[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH01115037A - Electron gun for color picture tube - Google Patents

Electron gun for color picture tube

Info

Publication number
JPH01115037A
JPH01115037A JP27013687A JP27013687A JPH01115037A JP H01115037 A JPH01115037 A JP H01115037A JP 27013687 A JP27013687 A JP 27013687A JP 27013687 A JP27013687 A JP 27013687A JP H01115037 A JPH01115037 A JP H01115037A
Authority
JP
Japan
Prior art keywords
electrode
electron beam
electron gun
electron
dynamic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27013687A
Other languages
Japanese (ja)
Other versions
JP2690913B2 (en
Inventor
Masami Watanabe
正美 渡辺
Masaji Shirai
正司 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62270136A priority Critical patent/JP2690913B2/en
Publication of JPH01115037A publication Critical patent/JPH01115037A/en
Application granted granted Critical
Publication of JP2690913B2 publication Critical patent/JP2690913B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2229/00Details of cathode ray tubes or electron beam tubes
    • H01J2229/48Electron guns
    • H01J2229/4834Electrical arrangements coupled to electrodes, e.g. potentials
    • H01J2229/4837Electrical arrangements coupled to electrodes, e.g. potentials characterised by the potentials applied
    • H01J2229/4841Dynamic potentials

Landscapes

  • Video Image Reproduction Devices For Color Tv Systems (AREA)

Abstract

PURPOSE:To enable the satisfaction of dynamic convergence and dynamic focusing with a single control circuit by increasing the potential of an electrode at the electrode part of G4 electrode side. CONSTITUTION:A main lens G3 electrode (focusing electrode) is divided into two electrode parts. Non-axismmetric construction is introduced at a position opposing the two electrode parts, and an electrostatic deflecting means is provided thereat for concentrating an external electron beam. Furthermore, a vertically long electron beam passage hole is provided at the electrode 3 of the two electrode parts, and a horizontally long electron beam passage hole at the side of G4 electrode, thereby enabling the correction of astigmatism due to deflection. The electrode 3 of the two electrode parts is applied with constant potential and the electrode part at the side of G4 electrode is applied with potential lower than the aforesaid potential and changing dynamically synchronized with electron beam deflection. According to the aforesaid construction, both self-convergence and dynamic focusing can be concurrently satisfied.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はカラー受像管用電子銃に係り、特に電子ビーム
のコンバーゼンスとダイナミックフォーカスを同時に可
能にする電子銃電極構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electron gun for a color picture tube, and more particularly to an electron gun electrode structure that enables convergence and dynamic focusing of an electron beam at the same time.

〔従来の技術〕[Conventional technology]

第2図は、従来構造の電子銃を備えたカラー受像管の断
面図である。ガラス外囲器10のフェースプレート部1
1の内壁に、3色の蛍光体を交互に塗布した蛍光面12
が支持されている。陰極13.14.15の中心軸16
,17,18は、G1電極1、G2電極2、主レンズを
構成するG3電極3および遮蔽カップ5のそれぞれの陰
極に対応する開口部の中心軸と一致し、共通平面上に互
いにほぼ平行に配置されている。主レンズを構成する他
の電極である04電極4の中心軸は。
FIG. 2 is a sectional view of a color picture tube equipped with a conventional electron gun. Face plate portion 1 of glass envelope 10
Fluorescent screen 12 with three colors of phosphors applied alternately to the inner wall of screen 1.
is supported. Central axis 16 of cathode 13.14.15
, 17, 18 coincide with the central axes of the openings corresponding to the cathodes of the G1 electrode 1, the G2 electrode 2, the G3 electrode 3 constituting the main lens, and the shielding cup 5, and are arranged substantially parallel to each other on a common plane. It is located. What is the central axis of the 04 electrode 4, which is the other electrode that makes up the main lens?

上記中心軸17と一致しているが外側の両開口の中心軸
19と20はそれぞれ対応する中心軸16゜18と一致
せず変位をもつ。
The central axes 19 and 20 of the two outer openings, although coinciding with the central axis 17, do not coincide with the corresponding central axes 16.degree. 18, but are displaced.

各陰極から射出される3本の電子ビームは中心軸16,
17.18に沿って主レンズに入射する。
The three electron beams emitted from each cathode have a central axis 16,
17. The light enters the main lens along lines 17 and 18.

以後の説明では中心軸17に沿って主レンズに入射する
電子ビームを中央電子ビーム、それに対して中心軸16
.18に沿って主レンズに入射する電子ビームを外側電
子ビームと呼ぶ、G1電極1゜G2電極は板状をなし低
電位に保持されている。
In the following explanation, the electron beam incident on the main lens along the central axis 17 will be referred to as the central electron beam, and the central axis 16 will be referred to as the central electron beam.
.. The electron beam incident on the main lens along 18 is called an outer electron beam.The G1 electrode 1°G2 electrode is plate-shaped and held at a low potential.

