[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3454274B2 - Nickel electrode for alkaline storage battery and alkaline storage battery using the same - Google Patents

Nickel electrode for alkaline storage battery and alkaline storage battery using the same

Info

Publication number
JP3454274B2
JP3454274B2 JP07930792A JP7930792A JP3454274B2 JP 3454274 B2 JP3454274 B2 JP 3454274B2 JP 07930792 A JP07930792 A JP 07930792A JP 7930792 A JP7930792 A JP 7930792A JP 3454274 B2 JP3454274 B2 JP 3454274B2
Authority
JP
Japan
Prior art keywords
powder
nickel
active material
storage battery
alkaline storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07930792A
Other languages
Japanese (ja)
Other versions
JPH07130364A (en
Inventor
益弘 大西
政彦 押谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp filed Critical Yuasa Corp
Priority to JP07930792A priority Critical patent/JP3454274B2/en
Publication of JPH07130364A publication Critical patent/JPH07130364A/en
Application granted granted Critical
Publication of JP3454274B2 publication Critical patent/JP3454274B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はアルカリ蓄電池用ニッケ
ル電極およびこれを用いたアルカリ蓄電池に関するもの
であり、特に活物質を機械的に充填するアルカリ蓄電池
用ニッケル電極およびこれを用いたアルカリ蓄電池に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel electrode for an alkaline storage battery and an alkaline storage battery using the same, and more particularly to a nickel electrode for an alkaline storage battery which is mechanically filled with an active material and an alkaline storage battery using the same. Is.

【0002】[0002]

【従来の技術】一般に、ニッケル電極には活物質を化学
的に含浸するものと活物質を機械的に充填するものとの
二種類がある。前者すなわち活物質を化学的に含浸する
ものはシンター式電極と呼ばれるものであり、孔鋼板の
表面にニッケル粉末を焼結させて得られる微細な空孔を
有する特殊基板に水酸化ニッケルを化学的に含浸するこ
とによって作製されている。後者すなわち活物質を機械
的に充填するものにはポケット式電極、ボタン型電極、
ペースト式電極などがあり、また芯金式電極と呼ばれ芯
金の表面に活物質層を圧着することで得られる電極が開
発されつつある。
2. Description of the Related Art Generally, there are two types of nickel electrodes: one that is chemically impregnated with an active material and one that is mechanically filled with an active material. The former, that is, one that is chemically impregnated with an active material is called a sinter-type electrode, and nickel hydroxide is chemically added to a special substrate that has fine pores obtained by sintering nickel powder on the surface of a perforated steel sheet. It is made by impregnating. The latter, that is, those that mechanically fill the active material, include pocket type electrodes, button type electrodes,
There is a paste type electrode and the like, and an electrode called a cored bar type electrode, which is obtained by pressing an active material layer on the surface of the cored bar, is being developed.

【0003】[0003]

