[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0353048A - Fe-base magnetic alloy - Google Patents

Fe-base magnetic alloy

Info

Publication number
JPH0353048A
JPH0353048A JP1188395A JP18839589A JPH0353048A JP H0353048 A JPH0353048 A JP H0353048A JP 1188395 A JP1188395 A JP 1188395A JP 18839589 A JP18839589 A JP 18839589A JP H0353048 A JPH0353048 A JP H0353048A
Authority
JP
Japan
Prior art keywords
magnetic alloy
alloy
magnetic
based magnetic
crystal grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1188395A
Other languages
Japanese (ja)
Inventor
Katsuto Yoshizawa
克仁 吉沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP1188395A priority Critical patent/JPH0353048A/en
Publication of JPH0353048A publication Critical patent/JPH0353048A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To produce a magnetic alloy having superior soft magnetism by preparing an Fe-base magnetic alloy which consists of specific percentages of Fe, Ni, Co, Si, B, Nb, C, Sb, etc., and in which the content and average grain size of fine crystalline grains are specified, respectively. CONSTITUTION:An Fe-base magnetic alloy having a composition represented by a general formula (Fe1-a-bNiaCob)100-y-z-alpha-beta-gamma-deltaSiyBzM'alphaXgammaYdelta (where M' means at least one element selected from Nb, W, Ta, Zr, Hf, etc., X means at least one element selected from C, Ge, Ga, Al, Be, etc., Y means at least one element selected from Sb, In, As, Li, Mg, etc., and the symbols (a), (b), (y), (z), (alpha), (gamma), and (delta) stand for, by atomic%, 0-<0.2, 0-0.5, 0-30, 9-15, 0-20, 0.20, and 0-2, respectively, and further, 0<a+b<0.5 and 10<=y+z+alpha+gamma<=35 are satisfied) and also having a structure in which fine crystalline grains comprise at least 50% and the average of the grain sizes measured by respective maximum sizes of the above crystalline grains is regulated to <=1000Angstrom is prepared. By this method, the magnetic alloy having superior soft magnetism and reduced in magnetostriction can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、優れた軟磁気特性を有し、磁歪が小さいFe
基磁性合金、特に組織の大半が微細な結晶粒からなるF
e基磁性合金に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention is directed to Fe having excellent soft magnetic properties and low magnetostriction.
Base magnetic alloys, especially F whose structure is mostly composed of fine crystal grains
This invention relates to an e-based magnetic alloy.

従来、高周波トランス、磁気ヘッド、可飽和リアクトル
、チョークコイル等磁心材料として、うず電流損が少な
い等の利点を有するフエライトが主に持ちいられていた
.しかしフエライトは飽和磁束密度が低く、温度特性も
悪いため、高周波トランスやチョークコイルに用いる場
合磁心を小形化することが困難であるという欠点があっ
た。
Conventionally, ferrite, which has advantages such as low eddy current loss, has been mainly used as a magnetic core material for high-frequency transformers, magnetic heads, saturable reactors, and choke coils. However, since ferrite has a low saturation magnetic flux density and poor temperature characteristics, it has the disadvantage that it is difficult to downsize the magnetic core when used in high frequency transformers and choke coils.

近年、従来の磁心材料に対抗するものとして高い飽和磁
束密度を有する非品質磁性合金が有望視されており、種
々の組成のものが開発されている。
In recent years, non-quality magnetic alloys with high saturation magnetic flux densities have shown promise as competitors to conventional magnetic core materials, and various compositions have been developed.

非晶質合金は主としてFe系とCo系に大別され、Fe
系の非品質合金は材料コストがGo系に比べ安くつくと
いう利点がある反面一般的に高周波においてCo系非晶
質合金よりコア損失が大きく、透磁率も低いという問題
がある。これに対しGo系の非晶質合金は高周波のコア
損失が小さく、透磁率も高いがコア損失や透磁率の経時
変化が大きい。さらに高価なCoを主原料とするため価
格的な不利は免れない。
Amorphous alloys are mainly divided into Fe-based and Co-based.
Non-quality Co-based alloys have the advantage of being cheaper in material cost than Go-based alloys, but on the other hand, they generally have the problem of higher core loss and lower magnetic permeability than Co-based amorphous alloys at high frequencies. On the other hand, Go-based amorphous alloys have low core loss at high frequencies and high magnetic permeability, but the core loss and magnetic permeability change over time are large. Furthermore, since expensive Co is used as the main raw material, a cost disadvantage cannot be avoided.

このような状況下でFe基磁性合金について種々の提案
がなされた。
Under these circumstances, various proposals have been made regarding Fe-based magnetic alloys.