G3電極3は7KV程度の中高圧、G4電極4は25K
V程度の高電位に設定され、遮蔽カップ5゜ガラス外囲
器内部に設けられた導電膜21と同電位になっている。
G3 electrode 3 is a medium-high voltage of about 7KV, G4 electrode 4 is 25K
It is set to a high potential of about V, and has the same potential as the conductive film 21 provided inside the 5° glass envelope of the shielding cup.

G3電極3、G4電極4の中央部の開口は同軸となって
いるので、中央に形成される主レンズは軸対称となり、
中央電子ビームは主レンズによって集束された後、中心
軸17に沿った軌道を直進する。一方各電極の外側の開
口は軸がずれているので、外側には非対称のレンズが形
成される。G3電極3、G4電極4間に電子レンズ(主
レンズ)が形成される。
Since the central apertures of the G3 electrode 3 and G4 electrode 4 are coaxial, the main lens formed at the center is axially symmetrical.
After being focused by the main lens, the central electron beam travels straight along a trajectory along the central axis 17. On the other hand, since the outer aperture of each electrode is off-axis, an asymmetric lens is formed on the outer side. An electron lens (main lens) is formed between the G3 electrode 3 and the G4 electrode 4.

外側電子ビームは、主レンズで中央電子ビームに近づく
ように静電偏向され、その偏向量は電極の開口部の軸ず
れ量(離心量)に比例し、画面上の一点で3本の電子ビ
ームが合致するように形成されている。このように、電
子ビームが外部磁気偏向ヨーク23による偏向走査を受
けない状態で3本の電子ビームをシャドウマスク22上
に集中させることを静コンバーゼンスと呼ぶ。
The outer electron beam is electrostatically deflected by the main lens so that it approaches the center electron beam, and the amount of deflection is proportional to the amount of axial deviation (eccentricity) of the electrode aperture, so that three electron beams are formed at one point on the screen. are formed to match. This concentration of three electron beams on the shadow mask 22 without being deflected and scanned by the external magnetic deflection yoke 23 is called static convergence.

3本の電子ビームは、さらにシャドウマスク22により
色選別を受け、各ビームに対応する色・の蛍光体を励起
発光させる成分だけが、シャドウマスクの開口を通過し
蛍光面12に到る。
The three electron beams are further subjected to color selection by a shadow mask 22, and only the components that excite and emit phosphors of the colors corresponding to each beam pass through the apertures of the shadow mask and reach the phosphor screen 12.

ところで受像管においては画像を表示するために、電子
ビームは外部磁気偏向ヨーク23により蛍光面12の全
体にわたり、水平および垂直に偏向走査される。ところ
が、一般のカラー受像管においては第3図(a)に示す
ように、静コンバーゼンスだけが行われている場合、f
t子銃100から出射した電子ビームBo t Bl 
g Bzは偏向中心位!1124からシャドウマスク中
心位!!!!25までを長半径とする楕円面27で交差
し、シャドウマスク22上では集中しない。しかも厳密
には第3図(b)に示すように、偏向時に3本のビーム
の各々が外部磁気偏向ヨーク23の偏向領域を通過する
時間が異なるため、偏向角度が各々で異なり、3本の電
子ビームは楕円面27においても集中しない。
In order to display an image in a picture tube, an electron beam is deflected and scanned horizontally and vertically over the entire fluorescent screen 12 by an external magnetic deflection yoke 23. However, in a general color picture tube, as shown in Figure 3(a), when only static convergence is performed, f
Electron beam Bo t Bl emitted from the t-gun 100
g Bz is at the center of deflection! Shadow mask center from 1124! ! ! ! They intersect at an elliptical surface 27 having a long axis up to 25, and are not concentrated on the shadow mask 22. Moreover, strictly speaking, as shown in FIG. 3(b), the time it takes for each of the three beams to pass through the deflection area of the external magnetic deflection yoke 23 during deflection is different, so the deflection angle is different for each, and the three beams The electron beam is not concentrated on the elliptical surface 27 either.