【発明が解決しようとする課題】以上の活物質を機械的
に充填する方式の各電極は、活物質を化学的に含浸する
シンター式電極に比べ、活物質充填工程を極めて簡易な
工程とすることができ、また活物質充填工程から廃液を
生じないという利点を有している。しかしこれらの電極
はペースト式電極を除き、シンター式電極に比べて活物
質利用率が低いという欠点があった。活物質を機械的に
充填するニッケル電極において活物質利用率が低くなる
原因としては水酸化ニッケル粉末と集電体との間の距離
が大きいことが挙げられる。すなわちシンター式電極あ
るいはペースト式電極では水酸化ニッケル粉末は細孔内
に充填されているため集電体までの距離は100μm以下と
短いのに対し、一方、芯金を集電体とするニッケル電極
では最も集電体から遠い水酸化ニッケル粉末は活物質層
の厚さの分だけ集電体から離れている。ところで正常な
状態でのニッケル電極の電極反応は式(1)に示される。 β-Ni(OH)2 + OH- = β-NiOOH + H2O + e-・・・・・・・・・(1) 式(1)に示されるように充放電反応過程で水酸化ニッケ
ルの酸化数は変化し、その結果水酸化ニッケルの導電率
はこの充放電反応によって変化する。この点を実際的な
厳密な意味で説明すれば酸化数は放電によって完全な2
価に還元されることはなく、2.2〜3.0価の範囲で連続的
に変化し、導電率もそれに伴って10-4〜10-2の範囲で変
化する。一方前述した如く、水酸化ニッケル粉末と集電
体との間の距離が大きい場合には、水酸化ニッケル粉末
と集電体との間にある活物質の分だけ抵抗成分が生じる
こととなり、特に、放電反応においては、酸化数が2価
に近づき導電率が低下した水酸化ニッケル粉末が間に存
在することになる。その結果として抵抗成分は非常に大
きなものとなる。かかる抵抗成分の作用として、芯金を
集電体とするニッケル電極の活物質利用率が低くなり、
放電曲線も平坦性に欠けるという結果を生じる。したが
ってこの電極の活物質利用率を向上させるには、この抵
抗成分を小さくすることが不可欠である。かかる観点の
対策として、放電反応の進行に伴う水酸化ニッケルの導
電率の低下を制御することが考えられるが、かかる導電
率の低下は制御することができない。そこで通常水酸化
ニッケル粉末にグラファイトやニッケル粉末などの導電
材粉末を混合することによって活物質粉末の導電率を向
上することが行われている。しかし、これらの導電材粉
末と水酸化ニッケル粉末の間には通常大きな接触抵抗が
存在し、単に導電材粉末を水酸化ニッケル粉末に混合す
るだけでは必ずしも利用率の飛躍的な向上は得られな
い。そこで導電材粉末と水酸化ニッケル粉末との間の接
触抵抗を小さくする対策が必要となる。この様な対策と
して例えば導電材粉末としてグラファイト粉末を使用す
る場合には、グラファイト粉末を水酸化ニッケル粉末と
混合した後に、混練により接触抵抗を小さく方法があ
る。しかし、グラファイトはニッケル電極が曝されてい
るようなアルカリ溶液中の酸化雰囲気で安定に存在する
ものではなく、徐々に分解され炭酸根となり電解液を汚
染していくという現象を生ずる。特に微粒子のグラファ
イトは接触抵抗を小さくする作用が強いと同時に、分解
し易いという欠点がありその効果は長期間持続せず、活
物質利用率は経時的に低下し、かかる導電材の分解が電
極の放電特性を劣化させている最も大きな原因となって
いる。本発明は以上の従来技術の問題点に鑑みてなされ
たものであって、活物質を機械的に充填するニッケル電
極が有する欠点を解消し、活物質を機械的に充填する方
式の電極について活物質利用率を向上させることによっ
て、安価で簡易に製造することができると共に、活物質
の利用率が高いアルカリ蓄電池用ニッケル電極とこれを
用いたアルカリ蓄電池を提供することを目的とする。
In each of the above-mentioned electrodes of the type in which the active material is mechanically filled, the active material filling step is extremely simple as compared with the sinter type electrode in which the active material is chemically impregnated. In addition, there is an advantage that waste liquid is not generated from the active material filling step. However, these electrodes have a drawback that the utilization rate of the active material is lower than that of the sinter type electrode except for the paste type electrode. A large distance between the nickel hydroxide powder and the current collector is one of the causes of the low utilization rate of the active material in the nickel electrode that is mechanically filled with the active material. That is, in the sinter type electrode or the paste type electrode, the nickel hydroxide powder is filled in the pores, so the distance to the current collector is as short as 100 μm or less, while on the other hand, the nickel electrode using the core metal as the current collector. Then, the nickel hydroxide powder farthest from the current collector is separated from the current collector by the thickness of the active material layer. By the way, the electrode reaction of the nickel electrode in a normal state is represented by the equation (1). β-Ni (OH) 2 + OH - = β-NiOOH + H 2 O + e - ········· (1) nickel hydroxide in the charge-discharge reaction process as shown in equation (1) The number of oxidations of nickel hydroxide changes, and as a result, the conductivity of nickel hydroxide changes due to this charge-discharge reaction. Explaining this point in a practical and strict sense, the oxidation number is 2 when the discharge is complete.