特公昭60−17019号は、74〜84原子%のFe
と、8〜24原料%のBと、16原子%以下のSi及び
3原子%以下のCの内の少なくとも1つ,とからなる組
成を有し、その構造の少なくとも85%が非晶質金属素
地の形を有し、かつ非晶質金属素地の全体にわたって不
連続に分布された合金成分の結品質粒子群の析出物を有
しており、結晶質粒子群は0.05〜1tmの平均粒度
及び1〜lO−の平均粒子間距離を有しており、粒子群
は全体の0.01〜0.3の平均容積分率を占めている
ことを特徴とする鉄基含硼素磁性非晶質合金を開示して
いる。この合金の結晶質粒子群は磁壁のビンニング点と
して作用する不連続な分布のα(Fe,Si)粒子群で
あるとされている。
Japanese Patent Publication No. 17019/1987 discloses Fe of 74 to 84 atomic%.
and at least one of 8 to 24 atomic % B, 16 atomic % or less Si, and 3 atomic % or less C, and at least 85% of the structure is an amorphous metal. It has the shape of a matrix and has precipitates of crystalline grains of alloy components discontinuously distributed throughout the amorphous metal matrix, and the crystalline grains have an average size of 0.05 to 1 tm. An iron-based boron-containing magnetic amorphous material having a particle size and an average interparticle distance of 1 to 1O-, and the particle group occupying an average volume fraction of 0.01 to 0.3 of the whole. Discloses quality alloys. The crystalline particles of this alloy are said to be discontinuously distributed α (Fe, Si) particles that act as binning points of the domain wall.

また特開昭60 − 52557号はFea Cub 
Bc  Sid(ただし75≦a≦85,0≦b≦1.
5,10≦C≦20,d≦10かつc十d≦30)から
なる低損失非品質磁性合金を開示している。この非品質
磁性合金は結晶化温度以下でかつキュリー温度以上で熱
処理される。
Also, JP-A-60-52557 is Fea Cub
Bc Sid (75≦a≦85, 0≦b≦1.
5,10≦C≦20, d≦10 and c10d≦30). This non-quality magnetic alloy is heat treated below the crystallization temperature and above the Curie temperature.

[発明が解決しようとする問題点] 特公昭60−17019号のFe基軟磁性合金は不連続
な結晶粒子群の存在によりコア損失が減少しているが、
経時変化が大きく高周波トランスやチョークの磁心用材
料としては満足でない。
[Problems to be Solved by the Invention] The Fe-based soft magnetic alloy disclosed in Japanese Patent Publication No. 17019/1987 has a reduced core loss due to the presence of discontinuous crystal grain groups;
It is not satisfactory as a material for magnetic cores in high-frequency transformers and chokes because it changes significantly over time.

一方、特開昭60−52557号のFe基非品質合金は
Cuを含有しているためにコア損失が著しく低下してい
るが、上記結晶質粒子含有Fe基非品質合金と同様に満
足ではない。さらにコア損失の経時変化、透磁率等に関
しても十分ではないという問題がある。また、磁歪が大
きく磁気特性のばらつきも大きく、キュリー温度がFe
−Si−AQ合金やFe−Si合金より低く磁気特性の
安定性も劣る。
On the other hand, the Fe-based non-quality alloy of JP-A No. 60-52557 contains Cu, so the core loss is significantly reduced, but like the crystalline particle-containing Fe-based non-quality alloy mentioned above, it is not satisfactory. . Further, there are problems in that changes in core loss over time, magnetic permeability, etc. are not sufficient. In addition, the magnetostriction is large, the variation in magnetic properties is large, and the Curie temperature is
-It is lower than the Si-AQ alloy and the Fe-Si alloy, and the stability of the magnetic properties is also inferior.

従って、本発明の目的は磁歪が小さくコア損失、コア損
失の経時変化、透磁率その他の磁気特性の安定性に優れ
た新規なFe基軟磁性合金を提供することである。
Therefore, an object of the present invention is to provide a novel Fe-based soft magnetic alloy with low magnetostriction and excellent stability in core loss, change in core loss over time, magnetic permeability, and other magnetic properties.