3本の電子ビームを第3図(Q)に示すようにシャドウ
マスク22の全面(上)で集中させるためには、外側電
子ビームB s v B 2を中央電子ビAs B o
方向に集中する量を各々独立にビーム偏向角の変化にし
たがって調整せねばならない。この操作を動コンバーゼ
ンスという。しかし、上述したようなインライン型電子
銃においては第4図(a)に示すような、水平偏向磁界
がビンクツション状(磁力線30)、垂直偏向磁界がバ
レル状(磁力線31)の偏向ヨークを用いれば、動コン
バーゼンスを行わずともシャドウマスク22の全面で集
中させることができる。これはセルフコンバーゼンスと
呼ばれている。しかし、この場合、第4図(b)に示す
ように、第4図(a)の不斉−な磁界によって生じる非
点収差のために蛍光面12の周辺部に偏向したときのビ
ームスポットのlt′に輝度コア部32aおよび低輝度
ハロ一部32bがともに歪み、蛍光面の周辺部における
解像度が低下するという問題が生ずる。そこで、第5図
(a)に示すような斉一な偏向磁界(磁力線301゜3
11)を用いれば、第5図(b)に示すように蛍光面1
2の周辺部においても偏向歪の小さいビームスポット3
21を得ることができるが、この場合、セルフコンバー
ゼンス特性は満たされないため、動コンバーゼンスを行
う必要がある。
In order to concentrate the three electron beams on the entire surface (above) of the shadow mask 22 as shown in FIG.
The amount of concentration in each direction must be adjusted independently as the beam deflection angle changes. This operation is called dynamic convergence. However, in the above-mentioned inline type electron gun, if a deflection yoke is used, as shown in FIG. , it is possible to concentrate on the entire surface of the shadow mask 22 without performing dynamic convergence. This is called self-convergence. However, in this case, as shown in FIG. 4(b), the beam spot when deflected toward the periphery of the phosphor screen 12 due to astigmatism caused by the asymmetric magnetic field shown in FIG. 4(a). lt', both the luminance core portion 32a and the low-luminance halo portion 32b are distorted, causing a problem that the resolution in the peripheral portion of the phosphor screen is reduced. Therefore, a uniform deflection magnetic field (lines of magnetic force 301°3) as shown in Figure 5(a)
11), the phosphor screen 1 as shown in FIG. 5(b)
Beam spot 3 with small deflection distortion even in the peripheral area of 2
21 can be obtained, but in this case, the self-convergence characteristic is not satisfied, so it is necessary to perform dynamic convergence.

斉一磁界での動コンバーゼンスには、コンバーゼンス磁
界を用いる。第6図に示すように、遮蔽カップ5位置の
ネック管28の外側に一対のコア33.331を配置し
、コアに動コンバーゼンス巻線34,341を巻装した
電磁コンバーゼンスヨークを用いる。磁界はポールピー
ス35を介し外側電子ビームgt 、B2に作用し、外
側電子ビームは中央電子ビームBOの方向へ集中力36
゜37を受ける。したがって動コンバーゼンス巻線34
.341に流れる電流i1 、ilを各々独立に電子ビ
ームの偏向走査に同期して変化させれば動コンバーゼン
スを行うことができる。
A convergence magnetic field is used for dynamic convergence in a uniform magnetic field. As shown in FIG. 6, an electromagnetic convergence yoke is used in which a pair of cores 33 and 331 are arranged outside the neck tube 28 at the position of the shielding cup 5, and dynamic convergence windings 34 and 341 are wound around the cores. The magnetic field acts on the outer electron beam gt, B2 through the pole piece 35, and the outer electron beam has a concentrated force 36 in the direction of the central electron beam BO.
Receive ゜37. Therefore, the dynamic convergence winding 34
.. Dynamic convergence can be achieved by changing the currents i1 and il flowing through the electron beams 341 independently in synchronization with the deflection and scanning of the electron beam.

また、電子ビームを画面周辺に偏向すると、無偏向時に
比較して主レンズから画面までの距離が長くなるため、
画面上で電子ビームが集束しなくなる。したがって、電
子ビームスポットを最小にするための集束電圧の値(ジ
ャストフォーカス電圧)は偏向量に応じて変化する。そ
こで、画面全域でジャストフォーカス状態を保つために
、偏向量の変化、すなわち偏向ヨークにかける電流の変
動に同期させて集束電圧をダイナミックに変動させるこ
とが行われている。これをダイナミックフォーカスとい
う。
Also, when the electron beam is deflected to the periphery of the screen, the distance from the main lens to the screen becomes longer than when it is not deflected.
The electron beam no longer focuses on the screen. Therefore, the value of the focusing voltage (just focus voltage) for minimizing the electron beam spot changes depending on the amount of deflection. Therefore, in order to maintain just focus over the entire screen, the focusing voltage is dynamically varied in synchronization with changes in the amount of deflection, that is, changes in the current applied to the deflection yoke. This is called dynamic focus.