It is not reduced to a valence, continuously changes in the range of 2.2 to 3.0, and the conductivity also changes in the range of 10 -4 to 10 -2 . On the other hand, as described above, when the distance between the nickel hydroxide powder and the current collector is large, a resistance component is generated by the amount of the active material between the nickel hydroxide powder and the current collector. In the discharge reaction, nickel hydroxide powder whose oxidation number is close to divalent and whose conductivity is lowered is present between them. As a result, the resistance component becomes very large. As a function of such a resistance component, the utilization factor of the active material of the nickel electrode using the core metal as a current collector becomes low,
The discharge curve also results in a lack of flatness. Therefore, in order to improve the utilization rate of the active material of this electrode, it is essential to reduce this resistance component. As a countermeasure from this viewpoint, it is conceivable to control the decrease in the conductivity of nickel hydroxide with the progress of the discharge reaction, but such a decrease in the conductivity cannot be controlled. Therefore, the conductivity of the active material powder is usually improved by mixing a nickel hydroxide powder with a conductive material powder such as graphite or nickel powder. However, there is usually a large contact resistance between the conductive material powder and the nickel hydroxide powder, and simply mixing the conductive material powder with the nickel hydroxide powder does not necessarily lead to a dramatic improvement in the utilization rate. . Therefore, it is necessary to take measures to reduce the contact resistance between the conductive material powder and the nickel hydroxide powder. As such a countermeasure, for example, when graphite powder is used as the conductive material powder, there is a method of reducing the contact resistance by mixing the graphite powder with nickel hydroxide powder and then kneading. However, graphite does not exist stably in an oxidizing atmosphere in an alkaline solution to which the nickel electrode is exposed, and gradually decomposes to form carbonate radicals, which causes a phenomenon of contaminating the electrolytic solution. In particular, fine particle graphite has a strong effect of reducing the contact resistance, and at the same time has a drawback that it is easily decomposed, so that the effect does not last for a long time, the utilization rate of the active material decreases with time, and the decomposition of such a conductive material is Is the most significant cause of deterioration of the discharge characteristics. The present invention has been made in view of the above problems of the prior art, eliminates the disadvantages of the nickel electrode that mechanically fills the active material, and activates the electrode of the method that mechanically fills the active material. An object of the present invention is to provide a nickel electrode for an alkaline storage battery, which can be manufactured inexpensively and easily by improving the material utilization rate, and has a high utilization rate of an active material, and an alkaline storage battery using the same.