[問題点を解決するための手段コ 上記目的に鑑み鋭意研究の結果、本発明者等は一般式 (F e,−s−bN 1 acOb) toe−y−
t−a−g−+−s S L y B1 M ’。x,
y. (原子%) (ただし、M′はNb,W,Ta,Zr,Hf,Ti,
 Mo, V, Cr, Mn,白金属元素,Sc,Y
,希土類元素,Au,Zn,Sn,Reからなる群から
選ばれた少なくと如1種の元素、XはC,Ge,Ga,
AQ,Be,Pからなる群から選ばれた少なくともl種
の元素、YはSb,In,As,Lit Mg+ Ca
+ Sr,Ba,Cd,Pb,Bi,N,O,S,Ss
及びTeからなる群から選ばれた少なくとも1種の元素
であり、O≦a<0. 2, O≦b≦0. 5, O
≦a+b<0. 5, 0≦a+b<0.9(z≦15
,O≦α≦20,O≦γ≦20.0≦δ≦2,10≦y
十z十α十γ≦35を満たす。) により表わされる組成の合金において組織の少なくとも
50%が微細な結晶粒からなり、前記結晶粒の最大寸法
で測定した粒径が1000人以下の平均粒径を有する場
合、優れた軟磁性が得られることを見出し本発明に想到
した。
[Means for Solving the Problems] As a result of intensive research in view of the above objectives, the present inventors have developed the general formula (F e, -s-bN 1 acOb) toe-y-
t-a-g-+-s S L y B1 M'. x,
y. (atomic %) (However, M' is Nb, W, Ta, Zr, Hf, Ti,
Mo, V, Cr, Mn, white metal element, Sc, Y
, rare earth elements, Au, Zn, Sn, Re, X is C, Ge, Ga,
At least l elements selected from the group consisting of AQ, Be, P, Y is Sb, In, As, Lit Mg+ Ca
+ Sr, Ba, Cd, Pb, Bi, N, O, S, Ss
and at least one element selected from the group consisting of Te, and O≦a<0. 2, O≦b≦0. 5, O
≦a+b<0. 5, 0≦a+b<0.9 (z≦15
, O≦α≦20, O≦γ≦20.0≦δ≦2, 10≦y
10z1α10γ≦35 is satisfied. ) If at least 50% of the structure of the alloy is composed of fine crystal grains and the grain size measured at the maximum dimension of the crystal grains has an average grain size of 1000 or less, excellent soft magnetism can be obtained. The inventors have discovered that the present invention is possible.

本発明においてBは必須の元素であり、合金区の結晶粒
微細化および磁歪調整軟、磁気特性の改善に有用な元素
である. 本発明の合金は、好ましくは、一旦非品質合金とした後
で、熱処理により微細結晶粒を形成することにより得ら
れる。
In the present invention, B is an essential element, and is an element useful for refining the crystal grains of the alloy, adjusting magnetostriction, and improving the soft magnetic properties. The alloy of the present invention is preferably obtained by once forming a non-quality alloy and then heat treating it to form fine grains.

Si含有量yの限定理由は、yが30原子%を超えると
軟磁気特性の良好な条件では磁歪が大きくなってしまい
好ましくないためである。Bの含有量2の限定理由は、
2が9原子%以下では強度の面から好ましくなく、2が
15原子%を超えると軟磁気特性が劣化し好ましくない
ためである。
The reason for limiting the Si content y is that if y exceeds 30 atom %, magnetostriction becomes large under conditions of good soft magnetic properties, which is not preferable. The reason for limiting the B content to 2 is
This is because if 2 is less than 9 atomic %, it is undesirable from the viewpoint of strength, and if 2 is more than 15 atomic %, the soft magnetic properties deteriorate, which is undesirable.

XはC,Ge,Ga,AQ,Be,Pからなる群から選
ばれた少なくともl種の元素であり、これらの元素は非
晶質化や磁歪、キュリー温度調整等に効果がある。
X is at least one element selected from the group consisting of C, Ge, Ga, AQ, Be, and P, and these elements are effective for amorphization, magnetostriction, Curie temperature adjustment, and the like.

Xの含有量γの限定理由は20原子%を超えると、著し
く軟磁気特性が劣化し、飽和磁束密度も低下するためで
ある。
The reason why the X content γ is limited is that if it exceeds 20 atomic %, the soft magnetic properties will deteriorate significantly and the saturation magnetic flux density will also decrease.

S i, B, M, Xの総和量y十z十α十γの値
に関しては、y+z十α+γが10原子%未満では非品
質化が困難になり磁気特性が劣化し好ましくなく、一方
、y+z+α+γが35m子%を超えると、飽和磁束密
度の著しい低下および軟磁気特性の劣化がある。
Regarding the value of the total amount of Si, B, M, and If it exceeds 35 m%, there is a significant decrease in saturation magnetic flux density and deterioration of soft magnetic properties.

本発明に係る合金においてM′は、結晶粒を微細化した
り、耐食性を改善したりする効果を有しており、20原
子%以下含むことができる.この理由は、M′の含有量
αが20原子%を超えた場合は飽和磁束密度の著しい低
下を示すためである。
In the alloy according to the present invention, M' has the effect of refining crystal grains and improving corrosion resistance, and can be contained in an amount of 20 atomic % or less. The reason for this is that when the M' content α exceeds 20 atomic %, the saturation magnetic flux density significantly decreases.

特に好ましいαの範囲は1≦α≦10であり、この範囲
で優れた軟磁性を得ることができる。特にM′としては
Nb,W,Ta及びMoが軟磁気特性の面で好ましい。
A particularly preferable range of α is 1≦α≦10, and excellent soft magnetism can be obtained within this range. In particular, Nb, W, Ta, and Mo are preferable as M' in terms of soft magnetic properties.

添加元素YはSb,  In, As,  Li, M
g,Ca,Sr,Ba,Cod,Ph,Bi,N,O,
S,3e及びTeからなる群から選ばれた少なくともl
種の元素であり、2yK子%以下含んでも良い。
The additive element Y is Sb, In, As, Li, M
g, Ca, Sr, Ba, Cod, Ph, Bi, N, O,
At least l selected from the group consisting of S, 3e and Te
It is a seed element and may contain 2yK% or less.