さらに、前記の偏向にともなう非点収差を補正するため
、集束電極に非軸対称レンズを導入することが行われて
いる。特開昭61−09249では、パイポテンシャル
型電子銃を構成するG3Ta極を2分割し、対向面に横
長と縦長の電子ビーム通過孔を設け、一方にダイナミッ
ク電圧を印加して電子ビームスポットを偏向量に応じて
変形させることによりダイナミックフォーカス、非点収
差補正を同時に行える受像管装置を提案している。
Furthermore, in order to correct the astigmatism caused by the deflection, a non-axisymmetric lens is introduced into the focusing electrode. In JP-A No. 61-09249, a G3Ta pole constituting a pi-potential electron gun was divided into two parts, horizontally elongated and vertically elongated electron beam passage holes were provided on opposing surfaces, and a dynamic voltage was applied to one side to deflect the electron beam spot. We have proposed a picture tube device that can simultaneously perform dynamic focus and astigmatism correction by deforming the image tube according to the amount.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来技術では、ダイナミックフォーカスとダイナミック
コンバーゼンスを同時にとることはできない。
With conventional technology, it is not possible to achieve dynamic focus and dynamic convergence at the same time.

このため、ダイナミックフォーカスとダイナミックコン
バーゼンスのために、2つのダイナミック電圧発生回路
を用意しなくてはならず、コストアップが問題となって
いた。
Therefore, it is necessary to prepare two dynamic voltage generation circuits for dynamic focus and dynamic convergence, which poses a problem of increased costs.

また、ダイナミックコンバーゼンス手段には、コンバー
ゼンスコイルでの電力消費が少なくないという問題点が
あり、さらに中央電子ビームに対してコンバーゼンスヨ
ークが形成する磁界が漏れて、電子ビームスポットが変
形するという欠点もある。
In addition, dynamic convergence means has the problem that the power consumption in the convergence coil is considerable, and furthermore, the magnetic field formed by the convergence yoke leaks to the central electron beam, deforming the electron beam spot. .

本発明の目的は、ダイナミックコンバーゼンスとダイナ
ミックフォーカスを単一の制御回路で同時に満足させる
ことができ、またダイナミックコンバーゼンスに要する
消!!電力を少くできる電子銃主レンズ構造を提供する
ことにある。
It is an object of the present invention to simultaneously satisfy dynamic convergence and dynamic focus with a single control circuit, and to reduce the amount of noise required for dynamic convergence. ! An object of the present invention is to provide an electron gun main lens structure that can reduce power consumption.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するため、主レンズG3電極(集束電極
)を2つの電極部分に分け、この2つの電極部分の対向
する部分に非軸対称構造を導入し、外側電子ビームを集
中させる静電偏向手段を設ける。
In order to achieve the above objective, the main lens G3 electrode (focusing electrode) is divided into two electrode parts, and a non-axisymmetric structure is introduced into the opposing parts of these two electrode parts, and electrostatic deflection is used to focus the outer electron beam. Provide means.

さらに、2つの電極部分の3極部側に縦長、G4電極側
に横長の電子ビーム通過開口部を設けることにより、同
時に偏向による非点収差を補正することも可能である。
Furthermore, by providing a vertically elongated electron beam passing aperture on the triode side of the two electrode portions and a horizontally elongated electron beam passage aperture on the G4 electrode side, it is also possible to correct astigmatism due to deflection at the same time.

°2つの電極部分のうち、3極部側部分には一定電位を
与え、G4電極側電極部分には3極部側電極よりも低電
位で、かつ電子ビーム偏向に同期してダイナミックに変
化する電位を与える。
°Of the two electrode parts, a constant potential is applied to the triode side part, and a lower potential is applied to the G4 electrode part than the triode side electrode, and it changes dynamically in synchronization with the electron beam deflection. Give a potential.

〔作用〕[Effect]

電子ビームが画面周辺に偏向されるとき、04電極側電
極部分の電位を増大させる。主レンズ強度が強まるので
、画面周辺部でビームをフォーカスさせることができ、
また同時に静電偏向手段の強度も弱まり、ビームに対す
る集中力を弱めて。
When the electron beam is deflected to the periphery of the screen, the potential of the electrode portion on the 04 electrode side is increased. The strength of the main lens is increased, so the beam can be focused at the periphery of the screen.
At the same time, the strength of the electrostatic deflection means is also weakened, weakening its concentration on the beam.

画面到達以前にビームが集中してしまうことを防ぐこと
ができるので、ダイナミックコンバーゼンスも実現でき
る。
Since it is possible to prevent the beam from concentrating before it reaches the screen, dynamic convergence can also be achieved.

さらに、2分割した電極のうち、ダイナミック電圧の印
加される低電位側の開孔を横長形状とし。
Furthermore, of the two divided electrodes, the opening on the low potential side to which a dynamic voltage is applied is made into a horizontally elongated shape.

高電位側電極の開孔を縦長形状とすると、無偏向時には
ダイナミック電圧により非点収差が発生し、電子ビーム
は横方向に引き伸ばされる。このとき。
If the aperture of the high-potential side electrode is made vertically long, astigmatism will occur due to the dynamic voltage when no deflection is performed, and the electron beam will be stretched in the horizontal direction. At this time.