【0004】[0004]

【課題を解決するための手段】本発明者はかかる課題を
解決するべく種々検討し、導電材粉末と水酸化ニッケル
粉末の間の接触抵抗の削減にコバルト化合物を用いるこ
とによって自由に導電材を選択することができ、導電材
として用いられる材料がグラファイトに限られないこと
から、グラファイトの分解による放電特性の低下という
従来の問題は解消されることを見出し本発明を創出する
に至った。すなわち本発明のアルカリ蓄電池用ニッケル
電極は、活物質を機械的に充填したアルカリ蓄電池用ニ
ッケル電極において、活物質である水酸化ニッケル粉
末、導電材粉末、コバルト化合物粉末の混合物である粉
末材料を機械的に充填したアルカリ蓄電池用ニッケル電
極において、前記導電材粉末が鱗片状ニッケル粉末であ
り、前記コバルト化合物がアルカリ電解液中において一
旦コバルト錯イオンとして溶解後水酸化コバルトとして
析出する性質を有し、当該コバルト化合物の混合量が
記粉末材料の2.0〜10.0wt%であることを特徴
とするから成ることを特徴とする。本発明にいうところ
の活物質を機械的に充填するアルカリ蓄電池用ニッケル
電極としては例えばポケット式電極、ボタン型電極、芯
金式電極がある。前記コバルト化合物はアルカリ電解液
中において一度コバルト錯イオンとして溶解後析出する
性質を有するものであることが好ましい。それにより一
度溶解し、導電材粉末や水酸化ニッケル粉末の表面に水
酸化コバルトとして析出し、導電材粉末と水酸化ニッケ
ル粉末を非常に堅固に接続して活物質の導電率を向上す
るからである。かかるコバルト化合物としては例えばC
oO、β−Co(OH)、α−Co(OH)等があ
る。前記コバルト化合物の混合量は、前記全粉末材料に
対して2.0〜10.0wt%とする。コバルト化合物の混
合量が全粉末材料にに対して2.0wt%未満である場合
には、導電材粉末および/または水酸化ニッケル粉末の
接触抵抗が充分に削減されず、活物質の利用率が90%
未満となる。逆に10.0wt%を超える場合には導電材粉
末および/または水酸化ニッケル粉末の添加量が相対的
に低下し、全体として電極の容量が低下する。前記材料
粉末の導電率は10-2S・cm-1以上であることが好ま
しく、さらに好ましくは2×10-2S・cm-1以上であ
るのが良い。添加する導電材粉末は、ニッケル電極のサ
イクルに伴う放電特性の劣化を防ぐという点から耐アル
カリ性であり、且つできるだけ接触抵抗の小さい形状の
ものとする必要がある。かかる観点から本発明において
は導電材粉末として鱗片状のニッケル粉末を適用する。
導電材粉末の添加量は前記粉末材料の導電率が10 -2 S
・cm -1 以上になるように設定することが望ましい。
加量が少ないと前記コバルト化合物を添加して接触抵抗
を低減しても、活物質層の導電率が十分でなく、活物質
利用率の飛躍的な向上を得ることができない。
Means for Solving the Problems The present inventor has conducted various studies to solve the above problems, and freely uses a cobalt compound to reduce the contact resistance between the conductive material powder and the nickel hydroxide powder. Since the material that can be selected and is used as the conductive material is not limited to graphite, the inventors have found that the conventional problem of deterioration of discharge characteristics due to decomposition of graphite can be solved and have created the present invention. That alkaline storage battery of nickel electrodes of the present invention, in the alkaline storage battery of nickel electrodes were mechanically filling the active material, nickel hydroxide powder as an active material, a conductive material powder, flour is a mixture of cobalt compound powder
Nickel battery for alkaline storage battery mechanically filled with powder
In the pole, the conductive material powder is scale-like nickel powder.
Ri, said cobalt compound has the property of precipitating as once dissolved after cobalt hydroxide as a cobalt complex ion in alkaline electrolyte, a mixed amount of the cobalt compound is pre
It is characterized in that it is 2.0 to 10.0 wt% of the powder material . Examples of nickel electrodes for alkaline storage batteries that are mechanically filled with an active material as referred to in the present invention include pocket-type electrodes, button-type electrodes, and core metal-type electrodes. It is preferable that the cobalt compound has a property of being once dissolved as a cobalt complex ion in an alkaline electrolyte and then deposited. As a result, it dissolves once and precipitates as cobalt hydroxide on the surface of the conductive material powder or nickel hydroxide powder, and the conductive material powder and nickel hydroxide powder are connected very firmly to improve the conductivity of the active material. is there. Examples of such cobalt compounds include C
oO, β-Co (OH) 2 , α-Co (OH) 2 and the like. The amount of the cobalt compound mixed is based on the total powder material.
On the other hand, it is 2.0 to 10.0 wt%. If the amount of the cobalt compound mixed is less than 2.0 wt% with respect to the total powder material, the contact resistance of the conductive material powder and / or nickel hydroxide powder is not sufficiently reduced, and the utilization rate of the active material is reduced. 90%
Less than On the other hand, if it exceeds 10.0 wt%, the amount of the conductive material powder and / or the nickel hydroxide powder added is relatively decreased, and the capacity of the electrode is decreased as a whole. The electric conductivity of the material powder is preferably 10 −2 S · cm −1 or more, more preferably 2 × 10 −2 S · cm −1 or more. The conductive material powder to be added is required to have a shape that is alkali resistant and has a contact resistance as small as possible from the viewpoint of preventing deterioration of discharge characteristics due to nickel electrode cycles. From this viewpoint, in the present invention
Applies scale-like nickel powder as the conductive material powder.
The amount of conductive material powder added is such that the conductivity of the powder material is 10 -2 S.
-It is desirable to set it to be cm- 1 or more. If the amount of addition is small, even if the cobalt compound is added to reduce the contact resistance, the conductivity of the active material layer is not sufficient, and a dramatic improvement in the active material utilization cannot be obtained.

【0005】[0005]

【作用】アルカリ電解液中に一度溶解しコバルトイオン
を経た後析出する性質を有するコバルト化合物は導電材
粉末と水酸化ニッケル粉末の間の接触抵抗を下げる効果
を有する。すなわち導電材粉末と共に水酸化ニッケル粉
末に混合されたコバルト化合物はアルカリ注液後一度溶
解し、導電材粉末や水酸化ニッケル粉末の表面に水酸化
コバルトとして析出する。かかる水酸化コバルトは初充
電によって、高い導電性を有する不可逆性のオキシ水酸
化コバルトに変化し、かかるオキシ水酸化コバルトが導
電材粉末と水酸化ニッケル粉末を非常に堅固に接続して
活物質の導電率を向上し、活物質利用率を飛躍的に向上
する。
The cobalt compound, which has the property of being dissolved once in an alkaline electrolyte, passing through cobalt ions, and then precipitated, has the effect of lowering the contact resistance between the conductive material powder and the nickel hydroxide powder. That is, the cobalt compound mixed with the nickel hydroxide powder together with the conductive material powder dissolves once after the alkali injection, and is deposited as cobalt hydroxide on the surfaces of the conductive material powder and the nickel hydroxide powder. Such cobalt hydroxide is changed to irreversible cobalt oxyhydroxide having high conductivity by the first charge, and such cobalt oxyhydroxide connects the conductive material powder and the nickel hydroxide powder very firmly to form the active material. Improves conductivity and dramatically improves active material utilization.