残部は不純物を除いて実質的にFeが主体であるが、F
eの1部はNi及び/又はCoにより置換されていても
良い。Niの含有量aはO≦aく0,  2であるが,
これは0.2を超えると軟磁性が著しく劣化するためで
あり、特に好ましい範囲は0≦a(0.1である。この
範囲で特に良好な軟磁性が得られる。
The remainder is essentially Fe, excluding impurities, but F
A part of e may be replaced by Ni and/or Co. The Ni content a is O≦a 0.2, but
This is because soft magnetism deteriorates significantly when it exceeds 0.2, and a particularly preferable range is 0≦a (0.1. Particularly good soft magnetism can be obtained within this range.

Goの含有量bはO≦b<0.5であり、Niの含有量
との総和a十bはO≦a+b<0.5である。特に好ま
しいCoの含有量およびCoとNiの含有量の総和はO
≦b≦0.1,O≦a十bくo.1である. 本発明合金は微細なbccFe固溶体を主体とする合金
で組織の少なくとも50%が微細な結晶粒からなり、前
記結晶粒の最大寸法で測定した粒径の平均が1000人
以下の平均粒径を有する合金である。
The Go content b satisfies O≦b<0.5, and the total sum a+b with the Ni content satisfies O≦a+b<0.5. A particularly preferable Co content and the sum of Co and Ni contents are O
≦b≦0.1, O≦a10b o. It is 1. The alloy of the present invention is an alloy mainly composed of a fine bccFe solid solution, in which at least 50% of the structure is composed of fine crystal grains, and the average grain size measured at the maximum dimension of the crystal grains is 1000 or less. It is an alloy.

通常は単ロール法、双ロール法等の液体急冷法やスパッ
ター法、蒸着法等による気相急冷法等により非晶質合金
を作製後これを加熱し結晶化させることにより作製され
る。
Usually, an amorphous alloy is produced by a liquid quenching method such as a single roll method or a twin roll method, or a vapor phase quenching method such as a sputtering method or a vapor deposition method, and then heated and crystallized.

特に最大寸法で測定した粒径の平均が500人以下の平
均粒径を有する場合、特に優れた軟磁気特性を得ること
ができる。
Particularly excellent soft magnetic properties can be obtained when the average particle size measured at the maximum dimension is 500 or less.

前記結晶粒の残部は主に非品質であるが、本発明合金は
実質的に100%結晶質であっても十分優れた軟磁気特
性を得ることができる。
Although the remainder of the crystal grains are mainly of poor quality, the alloy of the present invention can obtain sufficiently excellent soft magnetic properties even if it is substantially 100% crystalline.

また本発明合金はbccFe固溶体を主体とする合金で
あり、飽和磁歪λSが−5×10−“〜十5XIO−”
の範囲にあるものが得られ、Fe基アモルファス合金よ
り著しく磁歪が小さい。また、磁歪がほぼ零の合金も得
ることができる。
The alloy of the present invention is an alloy mainly composed of bccFe solid solution, and has a saturation magnetostriction λS of −5×10−“~15XIO−”
The magnetostriction is significantly lower than that of Fe-based amorphous alloys. Furthermore, alloys with almost zero magnetostriction can also be obtained.

本発明のFe基磁性合金は、前述のように単ロール法、
双ロール法、遠心急冷法等により非品質薄帯を作製後熱
処理を行ない微細な結晶粒を形成する方法、蒸着法、ス
バッター法やイオンプレーティング等により非晶質膜を
作製後熱処理し結晶化させる法、アトマイズ法やキャビ
テーション法により非晶質粉を得た後熱処理し結晶化さ
せる方法や回転液中紡糸法やガラス被覆紡糸法により、
非品質線を得た後熱処理し結晶化させる方法等いろいろ
な方法で作製することができる.したがって、本発明合
金は、粉末、線、薄帯、膜などいろいろな形状のものが
でき、圧接等を行なえばバルク体も得ることができる。
The Fe-based magnetic alloy of the present invention can be produced by the single roll method as described above.
A method in which a non-quality ribbon is prepared by twin roll method, centrifugal quenching method, etc., and then heat treated to form fine crystal grains.Amorphous film is prepared by vapor deposition method, spatter method, ion plating, etc., and then heat treated and crystallized. method, method of obtaining amorphous powder by atomization method or cavitation method and then heat treatment to crystallize it, spinning method in rotating liquid or glass coating method.
It can be produced by various methods, such as obtaining a non-quality line and then heat-treating it to crystallize it. Therefore, the alloy of the present invention can be made into various shapes such as powder, wire, ribbon, and film, and can also be made into a bulk body by pressure welding or the like.

本合金を得る際行われる熱処理は内部歪を小さくするこ
とと、微細結晶粒組織とし軟磁気特性を向上させるとと
もに磁歪を小さくする目的で行われる。
The heat treatment performed when obtaining this alloy is performed for the purpose of reducing internal strain, creating a fine grain structure, improving soft magnetic properties, and reducing magnetostriction.