主レンズで電子ビームを縦方向に引き伸ばすような非点
収差を発生させれば、両方の非点収差が互いに打ち消し
合って画面中央で円形のスポットが得られる。電子ビー
ムが偏向されるときは、2分割された雨量極電圧がほぼ
一致するようにダイナミック電圧が変化するので、1を
子ビームは主レンズによる非点収差のみを受け、縦方向
に引き伸ばされる。この非点収差が偏向による非点収差
と互いに打ち消し合って画面周辺でもほぼ円形のスポッ
トが得られる。
If the main lens generates astigmatism that stretches the electron beam in the vertical direction, both astigmatisms cancel each other out, creating a circular spot at the center of the screen. When the electron beam is deflected, the dynamic voltage changes so that the two divided polar voltages almost match, so that the child beam receives only astigmatism due to the main lens and is elongated in the vertical direction. This astigmatism cancels out the astigmatism caused by deflection, and a nearly circular spot is obtained even at the periphery of the screen.

〔実施例〕〔Example〕

第1図は、本発明による実施例を説明するものである0
本実施例においては、パイポテンシャル型の電子銃の集
束電極をビームの進行方向に垂直に2つの電極(G3電
極、G 3 ’電極)に分割し、この2つの電極の向か
い合う側の外側電子ビーム通過領域付近をビーム進行方
向と逆向きに傾斜させ、G3t’!E極、G3’電極に
は各々、電位Vi。
FIG. 1 illustrates an embodiment according to the present invention.
In this example, the focusing electrode of a pi-potential type electron gun is divided into two electrodes (G3 electrode, G3' electrode) perpendicular to the beam traveling direction, and the outer electron beam on the opposite side of these two electrodes is The vicinity of the passing area is tilted in the direction opposite to the beam traveling direction, and G3t'! The E electrode and the G3' electrode each have a potential Vi.

Vi  V−を印加する。この構造において、■。Apply Vi V-. In this structure,■.

≧0としているので、常にVt≧V t −V aとな
り゛、外側電子ビームは中央電子ビームの方向に集中力
を受ける。v6を外部磁気偏向ヨークによる電子ビーム
の偏向走査に同期させて変化させる。
≧0, so that Vt≧V t −V a always holds, and the outer electron beams receive a concentrated force in the direction of the central electron beam. v6 is changed in synchronization with the deflection scanning of the electron beam by the external magnetic deflection yoke.

実施例の具体的寸法の一例を以下に示す。G3電極と0
3’電極の外側電子ビームが通過する開口部付近をビー
ム進行方向と逆向きに傾斜させ、傾斜角をθとする。
An example of specific dimensions of the embodiment is shown below. G3 electrode and 0
The vicinity of the opening through which the outer electron beam passes through the 3' electrode is tilted in a direction opposite to the beam traveling direction, and the tilt angle is set to θ.

主レンズ部口径  5.5 mφ G2電極電位   700v Glt極電位   Vz  (フォーカス電圧)G3’
電極電位  Vi  Vm ダイナミックフォーカス電圧  vd =可変G4電極
電位   25KV 電子銃の開口中心軸の間隔  S=6.6 mG3.G
3’の電極傾斜角  θ:600電子銃終端から一画面
までの距離: 24’1lOO偏向用受像管相当 第7図はダイナミックフォーカス電圧と2本の外側電子
ビームのシャドウマスク上での水平方向距離XR−Xa
の関係を計算機シミュレーションにより解析したもので
ある。
Main lens aperture 5.5 mφ G2 electrode potential 700v Glt electrode potential Vz (focus voltage) G3'
Electrode potential Vi Vm Dynamic focus voltage vd = Variable G4 electrode potential 25KV Distance between electron gun aperture center axis S = 6.6 mG3. G
3' electrode inclination angle θ: 600 Distance from the end of the electron gun to one screen: 24'1lOO Equivalent to a picture tube for deflection Figure 7 shows the dynamic focus voltage and the horizontal distance of the two outer electron beams on the shadow mask XR-Xa
This relationship is analyzed by computer simulation.

画面コーナ一部では、Va=100Vの時、XRXRの
値が零になりコンバーゼンスをとることができる。
In a part of the screen corner, when Va=100V, the value of XRXR becomes zero and convergence can be achieved.

一方1画面中央部では、V、==490Vのときコンバ
ーゼンスをとれる。電子ビーム偏向量に応じて、Vaを
100■から490vまテ390V変化させれば、全領
域でコンバーゼンスをとることができ、ダイナミックコ
ンバーゼンスを実現できる。
On the other hand, in the center of one screen, convergence can be achieved when V=490V. By changing Va from 100 to 490 V to 390 V depending on the amount of electron beam deflection, convergence can be achieved in the entire region, and dynamic convergence can be realized.