【0006】[0006]

【実施例】以下に本発明の実施例を説明する。なお機械
的に充填するニッケル電極にはポケット式電極、ボタン
型電極、芯金式電極等があるが、活物質利用率および高
率放電特性に及ぼす影響が最も顕著であるという理由
で、芯金式電極を選択して実施した。 実施例1 ニッケル電極の製作 水酸化ニッケル粉末(92-b)wt%に一酸化コバルト粉末bwt
%とグラファイト粉末8wt%を混合して活物質とした。こ
こでbは0.0〜2.5wt%の範囲で各種設定した。その活物
質にポリテトラフルオロエチレン3wt%を結着剤として加
え、厚さ300μmのシート状に加工した。その活物質シー
トをニッケルメッシュの両側に圧着し、厚み0.7mmのニ
ッケル電極とした。 蓄電池の製作 以上により得られたニッケル電極に対極としてペースト
式カドミウム電極を組み合わせて、比重1.26の水酸化カ
リウム水溶液を注液し、電解液注液後24時間放置し一酸
化コバルトを溶解再析出させ、流動可能な電解液を有す
る電池を得た。 充放電試験 温度20℃で充電0.1CA×15時間、放電0.2CA(終止電圧1.
00V)を繰り返し試験を行った。図1に一酸化コバルト粉
末添加量と活物質利用率との関係を示す。図に示される
ように一酸化コバルト粉末は0.5wt%以上添加されること
により、活物質利用率が85%を越え、特に2.0%以上添加
された場合には利用率を更に向上させて90%以上の利用
率が達成される。かかる実施例において一酸化コバルト
粉末は初充電で安定な不可逆性なオキシ水酸化コバルト
に変化する。
EXAMPLES Examples of the present invention will be described below. There are pocket type electrodes, button type electrodes, core metal type electrodes, etc. as the nickel electrodes to be mechanically filled, but the core metal has the most remarkable effect on the active material utilization rate and high rate discharge characteristics. Formula electrodes were selected and implemented. Example 1 Production of nickel electrode Nickel hydroxide powder (92-b) wt% to cobalt monoxide powder bwt
% And graphite powder 8 wt% were mixed to obtain an active material. Here, b was variously set in the range of 0.0 to 2.5 wt%. Polytetrafluoroethylene (3 wt%) was added to the active material as a binder, and processed into a sheet having a thickness of 300 μm. The active material sheet was pressed on both sides of the nickel mesh to form a nickel electrode having a thickness of 0.7 mm. Production of storage battery By combining the nickel electrode obtained above with a paste type cadmium electrode as a counter electrode, inject a potassium hydroxide aqueous solution with a specific gravity of 1.26 and leave it for 24 hours after injecting the electrolyte to dissolve and re-precipitate cobalt monoxide. A battery having a flowable electrolyte was obtained. Charge / Discharge Test Temperature 20 ℃, Charge 0.1CA × 15 hours, Discharge 0.2CA (End voltage 1.
00V) was repeated. Figure 1 shows the relationship between the amount of cobalt monoxide powder added and the active material utilization rate. As shown in the figure, by adding 0.5 wt% or more of cobalt monoxide powder, the active material utilization rate exceeds 85%, and particularly when 2.0% or more is added, the utilization rate is further improved to 90%. The above utilization rate is achieved. In such an example, the cobalt monoxide powder changes to a stable and irreversible cobalt oxyhydroxide upon initial charging.