熱処理は通常真空中または水素ガス,窒素ガス、アルゴ
ンガス等の不活性ガス雰囲気中において行われる。しか
し場合によっては大気中で行っても良い。
The heat treatment is usually performed in a vacuum or in an atmosphere of an inert gas such as hydrogen gas, nitrogen gas, or argon gas. However, depending on the case, it may be performed in the atmosphere.

熱処理温度及び時間は非品質合金リボンからなる磁心の
形状、サイズ、組成により異なるが一般的に450℃〜
700℃で5分から24時間程度が望ましい。
The heat treatment temperature and time vary depending on the shape, size, and composition of the magnetic core made of non-quality alloy ribbon, but are generally 450℃~
Preferably, the temperature is 700°C for about 5 minutes to 24 hours.

熱処理の際の昇温や冷却の条件は状況に応じて任意に変
えることができる。また同一温度または異なる温度で複
数回にわけ熱処理を行ったり、多段の熱処理パターンで
熱処理を行なうこともできる。更には、本合金は熱処理
を直流あるいは交流の磁場中で行なうこともできる。磁
場中熱処理により本合金に磁気異方性を生じさせること
ができる。本合金からなる磁心の磁路方向に磁場を印加
し熱処理した場合は、B−Hカーブの角形性が良いもの
が得られ、可飽和リアクトル、磁気スイッチ、パルス圧
縮用コア、スパイク電圧防止用リアクトル等に好適な特
性が得られ、一方磁路と直角方向に磁場を印加し熱処理
した場合は、B−Hカーブが傾斜し、低角形比で恒透磁
率性に優れた特性が得られ、トランスやノイズフィルタ
ー、チョークコイル等に好適となる. 磁場は熱処理の間中かける必要はなく、合金のキュリー
温度Tcより低い温度でかければ十分効果がある。本発
明合金のキュリー温度は非晶質の場合より主相のキュリ
ー温度が上昇しており、非品質合金のキュリー温度より
高い温度でも磁場中熱処理が適用できる.また回転磁場
中熱処理を行ない軟磁気特性を更に改善することもでき
る。また、熱処理の際合金を発熱させることにより合金
を熱処理することもできる. また応力下で熱処理し磁気特性を調整することもできる
。特に本発明の合金は低磁歪の特徴を有するため、合金
表面にM!3縁層を形成したり、含浸やコーティングを
行っても磁気特性の劣化が小さい特徴があり、優れた特
性のモールドコアやカットコア、コーティングコア、磁
気ヘッド等を作製できる。
Conditions for heating and cooling during heat treatment can be arbitrarily changed depending on the situation. Further, the heat treatment can be performed in multiple times at the same temperature or different temperatures, or the heat treatment can be performed in a multi-stage heat treatment pattern. Furthermore, the present alloy can also be heat treated in a direct current or alternating current magnetic field. Magnetic anisotropy can be produced in this alloy by heat treatment in a magnetic field. When heat-treated by applying a magnetic field in the magnetic path direction of a magnetic core made of this alloy, a product with good B-H curve squareness can be obtained, which can be used for saturable reactors, magnetic switches, cores for pulse compression, and reactors for preventing spike voltages. On the other hand, when heat treatment is performed by applying a magnetic field in a direction perpendicular to the magnetic path, the B-H curve becomes sloped, and characteristics suitable for a transformer with a low squareness ratio and excellent constant magnetic permeability are obtained. Suitable for use as noise filters, choke coils, etc. It is not necessary to apply a magnetic field throughout the heat treatment, and it is sufficiently effective if it is applied at a temperature lower than the Curie temperature Tc of the alloy. The Curie temperature of the main phase of the alloy of the present invention is higher than that of the amorphous alloy, and heat treatment in a magnetic field can be applied even at temperatures higher than the Curie temperature of non-quality alloys. Further, the soft magnetic properties can be further improved by heat treatment in a rotating magnetic field. It is also possible to heat treat the alloy by generating heat in the alloy during heat treatment. The magnetic properties can also be adjusted by heat treatment under stress. In particular, since the alloy of the present invention has the characteristic of low magnetostriction, M! It is characterized by little deterioration of magnetic properties even when three edge layers are formed, impregnated or coated, and it is possible to produce molded cores, cut cores, coated cores, magnetic heads, etc. with excellent properties.

[実施例コ 本発明を以下の実施例によりさらに詳細に説明するか、
本発明はこれらに限定されるものではない 実施例1 原子%でSil4at%,Bloat%,Nb3at%
,Aulat%及び残部実質的にFeからなる組成の溶
湯から、単ロール法により合金薄帯を作製した.板厚は
18一幅3mmであった。
[Examples] The present invention will be explained in more detail by the following examples.
The present invention is not limited thereto Example 1 Sil4at%, Bloat%, Nb3at% in atomic%
, Aulat% and the remainder was substantially Fe, an alloy ribbon was produced by a single roll method. The plate thickness was 18 mm and the width was 3 mm.