一方、第8図は第7図の解析に用いた主レンズと同一の
構造の主レンズでダイナミックフォーカス電圧vdとフ
ォーカス距離の関係を計算機シミュレーションによって
求めたものである。第8゜図より1画面コーナ一部では
V d= OVで電子ビームを集束することができ、画
面中央部ではv、=340vで集束できることが分る。
On the other hand, FIG. 8 shows the relationship between the dynamic focus voltage vd and the focus distance obtained by computer simulation using a main lens having the same structure as the main lens used in the analysis of FIG. It can be seen from FIG. 8 that the electron beam can be focused at V d = OV in a part of one screen corner, and can be focused at V d = 340 V in the center of the screen.

この電圧は、ダイナミックコンバーゼンスを実現するた
めの電圧に近いので、ダイナミックフォーカスを同一の
回路で実現できる。
Since this voltage is close to the voltage required to achieve dynamic convergence, dynamic focus can be achieved with the same circuit.

第9図は非点収差補正のための電極構造を示したもので
ある。集束電極は03電極3と03′電極3′に2分割
し、G3電tf!3は縦長の通過孔41、G3’電極3
′は横長の通過孔42を備えており、03電極3にはフ
ォーカス電圧Vi を、G3’電極3′にはVt  V
−を印加する。主レンズで電子ビームを縦方向に引き伸
ばすような非点収差を発生させる手段としては1例えば
特開昭59−127346に示された方法を用いればよ
い。これは遮蔽カップ5上下に、04@極内部にはり出
したひさし状電極板を設けた構造である。電子ビーム通
過孔の上下にひさし状電極板により、04電極内の発散
レンズ強度が垂直方向で強くなり、ビームは垂直方向に
引き伸ばされる。
FIG. 9 shows an electrode structure for astigmatism correction. The focusing electrode is divided into two parts, 03 electrode 3 and 03' electrode 3', and G3 electrode tf! 3 is a vertically elongated passage hole 41, G3' electrode 3
' is provided with a horizontally elongated passage hole 42, a focus voltage Vi is applied to the 03 electrode 3, and a Vt V is applied to the G3' electrode 3'.
- is applied. As a means for generating astigmatism that stretches the electron beam in the longitudinal direction in the main lens, for example, a method disclosed in Japanese Patent Application Laid-open No. 127346/1983 may be used. This is a structure in which eave-like electrode plates protruding from the inside of the 04@ pole are provided above and below the shielding cup 5. The eaves-like electrode plates above and below the electron beam passage hole increase the strength of the diverging lens in the 04 electrode in the vertical direction, and the beam is elongated in the vertical direction.

電子ビームが画面周辺に偏向されるとき、ダイナミック
電圧vd=ovとする。電子ビームスポットは、G3−
03’電極間が同電位なので変形されないが、G4電極
内部のひさし状電極板の影響により縦長に変形される。
When the electron beam is deflected around the screen, the dynamic voltage vd=ov. The electron beam spot is G3-
Since the electrodes 03' and 03' have the same potential, they are not deformed, but they are deformed vertically due to the influence of the canopy electrode plate inside the G4 electrode.

ダイナミック電圧V、を増大させていくと、G3電極の
電位が03’電極よりも高くなり、G3−03’電極間
では電子ビームスポットを横方向に引き伸ばす力が働く
、ダイナミック電圧vdを適当に変えることにより、電
界電子ビームに及ぼす横方向の発散作用の強さを調節し
て電子ビームスポットの形状を自由に変えることができ
る。
As the dynamic voltage V is increased, the potential of the G3 electrode becomes higher than that of the 03' electrode, and a force acts to stretch the electron beam spot laterally between the G3 and 03' electrodes.Change the dynamic voltage Vd appropriately. This allows the shape of the electron beam spot to be freely changed by adjusting the strength of the lateral divergence effect on the field electron beam.