【0007】実施例2 グラファイト粉末の代わりにニッケル粉末を導電材とし
て用いて水酸化ニッケル粉末(70-c)wt%と一酸化コバル
ト粉末cw%とニッケル粉末30wt%を混合し、活物質とし
た。この活物質を用い他は実施例1と同様にしてニッケ
ル電極および蓄電池を作製した。なお以上においてcは
2〜10wt%の範囲で種々設定した。本実施例において一酸
化コバルトの添加量の範囲が広いのは、ニッケル粉末は
グラファイト粉末に比べ接触抵抗が大きいからである。
なおニッケル粉末30wt%は先のグラファイト粉末8wt%と
ほぼ同体積である。また本実施例においてはニッケル粉
末は3種の形状のものを使用した。図2に使用したニッケ
ル粉末の電子顕微鏡写真を示す。図3に一酸化コバルト
粉末添加量と活物質利用率の関係を図4に示す各種形状
のニッケル粉末につき示す。図2,3に示されるようにニ
ッケル粉末の形状に係わらず2〜10wt%の範囲の一酸化コ
バルト粉末添加によって活物質利用率が向上される。た
だし、図3に示されるようにニッケル粉末の種類によっ
て活物質利用率の向上の程度が異なり図2(C)に示す鱗片
状を呈しているニッケル粉末を用いた場合(図3中C曲
線で示される)が最も少量の一酸化コバルト粉末添加量
で活物質利用率が向上されることがわかる。本実施例に
より、一酸化コバルト粉末を添加することによってグラ
ファイト粉末以外の導電材についても活物質利用率の向
上が得られることがわかる。また、特に導電材が鱗片状
を呈しているものについては著しい効果が得られること
がわかる。
Example 2 Nickel powder was used as a conductive material instead of graphite powder, and nickel hydroxide powder (70 -c ) wt%, cobalt monoxide powder cw% and nickel powder 30 wt% were mixed to obtain an active material. . A nickel electrode and a storage battery were produced in the same manner as in Example 1 except that this active material was used. In the above, c is
Various settings were made within the range of 2 to 10 wt%. The reason why the amount of cobalt monoxide added is wide in this example is that nickel powder has a larger contact resistance than graphite powder.
The nickel powder 30 wt% has almost the same volume as the above graphite powder 8 wt%. In addition, in this embodiment, nickel powder having three different shapes was used. Figure 2 shows an electron micrograph of the nickel powder used. Fig. 3 shows the relationship between the amount of cobalt monoxide powder added and the active material utilization rate for nickel powder of various shapes shown in Fig. 4. As shown in FIGS. 2 and 3, the utilization ratio of the active material is improved by adding the cobalt monoxide powder in the range of 2 to 10 wt% regardless of the shape of the nickel powder. However, as shown in FIG. 3, the degree of improvement in the utilization rate of the active material varies depending on the type of nickel powder, and when the scale-like nickel powder shown in FIG. It is found that the utilization rate of the active material is improved by the smallest amount of the cobalt monoxide powder added. This example shows that the addition of the cobalt monoxide powder can improve the utilization rate of the active material for the conductive materials other than the graphite powder. In addition, it can be seen that a remarkable effect can be obtained particularly when the conductive material has a scaly shape.

【0008】比較例1 水酸化ニッケル粉末(100-a)wt%にグラファイト粉末awt%
を混合して活物質とし、他は実施例1と同様にして、ニ
ッケル電極および蓄電池を作製した。なおaは5〜20wt%
の範囲で種々に設定した。以上により得られた蓄電池に
つき温度20℃で充電0.1CA×15時間、放電0.2CA(終止電
圧1.00V)を繰り返し充放電試験を行った。図4にその場
合のグラファイト粉末添加量と活物質導電率との関係を
示す。また図5にその場合のグラファイト粉末添加量と
活物質利用率との関係を示す。 図4および図5から活物
質利用率と活物質導電率に相関性があることが認められ
る。活物質利用率および活物質導電率は最初グラファイ
ト粉末添加量の増加に伴い向上する。しかし、添加量が
8wt%付近で頭打ちとなり、特に活物質利用率は85%を越
えない。したがって、グラファイト粉末は8wt%以上の添
加が無効であるということができる。この結果と前述の
実施例1の結果とを比較すると一酸化コバルト粉末は頭
打ちとなった活物質利用率を更に向上させる効果がある
ことがわかる。
Comparative Example 1 Nickel hydroxide powder (100 -a ) wt% graphite powder awt%
Were mixed as an active material, and otherwise a nickel electrode and a storage battery were prepared in the same manner as in Example 1. Note that a is 5 to 20 wt%
Various settings were made within the range. The storage battery obtained as described above was repeatedly charged and discharged at a temperature of 20 ° C. for 0.1 CA × 15 hours and discharged at 0.2 CA (final voltage 1.00 V). Figure 4 shows the relationship between the amount of graphite powder added and the conductivity of the active material in that case. Fig. 5 shows the relationship between the amount of graphite powder added and the active material utilization rate in that case. It can be seen from FIGS. 4 and 5 that there is a correlation between the active material utilization rate and the active material conductivity. The active material utilization rate and the active material electrical conductivity initially improve with an increase in the amount of graphite powder added. However, the addition amount
It reaches the ceiling around 8wt%, and the active material utilization rate does not exceed 85%. Therefore, it can be said that the addition of 8 wt% or more of graphite powder is invalid. Comparing this result with the result of Example 1 described above, it can be seen that the cobalt monoxide powder has the effect of further improving the utilization rate of the active material, which has reached the ceiling.