この合金のX!回折を行ったところ非晶質合金特有のハ
ローパターンが得られた。透過電子顕微鏡による組織観
察の結果でも結晶相は認められなかった。
This alloy X! When diffraction was performed, a halo pattern unique to amorphous alloys was obtained. No crystalline phase was observed in the results of structure observation using a transmission electron microscope.

次にこの合金を外径19mm,内径15mmのトロイダ
ル状に巻磁心を作製した。次に二〇巻磁心を550℃に
保持したAr雰囲気の炉に装入し、1時間保持後、炉か
ら取り出し室温まで冷却した。
Next, a toroidally wound magnetic core having an outer diameter of 19 mm and an inner diameter of 15 mm was prepared from this alloy. Next, the 20-wound magnetic core was placed in a furnace in an Ar atmosphere maintained at 550°C, and after being held for 1 hour, it was taken out of the furnace and cooled to room temperature.

第1図(a)にX線回折パターン、第1図(bに透過電
子顕微鏡で観察したミクロ組織の模式図を示す。
FIG. 1(a) shows an X-ray diffraction pattern, and FIG. 1(b) shows a schematic diagram of the microstructure observed with a transmission electron microscope.

X線回折および透過電子顕微鏡による組織観察の結果よ
りアモルファス合金を熱処理した本発明合金は組織の大
部分が50〜200人の粒径の微細なbccFe固溶体
粒からなることが確認された。
From the results of structure observation using X-ray diffraction and transmission electron microscopy, it was confirmed that the structure of the present alloy, which is a heat-treated amorphous alloy, consists mostly of fine bccFe solid solution grains with a grain size of 50 to 200 grains.

磁気特性は、飽和磁束密度Bsが12,IKG,I K
 H z Icおける実効透磁率が26000.2KG
IOOKHzにおけるコア損失W,/IOOKが450
mW/ccであり優れた軟磁性を示すことが確認された
。また飽和磁歪λSは+2.2×10−1でありFe基
アモルファス台金に比べ著しく小さいことが確認された
As for the magnetic properties, the saturation magnetic flux density Bs is 12, IKG, IK
Effective magnetic permeability at Hz Ic is 26000.2KG
Core loss W,/IOOK at IOOKHz is 450
mW/cc, and it was confirmed that it exhibited excellent soft magnetism. Further, the saturation magnetostriction λS was +2.2×10 −1 , which was confirmed to be significantly smaller than that of the Fe-based amorphous base metal.

実施例2 第1表に示す組成の厚さ15tm,幅5mmの合金薄帯
を単ロール法により作製した。
Example 2 An alloy ribbon having the composition shown in Table 1 and having a thickness of 15 tm and a width of 5 mm was produced by a single roll method.

次に、この合金薄帯を外径19M,内径15閤に巻回し
トロイダル磁心を作製し、N2ガス雰囲気中で結晶化温
度以上で熱処理後100KHz,0.2Tにおけるコア
損失、飽和磁歪λs120℃に1000時間保持した後
のコア損失の増加率を測定した。得られた結果を第2表
に示す。
Next, this alloy ribbon was wound to an outer diameter of 19M and an inner diameter of 15mm to create a toroidal magnetic core, and after heat treatment at a temperature higher than the crystallization temperature in an N2 gas atmosphere, the core loss at 100KHz and 0.2T and the saturation magnetostriction λs were 120℃. The rate of increase in core loss after holding for 1000 hours was measured. The results obtained are shown in Table 2.

ここで、 W  −W ΔW=   W.   XIOO   (W,:初期の
コア損失,W,。。,:1000時間後のコア損失)な
お、透過電子顕微鋺による組,*観察の結果ミクロ組織
は実施例■とは同様であることが確認された。
Here, W −W ΔW=W. XIOO (W,: initial core loss, W,...,: core loss after 1000 hours) Furthermore, as a result of observation using a transmission electron microscope, it was confirmed that the microstructure was the same as in Example ■. It was done.

表からわかるように本発明合金は従来のFe基アモルフ
ァス合金より飽和磁歪λSが著しく小さく、コア損失も
小さい。またFe基およびGo基アモルファス合金に比
べ著しくコア損失の経時変化率が小さく安定である。こ
のため高信頼性の磁心を作製することができる。
As can be seen from the table, the alloy of the present invention has a significantly smaller saturation magnetostriction λS and a smaller core loss than the conventional Fe-based amorphous alloy. Furthermore, compared to Fe-based and Go-based amorphous alloys, the rate of change in core loss over time is significantly smaller and more stable. Therefore, a highly reliable magnetic core can be manufactured.

第 1 表 実施例3 第3表に示す組成の厚さ3−の合金膜をフォトセラム基
板上にマグネトロンスパッタ法により作製した。X線回
折の結果得られた合金膜はほぼ非晶質単相であることが
確認された。
Table 1 Example 3 An alloy film having a composition shown in Table 3 and having a thickness of 3 was fabricated on a photoceram substrate by magnetron sputtering. As a result of X-ray diffraction, it was confirmed that the alloy film obtained was almost an amorphous single phase.

次にこの合金をN!ガス雰囲気中で結晶化温度以上に加
熱し熱処理した。得られた合金膜の組織は実施例1とほ
ぼ同様であった。次に、この合金膜のI M H zの
実効透磁率μ1、を測定し、次に120℃1000時間
保持後のI M H zの実効透磁率μalMを測定し
た。l M H zの実効透磁率の変化率Δμ1Mを第
2表に示す。
Next, add this alloy to N! Heat treatment was carried out by heating above the crystallization temperature in a gas atmosphere. The structure of the obtained alloy film was almost the same as that of Example 1. Next, the effective magnetic permeability μ1 at I MHz of this alloy film was measured, and then the effective magnetic permeability μalM at I MHz after being held at 120° C. for 1000 hours was measured. Table 2 shows the rate of change Δμ1M of the effective magnetic permeability at 1 MHz.

μi+IM 第 2 表 表からわかるように本発明合金膜は従来のアモルファス
合金膜に比べ経時変化が著しく小さく優れている。
μi+IM Table 2 As can be seen from Table 2, the alloy film of the present invention exhibits significantly less change over time than the conventional amorphous alloy film.

[発明の効果] 本発明によれば優れた軟磁気特性を有し、磁歪が小さく
熱安定性にも優れたFe基磁性合金を得ることができる
ため、その効果は著しいものがある。
[Effects of the Invention] According to the present invention, an Fe-based magnetic alloy having excellent soft magnetic properties, low magnetostriction, and excellent thermal stability can be obtained, so the effects are remarkable.

【図面の簡単な説明】[Brief explanation of drawings]

第l図(a)は本発明合金xNA回折パターンの一例を
示した図、第1図(b)は本発明合金の透過電子顕微鏡
により観察した組織の模式図を示した図である。
FIG. 1(a) is a diagram showing an example of the xNA diffraction pattern of the alloy of the present invention, and FIG. 1(b) is a diagram showing a schematic diagram of the structure of the alloy of the present invention observed by a transmission electron microscope.

Claims (8)

【特許請求の範囲】[Claims] (1)一般式 (Fe_1_−_a_−_bNi_aCo_b)_1_
0_0_−_y_−_z_−_α_−_β_−_γ_−
_δSi_yB_zM′_αX_yY_δ (原子%) (ただし、M’はNb,W,Ta,Zr,Hf,Ti,
Mo,V,Cr,Mn,白金属元素,Sc,Y,希土類
元素,Au,Zn,Sn,Reからなる群から選ばれた
少なくとも1種の元素、XはC,Ge,Ga,Al,B
e,Pからなる群から選ばれた少なくとも1種の元素、
YはSb,In,As,Li,Mg,Ca,Sr,Ba
,Cd,Pb,Bi,N,O,S,Se及びTeからな
る群から選ばれた少なくとも1種の元素であり、 0≦a<0.2,0≦b≦0.5,0≦a+b<0.5
,0≦y≦30,9<z≦15,0≦α≦20,0≦γ
≦20,0≦δ≦2,10≦y+z+α+γ≦35を満
たす。)により表わされる組成を有し、組織の少なくと
も50%が微細な結晶粒からなり、前記結晶粒の最大寸
法で測定した粒径の平均が1000Å以下の平均粒径を
有することを特徴とするFe基磁性合金。
(1) General formula (Fe_1_-_a_-_bNi_aCo_b)_1_
0_0_-_y_-_z_-_α_-_β_-_γ_-
_δSi_yB_zM'_αX_yY_δ (atomic %) (However, M' is Nb, W, Ta, Zr, Hf, Ti,
At least one element selected from the group consisting of Mo, V, Cr, Mn, platinum metal element, Sc, Y, rare earth element, Au, Zn, Sn, Re, X is C, Ge, Ga, Al, B
At least one element selected from the group consisting of e, P,
Y is Sb, In, As, Li, Mg, Ca, Sr, Ba
, Cd, Pb, Bi, N, O, S, Se and Te, and 0≦a<0.2, 0≦b≦0.5, 0≦a+b <0.5
, 0≦y≦30, 9<z≦15, 0≦α≦20, 0≦γ
≦20, 0≦δ≦2, 10≦y+z+α+γ≦35. ), at least 50% of the structure consists of fine crystal grains, and the average grain size measured at the maximum dimension of the crystal grains is 1000 Å or less. Base magnetic alloy.
(2)請求項1に記載のFe基磁性合金において、a,
b,y,z,α,γが 0≦a≦0.1,0≦b≦0.1,0≦a+b≦0.1
,1≦α≦10,0≦γ≦10の関係を満足することを
特徴とするFe基磁性合金。
(2) In the Fe-based magnetic alloy according to claim 1, a,
b, y, z, α, γ are 0≦a≦0.1, 0≦b≦0.1, 0≦a+b≦0.1
, 1≦α≦10, 0≦γ≦10.
(3)請求項1乃至2に記載のFe基磁性合金において
、前記組織の残部が非晶質であることを特徴とするFe
基磁性合金。
(3) The Fe-based magnetic alloy according to claim 1 or 2, wherein the remainder of the structure is amorphous.
Base magnetic alloy.
(4)請求項1乃至2に記載のFe基磁性合金において
、前記組織が実質的に微細な結晶粒からなることを特徴
とするFe基磁性合金。
(4) The Fe-based magnetic alloy according to claim 1 or 2, wherein the structure consists of substantially fine crystal grains.
(5)前記結晶粒がbcc構造のFe固溶体を全体とし
たものからなることを特徴とする請求項1乃至4に記載
のFe基磁性合金。
(5) The Fe-based magnetic alloy according to any one of claims 1 to 4, wherein the crystal grains are made entirely of Fe solid solution having a bcc structure.
(6)前記結晶粒の最大寸法で測定した粒径の平均が5
00Å以下の平均粒径を有することを特徴とする請求項
1乃至5に記載のFe基磁性合金。
(6) The average grain size measured at the maximum dimension of the crystal grains is 5
6. The Fe-based magnetic alloy according to claim 1, having an average grain size of 00 Å or less.
(7)M′がNb,W,Ta及びMoからなる群から選
ばれる少なくとも1種の元素であることを特徴とする請
求項1乃至6に記載のFe基磁性合金。
(7) The Fe-based magnetic alloy according to any one of claims 1 to 6, wherein M' is at least one element selected from the group consisting of Nb, W, Ta, and Mo.
(8)飽和磁歪λsが−5×10^−^6+5×10^
−^6の範囲にあることを特徴とする請求項1乃至7に
記載のFe基磁性合金。
(8) Saturation magnetostriction λs is -5×10^-^6+5×10^
The Fe-based magnetic alloy according to any one of claims 1 to 7, characterized in that the Fe-based magnetic alloy is in the range of -^6.
JP1188395A 1989-07-20 1989-07-20 Fe-base magnetic alloy Pending JPH0353048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1188395A JPH0353048A (en) 1989-07-20 1989-07-20 Fe-base magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1188395A JPH0353048A (en) 1989-07-20 1989-07-20 Fe-base magnetic alloy

Publications (1)

Publication Number Publication Date
JPH0353048A true JPH0353048A (en) 1991-03-07

Family

ID=16222889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1188395A Pending JPH0353048A (en) 1989-07-20 1989-07-20 Fe-base magnetic alloy

Country Status (1)

Country Link
JP (1) JPH0353048A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718388A (en) * 1993-06-18 1995-01-20 Hitachi Metals Ltd Nanocrystal alloy thin strip improved in asymmetry of b-h loop, magnetic core and production of nanocrystal alloy thin strip

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718388A (en) * 1993-06-18 1995-01-20 Hitachi Metals Ltd Nanocrystal alloy thin strip improved in asymmetry of b-h loop, magnetic core and production of nanocrystal alloy thin strip

Similar Documents

Publication Publication Date Title
JP4210986B2 (en) Magnetic alloy and magnetic parts using the same
JPH03219009A (en) Production of fe-base soft-magnetic alloy
JPH044393B2 (en)
JPH01242755A (en) Fe-based magnetic alloy
JP2710938B2 (en) High saturation magnetic flux density soft magnetic alloy
JP2672306B2 (en) Fe-based amorphous alloy
EP0429022B1 (en) Magnetic alloy with ulrafine crystal grains and method of producing same
JP2667402B2 (en) Fe-based soft magnetic alloy
JP2868121B2 (en) Method for producing Fe-based magnetic alloy core
JP2713373B2 (en) Magnetic core
JP3705446B2 (en) Nanocrystallization heat treatment method for nanocrystalline alloys
JP2000119821A (en) Magnetic alloy excellent in iso-permeability characteristic and having high saturation magnetic flux density and low core loss, and magnetic parts using same
JPH01149940A (en) Fe-base magnetic alloy
JP2713714B2 (en) Fe-based magnetic alloy
JP4310738B2 (en) Soft magnetic alloys and magnetic parts
JPH1046301A (en) Fe base magnetic alloy thin strip and magnetic core
JPH0353048A (en) Fe-base magnetic alloy
JPH08948B2 (en) Fe-based magnetic alloy
JPH0610105A (en) Fe base soft magnetic alloy
JPH01247556A (en) Fe-base magnetic alloy excellent in iso-permeability characteristic
JP4003166B2 (en) Co-based magnetic alloy and magnetic component using the same
JP2934471B2 (en) Ultra-microcrystalline magnetic alloy and its manufacturing method
JP2006291234A (en) Microcrystalline alloy ribbon
JPH0499253A (en) Iron-based soft magnetic alloy
JP2000252111A (en) High-frequency saturable magnetic core and device using the same