mining Co Ltd Production of nickel hydroxide of high purity
JPS61104565A (en) * 1984-10-25 1986-05-22 Matsushita Electric Ind Co Ltd Preparation of powdered active material for nickel positive electrode of cell
JPS61124060A (en) * 1984-11-20 1986-06-11 Yuasa Battery Co Ltd Paste type positive pole plate for alkaline storage battery
JPS61138458A (en) * 1984-12-07 1986-06-25 Yuasa Battery Co Ltd Alkaline battery
JPS62256366A (en) * 1986-04-30 1987-11-09 Yuasa Battery Co Ltd Nickel electrode for alkaline battery
JPS6316556A (en) * 1986-07-07 1988-01-23 Matsushita Electric Ind Co Ltd Manufacture of non-sintered type electrode

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5045246A (en) * 1973-08-13 1975-04-23
JPS5186099A (en) * 1975-01-28 1976-07-28 Tokyo Shibaura Electric Co
JPS536119A (en) * 1976-07-01 1978-01-20 Hy Grip Products Co Sheet feeding mechanism for automatic typewriter
JPS56143671A (en) * 1980-04-09 1981-11-09 Sanyo Electric Co Ltd Manufacture of positive active material for alkaline storage battery
JPS58152372A (en) * 1982-03-05 1983-09-09 Japan Storage Battery Co Ltd Manufacturing method for positive plate of alkaline battery
JPS59163754A (en) * 1983-03-08 1984-09-14 Yuasa Battery Co Ltd Pasted positive plate for alkaline storage battery
JPS6012742A (en) * 1983-07-01 1985-01-23 Toshiba Corp Semiconductor device
JPS60131766A (en) * 1983-12-20 1985-07-13 Japan Storage Battery Co Ltd Positive plate for alkaline battery
JPS60255632A (en) * 1984-05-30 1985-12-17 Sumitomo Metal Mining Co Ltd Production of nickel hydroxide of high purity
JPS61104565A (en) * 1984-10-25 1986-05-22 Matsushita Electric Ind Co Ltd Preparation of powdered active material for nickel positive electrode of cell
JPS61124060A (en) * 1984-11-20 1986-06-11 Yuasa Battery Co Ltd Paste type positive pole plate for alkaline storage battery
JPS61138458A (en) * 1984-12-07 1986-06-25 Yuasa Battery Co Ltd Alkaline battery
JPS62256366A (en) * 1986-04-30 1987-11-09 Yuasa Battery Co Ltd Nickel electrode for alkaline battery
JPS6316556A (en) * 1986-07-07 1988-01-23 Matsushita Electric Ind Co Ltd Manufacture of non-sintered type electrode

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01260762A (en) * 1988-04-11 1989-10-18 Yuasa Battery Co Ltd Nickel electrode for alkaline battery and battery using same
JPH0724218B2 (en) * 1988-04-11 1995-03-15 株式会社ユアサコーポレーション Nickel electrode for alkaline battery and battery using the same
JPH04349353A (en) * 1991-05-27 1992-12-03 Yuasa Corp Nickel electrode active mass for alkali storage battery
KR100360489B1 (en) * 1995-10-26 2003-07-07 삼성전자 주식회사 Nickel electrode and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0568068B2 (en) 1993-09-28

Similar Documents

Publication Publication Date Title
JPH01260762A (en) Nickel electrode for alkaline battery and battery using same
WO1997012408A1 (en) Hydrogen storage electrode, nickel electrode, and alkaline storage battery
KR100454542B1 (en) Non-Sintered Nickel Electrode For Alkaline Battery
JPH0230061A (en) Nickel electrode active material, and nickel electrode and alkaline battery using same
JP4321997B2 (en) Positive electrode active material for alkaline storage battery, and positive electrode and alkaline storage battery using the same
JPH1074512A (en) Nickel hydrogen secondary battery and positive electrode thereof
JP4474722B2 (en) Alkaline storage battery and positive electrode for alkaline storage battery used therefor
JP2889669B2 (en) Non-sintered nickel positive electrode plate for alkaline storage batteries
JPH01187768A (en) Nickel electrode for alkali battery
JP3469766B2 (en) Non-sintered nickel electrodes and batteries for sealed alkaline storage batteries
JP3324781B2 (en) Alkaline secondary battery
JPH117950A (en) Non-sintered nickel electrode for alkali storage battery
JP3433049B2 (en) Non-sintered nickel electrode for alkaline storage batteries
WO1999017388A1 (en) Nickel-hydrogen storage battery
JP2679274B2 (en) Nickel-hydrogen battery
JPH06260166A (en) Nickel electrode for alkaline storage battery
JP3454274B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery using the same
JPH0685325B2 (en) Active material for nickel electrode, nickel electrode and alkaline battery using the same
JP2975129B2 (en) Electrodes for alkaline storage batteries
JP2000058062A (en) Non-sintered nickel positive electrode for alkaline storage battery
JP3094062B2 (en) Method for producing paste-type nickel electrode and method for producing alkaline storage battery
JPS6188453A (en) Nickel positive electrode for alkaline storage battery
JP3229800B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JPH11176432A (en) Non-sintered nickel electrode for alkaline storage battery
JPH0613075A (en) Nickel electrode for alkaline storage battery

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080928

Year of fee payment: 15