【0009】比較例2 一酸化コバルト粉末の代わりにオキシ水酸化コバルト粉
末を添加した活物質を用いて、他は実施例1と同様にし
てニッケル電極および蓄電池を製作し、充放電試験を行
った。その結果この場合実施例1におけるb=0.0と同程
度すなわち水酸化コバルトを添加しない場合と同程度の
活物質利用率であった(図1)。この結果から一酸化コ
バルト粉末添加による効果は溶解再析出過程によって得
られるということがわかる。なお上記実施例においては
添加剤として一酸化コバルトを用いたがアルカリ溶液電
解液中において一度コバルト錯イオンとして溶解した後
析出する性質を有するコバルト化合物であれば本発明の
目的を達成することができ、上記実施例1,2と同様な効
果を得ることができる。
Comparative Example 2 A nickel electrode and a storage battery were manufactured in the same manner as in Example 1 except that an active material containing cobalt oxyhydroxide powder added in place of the cobalt monoxide powder was used, and a charge / discharge test was conducted. . As a result, in this case, the utilization factor of the active material was about the same as b = 0.0 in Example 1, that is, the same as when cobalt hydroxide was not added (FIG. 1). From this result, it can be seen that the effect of adding the cobalt monoxide powder is obtained by the dissolution and reprecipitation process. Although cobalt monoxide was used as an additive in the above examples, the object of the present invention can be achieved as long as it is a cobalt compound having the property of being once dissolved as a cobalt complex ion in an alkaline solution electrolyte and then precipitated. It is possible to obtain the same effects as those of the first and second embodiments.

【0010】[0010]

【発明の効果】以上のように本発明によれば活物質を機
械的に充填するニッケル電極において、水酸化ニッケル
粉末、導電材粉末、アルカリ電解液中でコバルト錯イオ
ンを生ずるコバルト化合物からなる活物質を用いたこと
により、活物質利用率が高い安価なアルカリ蓄電池用ニ
ッケル電極とこれを用いたアルカリ蓄電池を提供するこ
とができる。
As described above, according to the present invention, in the nickel electrode that is mechanically filled with the active material, the nickel electrode powder, the conductive material powder, and the cobalt compound that produces the cobalt complex ion in the alkaline electrolyte are used as the active material. By using the substance, it is possible to provide an inexpensive nickel electrode for an alkaline storage battery having a high utilization rate of an active material and an alkaline storage battery using the same.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の蓄電池関し、グラファイト
粉末を導電材として用いた場合の一酸化コバルト粉末添
加量と活物質利用率の関係を示す図である。
[1] relates to the battery embodiment of the present invention, is a diagram showing the relationship between cobalt monoxide powder addition amount and the utilization of the active material in the case of using the graphite powder as a conductive material.

【図2】本発明の実施に用いられる各種ニッケル粉末の
粒子構造を示す電子顕微鏡写真である。
FIG. 2 shows various nickel powders used for carrying out the present invention.
It is an electron micrograph which shows a particle structure .

【図3】各種ニッケル粉末を導電材として用い本発明を
実施した場合の一酸化コバルト粉末添加量と活物質利用
率との関係を示す図である。
FIG. 3 is a graph showing the relationship between the amount of cobalt monoxide powder added and the active material utilization rate when the present invention is carried out using various nickel powders as conductive materials.

【図4】グラファイト粉末添加量と活物質導電率との関
係を示す図である。
FIG. 4 is a diagram showing the relationship between the amount of graphite powder added and the electrical conductivity of the active material.

【図5】グラファイト粉末添加量と活物質利用率との関
係を示す図である。
FIG. 5 is a graph showing the relationship between the amount of graphite powder added and the active material utilization rate.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 4/24 - 4/32 H01M 4/62 Front page continuation (58) Fields surveyed (Int.Cl. 7 , DB name) H01M 4/24-4/32 H01M 4/62