したがって、04g極内のひさし状電極による縦方向の
電子ビームスポットの変形量と03−03’電極間の横
方向の変形量をバランスさせることにより1画面中央で
ほぼ真円の電子ビームスポットが得られる。ダイナミッ
ク電圧を減少させると、電子銃内の非点収差が偏向によ
る非点収差と打ち消し合い、V4 =OVの時に画面周
辺で円形の電子ビームスポットが得られ、画面全域で非
点収差が補正され、高解像度が得られる。
Therefore, by balancing the amount of vertical deformation of the electron beam spot due to the canopy electrode within the 04g electrode and the amount of horizontal deformation between the 03-03' electrodes, a nearly perfect circular electron beam spot can be obtained at the center of one screen. It will be done. When the dynamic voltage is decreased, the astigmatism in the electron gun cancels out the astigmatism due to deflection, and when V4 = OV, a circular electron beam spot is obtained around the screen, and the astigmatism is corrected over the entire screen. , high resolution can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、セルフコンバーゼンスとダイナミック
フォーカスとを同時に満足することができるので、調整
回路の数を削減することができ、コストダウンに寄与で
き、さらに画面全域で高解像度が得られるどう効果をも
つ。
According to the present invention, since self-convergence and dynamic focus can be satisfied at the same time, the number of adjustment circuits can be reduced, contributing to cost reduction, and furthermore, high resolution can be obtained across the entire screen. Motsu.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明する全体図および特徴的な
電極の断面図、第2図は従来構造の電子銃を備えたカラ
ー受像管の概略を示す断面図、第3図は電子ビームのコ
ンバーゼンスを説明する概念図、第4図及び第5図はそ
れぞれ偏向磁界とスポットの偏向歪を説明する図、第6
図は動コンバーゼンス装置の正面図、第7図は実施例を
モデルとしたときの計算結果を示す図、第8図は同一モ
デルのダイナミックフォーカス電圧計算結果を示す図、
第9図は実施例を説明する集束電極の図である。 1・・・G1電極、2・・・G2電極、3・・・G3電
極。 3′・・・G3’電極、i6,17.1s・・・Gl。 G2電極の開口中心軸、Bz 、Bz・・・外側電子ビ
ーム、Bo・・・中央電子ビーム、41・・・縦長ビー
ム通過孔、42・・・横長ビーム通過孔。
Fig. 1 is a detailed overall view of the present invention and a sectional view of characteristic electrodes, Fig. 2 is a sectional view schematically showing a color picture tube equipped with a conventional electron gun, and Fig. 3 is an electron beam. Figures 4 and 5 are conceptual diagrams explaining the convergence of
The figure is a front view of the dynamic convergence device, FIG. 7 is a diagram showing calculation results when the example is used as a model, and FIG. 8 is a diagram showing dynamic focus voltage calculation results for the same model.
FIG. 9 is a diagram of a focusing electrode for explaining an embodiment. 1...G1 electrode, 2...G2 electrode, 3...G3 electrode. 3'...G3' electrode, i6, 17.1s...Gl. G2 electrode aperture center axis, Bz, Bz...outer electron beam, Bo...center electron beam, 41...vertical beam passage hole, 42...horizontal beam passage hole.

Claims (1)

【特許請求の範囲】 1、中央および外側の3本の電子ビームを発生させ、同
一平面内の互いに平行な初期通路に沿つて蛍光面に指向
させる第1の電極手段と上記各電子ビームを蛍光面に集
束させ、かつ集中させるための主レンズ部を構成する第
2の電極手段とをもつインライン型電子銃を具備し、前
記蛍光面近傍の前記電子銃側にはシヤドウマスクが配置
され、前記電子銃の前記蛍光面側には前記3本の電子ビ
ームを前記蛍光面上に偏向走査する磁気偏向ヨークが配
置されているカラー受像管において、前記第2の電極手
段は中高電圧の印加された加速電極と比較的低電位の印
加された集束電極により構成され、前記集束電極には両
外側電子ビームを中央電子ビーム側に集中させる効果を
もつ静電偏向手段が配置されており、前記集束電極への
印加電圧の増大にともない、前記静電偏向手段による中
央電子ビーム側への集中力が弱まり、さらに前記集束電
極の印加電圧は前記磁気偏向ヨークへの入力波形と同期
していることを特徴とするカラー受像管用電子銃。 2、特許請求の範囲第1項において、記前静電偏向手段
は、前記集束電極を前記電子ビーム進行方向に2つの電
極部分に分割したときの前記2つの電極部分の対向部に
形成され、前記2つの電極部分の対向面は中央の開口部
付近で前記初期通路に対して垂直であり、両側開口部周
辺で前記初期通路に対して傾斜しており、傾斜の向きは
電極両端が中央に比較し蛍光面から遠ざかるような構造
であることを特徴とするカラー受像管用電子銃。 3、特許請求の範囲第2項において、前記2つの電極部
分の対向する電極面で開口部は、一方の電極で縦長、他
方の電極で横長であることを特徴とするカラー受像管用
電子銃。
[Claims] 1. A first electrode means for generating three central and outer electron beams and directing them to a fluorescent screen along initial paths parallel to each other in the same plane; The electron gun is equipped with an in-line electron gun having a second electrode means constituting a main lens section for converging and concentrating the electrons on a surface, and a shadow mask is disposed on the electron gun side near the fluorescent screen, and the electron gun is In a color picture tube, a magnetic deflection yoke for deflecting and scanning the three electron beams onto the phosphor screen is disposed on the phosphor screen side of the gun, and the second electrode means is an accelerating member with a medium-high voltage applied thereto. It consists of an electrode and a focusing electrode to which a relatively low potential is applied, and an electrostatic deflection means having the effect of concentrating both outer electron beams toward the central electron beam side is disposed on the focusing electrode, and an electrostatic deflection means is arranged on the focusing electrode. As the applied voltage increases, the concentration force of the electrostatic deflection means toward the central electron beam weakens, and the voltage applied to the focusing electrode is synchronized with the input waveform to the magnetic deflection yoke. An electron gun for color picture tubes. 2. In claim 1, the electrostatic deflection means is formed at an opposing portion of the two electrode portions when the focusing electrode is divided into two electrode portions in the electron beam traveling direction, The opposing surfaces of the two electrode parts are perpendicular to the initial passage near the central opening, and are inclined with respect to the initial passage around the openings on both sides, with the direction of the inclination being such that both ends of the electrode are in the center. An electron gun for color picture tubes is characterized by a structure that allows it to move away from a phosphor screen. 3. The electron gun for a color picture tube according to claim 2, wherein the openings on opposing surfaces of the two electrode portions are vertically elongated in one electrode and horizontally elongated in the other electrode.
JP62270136A 1987-10-28 1987-10-28 Color picture tube Expired - Fee Related JP2690913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62270136A JP2690913B2 (en) 1987-10-28 1987-10-28 Color picture tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62270136A JP2690913B2 (en) 1987-10-28 1987-10-28 Color picture tube