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水酸化ニッケル粉末、導電材粉末、コバ
ルト化合物粉末からなる粉末材料を機械的に充填したア
ルカリ蓄電池用ニッケル電極において、前記導電材粉末
が鱗片状ニッケル粉末であり、前記コバルト化合物がア
ルカリ電解液中において一度コバルト錯イオンとして溶
解後水酸化コバルトとして析出する性質を有し、当該コ
バルト化合物の混合量が前記粉末材料の2.0〜10.
0wt%であることを特徴とするアルカリ蓄電池用ニッ
ケル電極。
1. A nickel electrode for an alkaline storage battery in which a powder material consisting of nickel hydroxide powder, conductive material powder and cobalt compound powder is mechanically filled, wherein the conductive material powder is scale-like nickel powder and the cobalt compound is It has the property of once dissolving as cobalt complex ions in an alkaline electrolyte and then precipitating as cobalt hydroxide, and the mixing amount of the cobalt compound is 2.0 to 10.
Nickel electrode for alkaline storage battery, characterized in that it is 0 wt%.
【請求項2】 活物質となる水酸化ニッケル粉末を機械
的に充填したアルカリ蓄電池用ニッケル電極を用いたア
ルカリ蓄電池において、前記アルカリ蓄電池用ニッケル
電極が、請求項1に記載されたアルカリ蓄電池用ニッケ
ル電極であることを特徴とするアルカリ蓄電池。
2. An alkaline storage battery using a nickel electrode for alkaline storage battery mechanically filled with nickel hydroxide powder as an active material, wherein the nickel electrode for alkaline storage battery is the nickel for alkaline storage battery according to claim 1. An alkaline storage battery characterized by being an electrode.
JP07930792A 1992-02-28 1992-02-28 Nickel electrode for alkaline storage battery and alkaline storage battery using the same Expired - Lifetime JP3454274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07930792A JP3454274B2 (en) 1992-02-28 1992-02-28 Nickel electrode for alkaline storage battery and alkaline storage battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07930792A JP3454274B2 (en) 1992-02-28 1992-02-28 Nickel electrode for alkaline storage battery and alkaline storage battery using the same

Publications (2)

Publication Number Publication Date
JPH07130364A JPH07130364A (en) 1995-05-19
JP3454274B2 true JP3454274B2 (en) 2003-10-06

Family

ID=13686198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07930792A Expired - Lifetime JP3454274B2 (en) 1992-02-28 1992-02-28 Nickel electrode for alkaline storage battery and alkaline storage battery using the same

Country Status (1)

Country Link
JP (1) JP3454274B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083599A (en) * 2000-09-07 2002-03-22 Sony Corp Positive electrode mixture and nickel zinc battery
WO2013012085A1 (en) 2011-07-20 2013-01-24 株式会社Gsユアサ Cylindrically shaped battery

Also Published As

Publication number Publication date
JPH07130364A (en) 1995-05-19

Similar Documents

Publication Publication Date Title
EP1172869B1 (en) Method for producing a positive electrode active material for an alkaline storage battery
JPH0724218B2 (en) Nickel electrode for alkaline battery and battery using the same
EP0353837A1 (en) A nickel electrode for an alkaline battery
WO1993008611A1 (en) Method for production of nickel plate and alkali storage battery
JPH11149921A (en) Alkali storage battery and surface treatment method of its positive electrode substance
JPH0230061A (en) Nickel electrode active material, and nickel electrode and alkaline battery using same
JP3617203B2 (en) Manufacturing method of nickel metal hydride secondary battery
US20050238960A1 (en) Non-sintered type positive electrode and alkaline storage battery using the same
Wang et al. Electrochemical characteristics of nickel hydroxide modified by electroless cobalt coating
JP3454274B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery using the same
JP4474722B2 (en) Alkaline storage battery and positive electrode for alkaline storage battery used therefor
JP2889669B2 (en) Non-sintered nickel positive electrode plate for alkaline storage batteries
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JPH06260166A (en) Nickel electrode for alkaline storage battery
JP3788485B2 (en) Alkaline storage battery
JP4147748B2 (en) Nickel positive electrode and nickel-hydrogen storage battery
JPH02109261A (en) Active material for nickel electrode, nickel electrode, and alkaline battery using this electrode
JPH01187768A (en) Nickel electrode for alkali battery
JPS6188453A (en) Nickel positive electrode for alkaline storage battery
JPH0793138B2 (en) Positive electrode plate for battery and manufacturing method thereof
JP2000058062A (en) Non-sintered nickel positive electrode for alkaline storage battery
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JP3075114B2 (en) Nickel positive electrode for alkaline storage batteries
JPH11238507A (en) Alkaline storage battery
JP3518259B2 (en) Nickel-hydrogen storage battery and method for producing positive electrode active material thereof

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 9