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP356897A Division JP2806383B2 (en) 1997-01-13 1997-01-13 Color picture tube

Publications (2)

Publication Number Publication Date
JPH01115037A true JPH01115037A (en) 1989-05-08
JP2690913B2 JP2690913B2 (en) 1997-12-17

Family

ID=17482050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62270136A Expired - Fee Related JP2690913B2 (en) 1987-10-28 1987-10-28 Color picture tube

Country Status (1)

Country Link
JP (1) JP2690913B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01149342A (en) * 1987-11-04 1989-06-12 Philips Gloeilampenfab:Nv Color display tube and deflection system and electron gun applied to it
JPH05251015A (en) * 1991-12-17 1993-09-28 Samsung Display Devices Co Ltd Electron gun for color cathode-ray tube
JPH07211249A (en) * 1993-12-07 1995-08-11 Lg Electron Inc Electron gun for color cathod-ray tube

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199249A (en) * 1984-10-18 1986-05-17 Matsushita Electronics Corp Picture tube apparatus
EP0234520A2 (en) * 1986-02-21 1987-09-02 Zenith Electronics Corporation Electron gun system for color cathode ray tube

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199249A (en) * 1984-10-18 1986-05-17 Matsushita Electronics Corp Picture tube apparatus
EP0234520A2 (en) * 1986-02-21 1987-09-02 Zenith Electronics Corporation Electron gun system for color cathode ray tube

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01149342A (en) * 1987-11-04 1989-06-12 Philips Gloeilampenfab:Nv Color display tube and deflection system and electron gun applied to it
JPH05251015A (en) * 1991-12-17 1993-09-28 Samsung Display Devices Co Ltd Electron gun for color cathode-ray tube
JPH07211249A (en) * 1993-12-07 1995-08-11 Lg Electron Inc Electron gun for color cathod-ray tube

Also Published As

Publication number Publication date
JP2690913B2 (en) 1997-12-17

Similar Documents

Publication Publication Date Title
JPH0831333A (en) Color cathode-ray tube
JP2645063B2 (en) Color picture tube equipment
US4825120A (en) Electron gun apparatus with auxiliary electrodes for a color cathode-ray tube
JPH07134953A (en) Color picture tube
KR940010986B1 (en) Electron gun for c-crt
KR900009081B1 (en) Electron gun of color display tube
US5367230A (en) Cathode-ray tube with convergence yoke lens systems
JPH05151911A (en) Display device and cathode-ray tube
US5506468A (en) Electron gun for color cathode-ray tube
JP2690913B2 (en) Color picture tube
JPH0272546A (en) Electron gun for color picture tube
JPH03129645A (en) Color picture tube
JPH1021847A (en) Electron gun for color cathod-ray tube
JPH05325825A (en) Electron gun for color cathode-ray tube
JP2806383B2 (en) Color picture tube
US6424084B1 (en) Cathode ray tube apparatus including an electron gun assembly capable of dynamic astigmatism compensation
JPH08148095A (en) Electron gun and color cathode-ray tube provided with this electron gun
JP2644769B2 (en) Color picture tube
JPS62234849A (en) Electron gun
JPH07169410A (en) In-line type electron gun for color picture tube
US6646370B2 (en) Cathode-ray tube apparatus
JP3734327B2 (en) Color cathode ray tube equipment
US5763991A (en) Electron gun for a color picture tube
JP3074176B2 (en) Electron gun for cathode ray tube
JP2602254B2 (en) Color picture tube

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees