[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH08148095A - Electron gun and color cathode-ray tube provided with this electron gun - Google Patents

Electron gun and color cathode-ray tube provided with this electron gun

Info

Publication number
JPH08148095A
JPH08148095A JP6291325A JP29132594A JPH08148095A JP H08148095 A JPH08148095 A JP H08148095A JP 6291325 A JP6291325 A JP 6291325A JP 29132594 A JP29132594 A JP 29132594A JP H08148095 A JPH08148095 A JP H08148095A
Authority
JP
Japan
Prior art keywords
electrode
focusing electrode
focusing
electron beam
electron gun
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6291325A
Other languages
Japanese (ja)
Inventor
Yoshiaki Takahashi
芳昭 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Electronic Devices Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Electronic Devices Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Electronic Devices Co Ltd filed Critical Hitachi Ltd
Priority to JP6291325A priority Critical patent/JPH08148095A/en
Priority to EP95118059A priority patent/EP0714115A3/en
Priority to CN95119692A priority patent/CN1130302A/en
Priority to KR1019950043776A priority patent/KR960019453A/en
Publication of JPH08148095A publication Critical patent/JPH08148095A/en
Priority to US08/902,018 priority patent/US5936338A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/56Arrangements for controlling cross-section of ray or beam; Arrangements for correcting aberration of beam, e.g. due to lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/58Arrangements for focusing or reflecting ray or beam
    • H01J29/62Electrostatic lenses
    • H01J29/626Electrostatic lenses producing fields exhibiting periodic axial symmetry, e.g. multipolar fields
    • H01J29/628Electrostatic lenses producing fields exhibiting periodic axial symmetry, e.g. multipolar fields co-operating with or closely associated to an electron gun
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/48Electron guns
    • H01J29/50Electron guns two or more guns in a single vacuum space, e.g. for plural-ray tube
    • H01J29/503Three or more guns, the axes of which lay in a common plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2229/00Details of cathode ray tubes or electron beam tubes
    • H01J2229/48Electron guns
    • H01J2229/4834Electrical arrangements coupled to electrodes, e.g. potentials
    • H01J2229/4837Electrical arrangements coupled to electrodes, e.g. potentials characterised by the potentials applied
    • H01J2229/4841Dynamic potentials

Abstract

PURPOSE: To provide a color cathode-ray tube provided with an electron gun capable of obtaining good resolution in a total surface of a fluorescent material screen. CONSTITUTION: Cathodes K1 , K2 , K3 for an electron beam outgoing are arranged, to arrange against these cathodes a control electrode 10, accelerating electrode 20, focusing electrode and an anode electrode 60. The focusing electrode is constituted of the first/second/third focusing electrodes 30, 40, 50, to provide the first four-electrode lens structure in at least one of an opposed surface to the second focusing electrode 40 of the first focusing electrode 30 or of an opposed surface to the first focusing electrode of the second focusing electrode 40. The second four-electrode lens structure is provided in at least one of an opposed surface to the third focusing electrode of the second focusing electrode or of an opposed surface to the second focusing electrode of the third focusing electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、カラー陰極線管にかか
り、特に蛍光体スクリーン全面で解像度を向上させるた
めの電子銃およびこの電子銃を備えたカラー陰極線管に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a color cathode ray tube, and more particularly to an electron gun for improving the resolution on the entire surface of a phosphor screen and a color cathode ray tube equipped with this electron gun.

【0002】[0002]

【従来の技術】カラー陰極線管の解像度は、蛍光面体ス
クリーン上でのビームスポツトの大きさとその形状に依
存する。
2. Description of the Related Art The resolution of a color cathode ray tube depends on the size and shape of a beam spot on a phosphor screen.

【0003】すなわち、電子銃から出射した電子ビーム
が蛍光面に射突して、当該蛍光面スクリーンを発行させ
て生成されるビームスポツトが径小でかつ真円に近いも
のであれば良好な解像度を得ることができる。
That is, if the electron beam emitted from the electron gun impinges on the phosphor screen and emits the phosphor screen, the beam spot generated has a small diameter and is close to a perfect circle. Can be obtained.

【0004】電子銃から出射した電子ビームは、蛍光面
に到達する途上で水平と垂直に偏向を受けて蛍光体スク
リーンに到達するが、蛍光体スクリーンの中央部と周辺
部とでは、偏向中心からの距離が異なるために、偏向量
の増大に伴ってビームスポツトの形状は主として縦長に
変形する。
While the electron beam emitted from the electron gun reaches the phosphor screen by being deflected horizontally and vertically while reaching the phosphor screen, the electron beam is emitted from the center of deflection in the central portion and the peripheral portion of the phosphor screen. Since the distance is different, the shape of the beam spot is deformed mainly vertically as the amount of deflection increases.

【0005】また、所謂インライン配列の3電子ビーム
を出射する電子銃では、両サイドの電子ビームは管軸か
らオフセットしているために、蛍光体スクリーンの周辺
部ではコンバーゼンスが劣化して解像度を低下させる。
Further, in an electron gun which emits a so-called in-line array of three electron beams, since the electron beams on both sides are offset from the tube axis, the convergence is deteriorated in the peripheral portion of the phosphor screen and the resolution is lowered. Let

【0006】図3は本発明が適用されるカラー陰極線管
の構造例を説明する模式断面図であって、1はパネル
部、2はファンネル部、3はネック部、4は蛍光体スク
リーン、5は色選択電極であるシャドウマスクである。
また、6は第3電極、7は第4電極、8はシールドカッ
プ、14は偏向ヨーク、15,16,17は電子ビーム
の中心軸、18,19は第4電極7のサイド電子ビーム
通過孔の中心である。
FIG. 3 is a schematic cross-sectional view for explaining a structural example of a color cathode ray tube to which the present invention is applied, in which 1 is a panel portion, 2 is a funnel portion, 3 is a neck portion, 4 is a phosphor screen, and 5 is a phosphor screen. Is a shadow mask which is a color selection electrode.
Further, 6 is a third electrode, 7 is a fourth electrode, 8 is a shield cup, 14 is a deflection yoke, 15, 16 and 17 are central axes of electron beams, and 18 and 19 are side electron beam passage holes of the fourth electrode 7. Is the center of.

【0007】なお、陰極部K1,2,3 と第1電極10
および第2電極20で所謂3極部を構成する。
The cathode portions K 1, K 2, K 3 and the first electrode 10
The second electrode 20 constitutes a so-called three-pole part.

【0008】同図に示すごとく、カラー陰極線管はパネ
ル部1とこのパネル部1の側壁部にファンネル2を介し
て連結されたネック部3とで真空外囲器を構成し、ネッ
ク部3に内装された電子銃と、ファンネル部2とネック
部3にかけてこの外壁に装着された偏向ヨーク14と、
蛍光体スクリーン4に所定の間隔をもって対設された多
数のアパーチャを有するシャドウマスク5とから構成さ
れる。
As shown in FIG. 1, the color cathode ray tube comprises a panel portion 1 and a neck portion 3 connected to a side wall portion of the panel portion 1 through a funnel 2 to form a vacuum envelope. An electron gun installed inside, a deflection yoke 14 mounted on the outer wall of the funnel portion 2 and the neck portion 3,
It comprises a phosphor screen 4 and a shadow mask 5 having a large number of apertures, which are opposed to each other at a predetermined interval.

【0009】また、蛍光体スクリーンには、赤色,緑
色,青色の各蛍光体がストライプ状、またはドット状に
塗布されている。
The phosphor screen is coated with red, green, and blue phosphors in stripes or dots.

【0010】電子銃から出射した3本の電子ビームはシ
ャドウマスク5により色選択され、それぞれの蛍光体を
衝撃し、これを発光させる。
The three electron beams emitted from the electron gun are color-selected by the shadow mask 5, and each phosphor is bombarded to emit light.

【0011】電子銃はインライン配列の平行な3本の電
子ビームを発生,加速,制御するための電子ビーム発生
部の陰極部K1,2,3 と電子ビームを制御するプリフ
ォーカスレンズ部と蛍光体スクリーン4上に電子ビーム
集束させるメインレンズ部とからなり、この3本の電子
ビームは偏向ヨーク14により蛍光体スクリーン4の全
面に偏向走査されて二次元のラスターを形成する。
The electron gun is a cathode part K 1, K 2, K 3 of an electron beam generator for generating, accelerating and controlling three parallel in-line electron beams and a prefocus lens part for controlling the electron beam. And a main lens portion for focusing the electron beam on the phosphor screen 4, and these three electron beams are deflected and scanned by the deflection yoke 14 over the entire surface of the phosphor screen 4 to form a two-dimensional raster.

【0012】なお、図示の構成は一例であり、この他に
電子銃を構成する第1電極、第2電極、・・・の数およ
び各電極の電子ビーム通過孔の形状、構成等は種々のも
のが知られている。
The configuration shown in the figure is an example, and in addition to this, the number of first electrodes, second electrodes, ... Constituting the electron gun and the shape and configuration of the electron beam passage hole of each electrode are various. Things are known.

【0013】図4は偏向ヨークで生成される電子ビーム
に作用する偏向磁界の説明図であって、偏向ヨークで生
成される偏向磁界は、同図に示すように水平偏向にピン
クッション状14H 、垂直偏向にバレル状14V の歪を
もっている。
FIG. 4 is an explanatory view of the deflection magnetic field acting on the electron beam generated by the deflection yoke. The deflection magnetic field generated by the deflection yoke is pincushion-shaped 14 H for horizontal deflection as shown in FIG. , Vertical deflection has barrel-like strain of 14 V.

【0014】図5は偏向磁界による電子ビームの偏向作
用とそのスポツト形状歪みの説明図であって、蛍光体ス
クリーンの周辺に偏向走査された電子ビームBは、同図
(a)に示すように電子ビームを偏向する作用Fh に加
え、同図(b)に示したように水平方向に発散fh 、垂
直方向に集束fv を受け、歪んだ形状のスポットを形成
することとなる。
FIG. 5 is an explanatory view of the deflection action of the electron beam by the deflection magnetic field and its spot shape distortion. The electron beam B deflected and scanned around the phosphor screen is as shown in FIG. in addition to acting F h for deflecting the electron beam, the divergence f h in the horizontal direction as shown in FIG. (b), receives a focusing f v in the vertical direction, it will form the spot of distorted shape.

【0015】図6は蛍光体スクリーン上でのビームスポ
ット形状の説明図であって、蛍光体スクリーン3の中央
部のビームスポット00が円形であるのに対し、蛍光体
スクリーン周辺部に生成されるビームスポットは高輝度
のコア部BCとハロー部BHとからなる非円形に歪み、
特にハロー部BHの垂直方向への大きな伸びがフォーカ
ス特性に悪影響を及ぼす。
FIG. 6 is an explanatory view of the beam spot shape on the phosphor screen. While the beam spot 00 in the central portion of the phosphor screen 3 is circular, it is generated in the peripheral portion of the phosphor screen. The beam spot is distorted into a non-circular shape composed of a high brightness core portion BC and a halo portion BH,
In particular, a large vertical expansion of the halo portion BH adversely affects the focus characteristics.

【0016】このフォーカス特性の劣化を対策するため
に例えば特開昭62−58549号公報に開示の技術を
挙げることができる。
In order to prevent the deterioration of the focus characteristic, for example, a technique disclosed in Japanese Patent Laid-Open No. 62-58549 can be cited.

【0017】図7は上記従来技術に開示された電子銃の
構成を説明する断面図であって、K1 ,K2 ,K3 は陰
極、10は制御電極、20は加速電極、30は第1集束
電極、40は第2集束電極、48はリム電極、50は第
3集束電極、60は陽極であり、11,12,13,2
1,22,23,31,32,33,41a,42a,
43a,41b,42b,43b,51a,52a,5
3a,51b,52b,53b,61,62,63はそ
れぞれの電子ビーム通過孔を示し、44,45,46,
47は垂直板、54(55)は水平板を示す。
FIG. 7 is a sectional view for explaining the structure of the electron gun disclosed in the above-mentioned prior art, in which K 1 , K 2 , and K 3 are cathodes, 10 is a control electrode, 20 is an acceleration electrode, and 30 is a first electrode. 1 focusing electrode, 40 a 2nd focusing electrode, 48 a rim electrode, 50 a 3rd focusing electrode, 60 an anode, 11, 12, 13, 2
1, 22, 23, 31, 32, 33, 41a, 42a,
43a, 41b, 42b, 43b, 51a, 52a, 5
Reference numerals 3a, 51b, 52b, 53b, 61, 62 and 63 denote electron beam passage holes, 44, 45, 46,
Reference numeral 47 is a vertical plate, and 54 (55) is a horizontal plate.

【0018】また、Cは電子銃軸(管軸と一致)、S1
はサイド電子ビームの電子銃軸Cからの離軸距離、S2
は陽極60のサイド電子ビーム通過孔61,63の電子
銃軸Cからの離軸距離を示す。
C is the electron gun axis (coincident with the tube axis), S 1
Is the off-axis distance of the side electron beam from the electron gun axis C, S2
Indicates the off-axis distance of the side electron beam passage holes 61, 63 of the anode 60 from the electron gun axis C.

【0019】図8は図7の矢印Aから見た加速電極の平
面図、図9は同じく矢印Bから見た第2集束電極の平面
図、図10は同じく矢印Cから見た第3集束電極の平面
図である。
FIG. 8 is a plan view of the accelerating electrode viewed from the arrow A in FIG. 7, FIG. 9 is a plan view of the second focusing electrode viewed from the arrow B, and FIG. 10 is a third focusing electrode viewed from the arrow C. FIG.

【0020】図8に示したように、加速電極20は3個
の円形の電子ビーム通過孔21,22,23の第1集束
電極30側に電子ビーム配列方向に長いスリット孔2
4,25,26が形成されている。
As shown in FIG. 8, the accelerating electrode 20 has three circular electron beam passage holes 21, 22 and 23 on the side of the first focusing electrode 30 and a slit hole 2 long in the electron beam arrangement direction.
4, 25, 26 are formed.

【0021】また、図9に示したように、第2集束電極
40は第3集束電極50側に円形の電子ビーム通過孔4
1b,42b,43bを有し、第3集束電極50に対抗
して、これら電子ビーム通過孔を水平方向から挟んで上
記第3電極50方向に垂直に植立した4個の平行平板4
4、45、46、47からなる第1の平板電極(垂直
板)を有している。
As shown in FIG. 9, the second focusing electrode 40 has a circular electron beam passage hole 4 on the side of the third focusing electrode 50.
Four parallel plates 4 having 1b, 42b and 43b, which are vertically erected in the direction of the third electrode 50, sandwiching these electron beam passage holes from the horizontal direction, facing the third focusing electrode 50.
It has a first plate electrode (vertical plate) composed of 4, 45, 46 and 47.

【0022】そして、第1の平板電極を包囲し、且つ、
この平行平板の先端44a、45a、46a、47aか
ら第3集束電極50側に一定の距離まで延長したリム電
極48を有している。
And surrounding the first plate electrode, and
The rim electrode 48 extends from the tips 44a, 45a, 46a, 47a of the parallel plate to the third focusing electrode 50 side to a certain distance.

【0023】また、図10に示したように、第3電極5
0は第2集束電極40の端面に3個の円形の電子ビーム
通過孔51a、52a、53aを有し、この電子ビーム
通過孔を垂直方向から挟んで上記第2集束電極40方向
に水平方向に植立した一対の平行平板54、55からな
る第2の平板電極(水平板)を有している。なお、上記
第2の平板電極を構成する平行平板の先端部54a(5
5a)は第2集束電極40のリム電極48内まで延長さ
れており、第2集束電極40の平行平板の先端部44
a、45a、46a、47aに対して電子銃軸方向に一
定間隔Lで設置されている。
As shown in FIG. 10, the third electrode 5
Reference numeral 0 has three circular electron beam passage holes 51a, 52a, 53a on the end face of the second focusing electrode 40, and the electron beam passage holes are sandwiched from the vertical direction in the horizontal direction in the direction of the second focusing electrode 40. It has a second flat plate electrode (horizontal plate) composed of a pair of upright parallel plates 54, 55. The tip portion 54a (5) of the parallel plate that constitutes the second plate electrode is
5a) is extended into the rim electrode 48 of the second focusing electrode 40, and the front end portion 44 of the parallel plate of the second focusing electrode 40 is formed.
a, 45a, 46a, 47a are installed at a constant interval L in the axial direction of the electron gun.

【0024】また、陽極60側の端面には3個の円形の
電子ビーム通過孔61、62、63が設けられており、
サイド電子ビーム通過孔61,63の電子銃軸からの離
軸距離S2 は、前段電極であるK1 、K2 、K3 、制御
電極10、加速電極20、第2集束電極40、第3集束
電極50のサイド電子ビーム通過孔の離軸距離S1 に対
してS2 >S1 の関係になっており、第3集束電極50
と陽極60との間で主レンズが形成され、サイド電子ビ
ームSB1 、SB2 を蛍光体スクリーン面上に集中させ
るようになっている。
Further, three circular electron beam passage holes 61, 62, 63 are provided on the end face on the anode 60 side,
The off-axis distance S 2 of the side electron beam passage holes 61, 63 from the electron gun axis is K 1 , K 2 , K 3 , which are the pre-stage electrodes, the control electrode 10, the acceleration electrode 20, the second focusing electrode 40, and the third focusing electrode 40. The second focusing electrode 50 has a relationship of S 2 > S 1 with respect to the off-axis distance S 1 of the side electron beam passage hole of the focusing electrode 50.
A main lens is formed between the anode 60 and the anode 60 to concentrate the side electron beams SB 1 and SB 2 on the phosphor screen surface.

【0025】動作時に各電極に印加される電圧は、陰極
1 ,K2 ,K3 に50〜170V、制御電極10に0
V、加速電極20に400〜800V、第2集束電極4
0への印加電圧Vfは5〜8kV、陽極60への電圧
(陽極電圧)Ebとして25kVであり、第1集束電極
30と第3集束電極50には電子ビームの垂直および水
平偏向に同期して変化するダイナミック電圧DVfが印
加される。
The voltage applied to each electrode during operation is 50 to 170 V at the cathodes K 1 , K 2 and K 3 and 0 at the control electrode 10.
V, 400 to 800 V for the acceleration electrode 20, the second focusing electrode 4
The applied voltage Vf to 0 is 5 to 8 kV and the voltage (anode voltage) Eb to the anode 60 is 25 kV. The first focusing electrode 30 and the third focusing electrode 50 are synchronized with the vertical and horizontal deflection of the electron beam. A changing dynamic voltage DVf is applied.

【0026】電子ビームの偏向量が0の時は第1集束電
極30、第2集束電極40、第3集束電極50との間に
電位差がないため第2集束電極40内部の平行平板(垂
直板)44,45,46,47と第3集束電極50に取
り付けられている平行平板(水平板)54,55による
影響は無く、加速電極20の第1集束電極30側に電子
ビーム配列方向に長いスリット孔24,25,26によ
る四重極レンズ作用により電子ビームは横長となるが、
第3集束電極50と陽極60との間の主レンズにより蛍
光体スクリーン上では最適なフォーカスで集中する。
When the deflection amount of the electron beam is 0, there is no potential difference between the first focusing electrode 30, the second focusing electrode 40, and the third focusing electrode 50, so that the parallel flat plate (vertical plate) inside the second focusing electrode 40. ) 44, 45, 46, 47 and the parallel plates (horizontal plates) 54, 55 attached to the third focusing electrode 50 have no influence, and the electron beam arrangement direction is long on the first focusing electrode 30 side of the acceleration electrode 20. Although the electron beam becomes horizontally long due to the quadrupole lens action by the slit holes 24, 25, 26,
The main lens between the third focusing electrode 50 and the anode 60 concentrates the light on the phosphor screen with optimum focus.

【0027】図11は上記の動作電圧条件における加速
電極20から出射する電子ビーム束の説明図であり、図
12は電子ビーム軌道を電子光学的に表現した模式図で
ある。
FIG. 11 is an explanatory diagram of an electron beam bundle emitted from the acceleration electrode 20 under the above operating voltage conditions, and FIG. 12 is a schematic diagram electron-optically expressing the electron beam trajectory.

【0028】蛍光体スクリーン上のビームスポツトの形
状は、図11に示したように、加速電極20のスリット
孔24,25,26から出た電子ビームは垂直方向で強
い集束作用を受け、電子ビームは横長となる。その時の
電流密度は中央部で高いH部、その両サイドで電流密度
が低いL部とで構成されている。
As shown in FIG. 11, the shape of the beam spot on the phosphor screen is such that the electron beam emitted from the slit holes 24, 25 and 26 of the accelerating electrode 20 receives a strong focusing action in the vertical direction. Becomes landscape. The current density at that time is composed of an H part having a high central part and an L part having a low current density on both sides thereof.

【0029】電子ビームの偏向量が0のときの電子軌道
は、図12に示したように、球面収差の影響により水平
方向Ph でオーバーフォーカス、垂直方向Pv でアンダ
ーフォーカスとなり、蛍光体スクリーン部の図示したW
の範囲でフォーカス電圧を合わせることとなる。
As shown in FIG. 12, the electron trajectory when the deflection amount of the electron beam is 0 is overfocused in the horizontal direction P h and underfocused in the vertical direction P v due to the influence of spherical aberration, and the phosphor screen is displayed. Part of the illustrated W
The focus voltage is adjusted within the range.

【0030】この時の蛍光体スクリーン上でのビームス
ポツト形状は電流密度の高いH部の縦長形状となる。
At this time, the shape of the beam spot on the phosphor screen is a vertically long shape of the H portion having a high current density.

【0031】図13は第2集束電極40内部の平行平板
(垂直版)44,45,46,47と第3集束電極50
に取り付けられている平行平板(水平版)54,55に
よるビームスポツトへの影響の説明図、図14は第3集
束電極50に取り付けられている平行平板(水平版)5
4,55によるビームスポツトへの影響の説明図であ
る。
FIG. 13 shows parallel plates (vertical plates) 44, 45, 46, 47 inside the second focusing electrode 40 and the third focusing electrode 50.
Of the parallel plates (horizontal plate) 54, 55 attached to the beam spot, and FIG. 14 shows the parallel plates (horizontal plate) 5 attached to the third focusing electrode 50.
It is explanatory drawing of the influence on the beam spot by 4,55.

【0032】電子ビームの偏向量を増すと、第1集束電
極30と第3集束電極50の電位が第2集束電極40よ
り高くなることから、図13に示すように第2集束電極
40内部の平行平板(垂直板)(44),45,46,
(47)にて水平方向で集束作用(Fv <Fh )の強い
レンズと第3集束電極50につけられた平行平板(水平
板)54,55とによって図14に示したように垂直方
向に発散レンズ作用Fvvの強い四極レンズ電界が形成さ
れて電子ビームは縦長に整形されるとともに、第3集束
電極50と陽極との電位差が減少して主レンズによる集
束作用が弱くなり、蛍光体スクリーンの周辺部で最適フ
ォーカスに集中する。
When the deflection amount of the electron beam is increased, the potentials of the first focusing electrode 30 and the third focusing electrode 50 become higher than that of the second focusing electrode 40. Therefore, as shown in FIG. Parallel plate (vertical plate) (44), 45, 46,
In (47), a lens having a strong focusing action (F v <F h ) in the horizontal direction and the parallel flat plates (horizontal plates) 54 and 55 attached to the third focusing electrode 50 are used to move in the vertical direction as shown in FIG. A quadrupole lens electric field having a strong diverging lens action F vv is formed to shape the electron beam in a vertically long shape, and the potential difference between the third focusing electrode 50 and the anode is reduced, so that the focusing action by the main lens is weakened and the phosphor screen is reduced. Focus on the best focus around the area.

【0033】しかし、前記四極レンズ作用は磁気偏向収
差による電子ビームへの作用は打ち消す方向に作用する
ためスクリーン画面上で最適なフォーカスで集中される
が、第3集束電極50と陽極60とで形成される主レン
ズに入射する角度、ビーム径が水平、垂直で異なるた
め、主レンズ内のレンズ倍率が水平、垂直で異なること
からビームスポット形状を円形に近づけることはできな
い。
However, since the action of the quadrupole lens acts in the direction of canceling the action on the electron beam due to the magnetic deflection aberration, it is concentrated at the optimum focus on the screen screen, but it is formed by the third focusing electrode 50 and the anode 60. Since the angle of incidence on the main lens and the beam diameter are horizontal and vertical, the lens magnification in the main lens is horizontal and vertical, and therefore the beam spot shape cannot be close to a circle.

【0034】図15は電子ビームを水平偏向させた時の
電子ビーム軌道を光学系に置き換えたときの第2、第3
集束電極による四極レンズ作用の説明図であって、
(a)は水平方向の断面図、(b)は垂直方向の断面図
を示し、70はレンズ系の物点に相当する電子ビームの
クロスオーバー部、72は第2集束電極と第3集束電極
との間に生成される四極レンズ電界の水平方向での集束
作用を表す凸レンズ、73は主レンズ、74は偏向磁界
による水平方向の発散作用を表す凹レンズ、75は蛍光
体スクリーン部、76は電子ビーム軌道、78は同じく
垂直方向での発散作用を表す凹レンズ、79は同磁界に
よる垂直方向での集束作用を表す凸レンズ、80は蛍光
面スクリーン上の射突点を示す。
FIG. 15 shows second and third electron beam trajectories when the electron beam is horizontally deflected and replaced with an optical system.
It is an explanatory view of a quadrupole lens action by a focusing electrode,
(A) is a horizontal sectional view, (b) is a vertical sectional view, 70 is an electron beam crossover portion corresponding to an object point of a lens system, 72 is a second focusing electrode and a third focusing electrode A convex lens showing the focusing action of the quadrupole lens electric field in the horizontal direction generated between and, 73 a main lens, 74 a concave lens showing a horizontal diverging action by the deflection magnetic field, 75 a phosphor screen portion, and 76 an electron A beam orbit, 78 is a concave lens which also exhibits a diverging action in the vertical direction, 79 is a convex lens which shows a focusing action in the vertical direction by the same magnetic field, and 80 is a projecting point on the phosphor screen.

【0035】図示したように、物点70側から水平方
向、垂直方向にて凸、凹レンズに順次並ぶ光学系に置き
換えたとき、水平方向と垂直方向を最適にフォーカスさ
せると水平方向と垂直方向の蛍光面スクリーン部75上
の射突する入射角度は、αH<αVの関係となる。
As shown in the figure, when the optical system is replaced by an optical system in which convex and concave lenses are arranged in the horizontal and vertical directions from the object point 70 side, when the horizontal and vertical directions are optimally focused, the horizontal and vertical directions are changed. The incident angle at which the phosphor screen 75 impinges has a relationship of αH <αV.

【0036】一般に、電子レンズ系の倍率Mは、物点7
0側から出射角度αでレンズ系を通り蛍光面スクリーン
上の射突点80に入る入射角をα’、物点70と蛍光面
スクリーン面の電位をV、V’とすると、M=(α/
α’)√(V/V’)で表すことができ、前記レンズ系
の水平方向での倍率MHは、MH=(α/αH’)√
(V/V’)、垂直方向での倍率MVは、MV=(α/
αV’)√(V/V’)で表すことができる。
Generally, the magnification M of the electron lens system is 7
Assuming that the incident angle from the 0 side to the projection point 80 on the phosphor screen through the lens system at the exit angle α is α ′ and the potentials of the object point 70 and the phosphor screen are V and V ′, M = (α /
α ′) √ (V / V ′), and the horizontal magnification MH of the lens system is MH = (α / αH ′) √
(V / V ′), the magnification MV in the vertical direction is MV = (α /
It can be represented by αV ′) √ (V / V ′).

【0037】そして、前述のように蛍光体スクリーン7
5上の射突する入射角度は、αH<αVの関係であるか
らレンズ倍率はMV<MHとなり、ビームスポット径は
レンズ倍率の小さい垂直径が小さくなる。
Then, as described above, the phosphor screen 7
Since the incident angle of incidence on 5 is αH <αV, the lens magnification is MV <MH, and the beam spot diameter is small at the vertical diameter where the lens magnification is small.

【0038】水平方向と垂直方向のレンズ倍率を補正す
るため、前記図8に示したように、加速電極20のスリ
ット孔24,25,26を設けている。
In order to correct the lens magnification in the horizontal direction and the vertical direction, slit holes 24, 25, 26 of the acceleration electrode 20 are provided as shown in FIG.

【0039】図16は加速電極のスリット孔による水平
方向と垂直方向のレンズ倍率の補正を光学系に置き換え
た説明図であって、(a)は水平方向の断面、(b)は
垂直方向の断面図である。
16A and 16B are explanatory views in which the correction of the lens magnification in the horizontal direction and the vertical direction by the slit hole of the accelerating electrode is replaced by an optical system. FIG. 16A is a horizontal section, and FIG. 16B is a vertical section. FIG.

【0040】図16に示したように、加速電極のスリッ
ト孔によって生成される四極レンズ電界は、水平方向で
集束作用の弱い凸レンズ71、垂直方向で強い集束作用
の凸レンズ77となる。
As shown in FIG. 16, the quadrupole lens electric field generated by the slit hole of the acceleration electrode becomes a convex lens 71 having a weak focusing action in the horizontal direction and a convex lens 77 having a strong focusing action in the vertical direction.

【0041】物点70から角度αで出射した電子ビーム
は、垂直方向に対して水平方向で弱い凸レンズ71,7
7入射するため水平方向においてはαに近い出射角α’
Hとなり、垂直方向ではαより小さいα’Vの出射角度
となる。この時凸レンズ71,77を通過した物点電子
ビームからみた物点位置は、一般に物点70より後方と
なるが、加速電極がクロスオーバー上に有るためこのず
れ量は小さく、且つ無視できるものである。
The electron beam emitted from the object point 70 at an angle α has convex lenses 71 and 7 which are weak in the horizontal direction with respect to the vertical direction.
Since 7 incidents, the exit angle α'is close to α in the horizontal direction.
It becomes H, and the emission angle becomes α′V smaller than α in the vertical direction. At this time, the object point position seen from the object point electron beam passing through the convex lenses 71 and 77 is generally behind the object point 70. However, since the acceleration electrode is on the crossover, this deviation amount is small and can be ignored. is there.

【0042】加速電極のスリット孔によって生成される
四極レンズ電界(凸レンズ)71、77によって電子ビ
ームの垂直方向が水平方向に対して出射角度が小さく狭
められた結果、電子レンズ系を通過して蛍光体スクリー
ンの射突点80に入射する電子ビームの垂直方向入射角
α’Vが、水平方向入射角α’Hより大きくなり過ぎる
ことはなくなり、α’V≒α’Hとなすことが出来る。
つまり垂直方向と水平方向のレンズ倍率をMV≒MHと
なすことが出来る。
The quadrupole lens electric fields (convex lenses) 71 and 77 generated by the slit holes of the accelerating electrode narrow the emission angle of the electron beam in the vertical direction with respect to the horizontal direction, and as a result, the fluorescence passes through the electron lens system. The vertical incident angle α′V of the electron beam incident on the projecting point 80 of the body screen does not become larger than the horizontal incident angle α′H, and α′V≈α′H can be obtained.
That is, the lens magnifications in the vertical direction and the horizontal direction can be set to MV≈MH.

【0043】以上のことから蛍光体スクリーン全域にお
いて最適なフォーカス特性を得ることが出来る。
From the above, optimum focus characteristics can be obtained over the entire phosphor screen.

【0044】[0044]

【発明が解決しようとする課題】上記従来技術において
は、電子ビームの偏向量が0の時に加速電極のスリット
孔による四重極レンズが作用して電子ビームが横長形状
となることによる蛍光体スクリーン上のビームスポット
形状は、前記した電流密度分布との関係から蛍光体スク
リーン上にてビーム形状が縦長となり、且つ水平,垂直
方向の焦点距離差の補正により電子ビームが太るため
に、水平方向の解像度劣化が生じやすくなる。
In the above-mentioned prior art, when the deflection amount of the electron beam is 0, the quadrupole lens by the slit hole of the acceleration electrode acts to make the electron beam laterally elongated and the phosphor screen. The upper beam spot shape has a vertically long beam shape on the phosphor screen due to the relationship with the current density distribution described above, and the electron beam is thickened by correcting the focal length difference in the horizontal and vertical directions. Resolution deterioration is likely to occur.

【0045】また、電子ビームの電流密度分布が中央部
で高く両側が低い不均一な分布となるため、電子銃精度
によりこの電流密度分布に片寄りが出来ることとなり、
この電子ビームを蛍光体スクリーンの画面端部に偏向す
ると電流密度の低い部分が偏向磁界により更に片寄るこ
ととなり画質を劣化させるという問題がある。
Moreover, since the current density distribution of the electron beam is high in the central part and low on both sides, it is possible to deviate from the current density distribution due to the accuracy of the electron gun.
If this electron beam is deflected to the screen edge of the phosphor screen, the portion having a low current density is further biased by the deflection magnetic field, and there is a problem that the image quality is deteriorated.

【0046】本発明の目的は、上記従来技術の問題点を
解消し、蛍光体スクリーンの全面で良好な解像度を得る
ことができる電子銃を備えたカラー陰極線管を提供する
ことにある。
An object of the present invention is to solve the above problems of the prior art and to provide a color cathode ray tube equipped with an electron gun capable of obtaining a good resolution on the entire surface of the phosphor screen.

【0047】[0047]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、電子銃を構成する電極系に四重極レンズ
構造を設けると共に、第1集束電極と第2集束電極との
間いずれか一方に水平方向に発散作用、垂直方向に集束
作用となる四重極レンズ作用の電極構造を設けることに
よって達成される。
In order to achieve the above object, the present invention provides a quadrupole lens structure in an electrode system constituting an electron gun, and provides a quadrupole lens structure between the first focusing electrode and the second focusing electrode. This is achieved by providing an electrode structure of a quadrupole lens function, which has a diverging action in the horizontal direction and a focusing action in the vertical direction on either side.

【0048】すなわち、請求項1に記載の第1の発明
は、電子ビームを出射するための陰極と、この陰極に対
して少なくとも制御電極、加速電極、集束電極、陽極電
極とをこの順で管軸方向に一組以上配置してなる電子銃
において、前記集束電極を第1集束電極、第2集束電
極、第3集束電極で構成したときに、第1集束電極の第
2集束電極との対向面、または第2集束電極の第1集束
電極との対向面の少なくとも一方に第1の四極レンズ作
用の電極構造を備えると共に、第2集束電極の第3集束
電極との対向面、または第3集束電極の第2集束電極と
の対向面の少なくとも一方に第2の四極レンズ作用の電
極構造を備えたことを特徴とする。
That is, in the first aspect of the present invention, a cathode for emitting an electron beam and at least a control electrode, an accelerating electrode, a focusing electrode, and an anode electrode are arranged in this order with respect to the cathode. In an electron gun arranged in one or more sets in the axial direction, when the focusing electrode is composed of a first focusing electrode, a second focusing electrode and a third focusing electrode, the first focusing electrode faces the second focusing electrode. At least one of the surface or the surface of the second focusing electrode facing the first focusing electrode is provided with the electrode structure having the first quadrupole lens action, and the surface of the second focusing electrode facing the third focusing electrode, or the third surface. At least one of the surfaces of the focusing electrode facing the second focusing electrode is provided with a second quadrupole lens action electrode structure.

【0049】また、請求項2に記載の第2の発明は、電
子ビームを出射するための陰極と、この陰極に対して少
なくとも制御電極、加速電極、集束電極、陽極電極とを
この順で管軸方向に一組以上配置してなる電子銃を備え
たカラー陰極線管において、前記電子銃の前記集束電極
を第1集束電極、第2集束電極、第3集束電極で構成し
たときに、第1集束電極の第2集束電極との対向面、ま
たは第2集束電極の第1集束電極との対向面の少なくと
も一方に第1の四極レンズ作用の電極構造を備えると共
に、第2集束電極の第3集束電極との対向面、または第
3集束電極の第2集束電極との対向面の少なくとも一方
に第2の四極レンズ作用の電極構造を備え、前記集束電
極を構成する第1集束電極と第3集束電極に電子ビーム
の偏向に伴い第2集束電極に印加される電圧より高い値
に変化する集束電圧を印加することにより前記第1の四
極レンズにより電子ビームを横長とし、前記第2の四極
レンズで電子ビームを縦長形状とすることを特徴とす
る。
In the second aspect of the present invention, a cathode for emitting an electron beam and at least a control electrode, an accelerating electrode, a focusing electrode, and an anode electrode are arranged in this order with respect to the cathode. In a color cathode ray tube including an electron gun arranged in one or more sets in the axial direction, when the focusing electrode of the electron gun includes a first focusing electrode, a second focusing electrode, and a third focusing electrode, At least one of the surface of the focusing electrode facing the second focusing electrode and the surface of the second focusing electrode facing the first focusing electrode is provided with the first quadrupole lens action electrode structure, and the second focusing electrode is At least one of the surface facing the focusing electrode and the surface facing the second focusing electrode of the third focusing electrode is provided with a second quadrupole lens action electrode structure, and the first focusing electrode and the third focusing electrode forming the focusing electrode are provided. The second focusing electrode is deflected by the electron beam The electron beam is made horizontally long by the first quadrupole lens and the electron beam is made vertically long by the second quadrupole lens by applying a focusing voltage that changes to a value higher than the voltage applied to the bundle electrode. And

【0050】[0050]

【作用】上記本発明の構成により、電子ビームの偏向量
が0の時に陰極から出射した電子ビームは第3集束電極
と陽極間の主レンズに水平方向と垂直方向のレンズ倍率
を同じにすることができるため、電子ビームスポツトを
略々真円に、かつ小さくなる。
According to the structure of the present invention, the electron beam emitted from the cathode when the deflection amount of the electron beam is 0 has the same lens magnification in the horizontal direction and the vertical direction in the main lens between the third focusing electrode and the anode. Therefore, the electron beam spot can be made substantially circular and small.

【0051】また、電子ビームの偏向量を増すと、第1
集束電極と第2集束電極との間に水平方向に発散作用
を、垂直方向に集束作用をもつ四極レンズ作用により電
子ビームは横長となり、第2集束電極と第3集束電極に
よる垂直方向に発散作用を、水平方向に集束作用を有す
る四極レンズによる垂直と水平方向のレンズ倍率のアン
バランスが補正される。
When the deflection amount of the electron beam is increased, the first
The electron beam becomes horizontally long due to the quadrupole lens action having a horizontal diverging action between the focusing electrode and the second focusing electrode and a vertical focusing action, and the vertical diverging action by the second focusing electrode and the third focusing electrode. Is corrected by the quadrupole lens having a focusing function in the horizontal direction.

【0052】さらに、電子ビームの偏向量によりその補
正量が変化するため、レンズ倍率の補正を適宜に行うこ
とが出来ると共に、加速電極の時と異なり横長の電子ビ
ーム束の電流密度分布はほぼ均一なものとなり電子銃の
組立精度によるハロー片寄り量が軽減される。
Further, since the correction amount changes depending on the deflection amount of the electron beam, the lens magnification can be appropriately corrected, and the current density distribution of the laterally long electron beam flux is almost uniform unlike the acceleration electrode. This reduces the amount of halo deviation due to the assembly accuracy of the electron gun.

【0053】[0053]

【実施例】以下、本発明の実施例を図面を参照して詳細
に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0054】図1は本発明によるカラー陰極線管用の電
子銃の1実施例の構成を説明する断面図である。
FIG. 1 is a sectional view for explaining the structure of one embodiment of an electron gun for a color cathode ray tube according to the present invention.

【0055】また、図2は(a)図1の矢印A方向から
見た第集束平板電極の正面図と(b)電子ビームへの作
用説明図である。
FIG. 2A is a front view of the first focusing plate electrode viewed from the direction of arrow A in FIG. 1, and FIG. 2B is an explanatory view of the action on the electron beam.

【0056】図1、図2において、K1 ,K2 ,K3
陰極、10は制御電極、20は加速電極、30は第1集
束電極、35は第1集束平板電極、40は第2集束電
極、48はリム電極、50は第3集束電極、60は陽
極、11,12,13,21,22,23,31a,3
2a,33a,31b,32b,33b,41a,42
a,43a,41b,42b,43b,51a,52
a,53a,51b,52b,53b,61,62,6
3はそれぞれの電子ビーム通過孔、36,37,38は
縦長の矩形孔、44,45,46,47は垂直版、54
(55)は水平板を示す。
In FIGS. 1 and 2, K 1 , K 2 and K 3 are cathodes, 10 are control electrodes, 20 is an acceleration electrode, 30 is a first focusing electrode, 35 is a first focusing flat plate electrode, and 40 is a second focusing electrode. Focusing electrode, 48 is a rim electrode, 50 is a third focusing electrode, 60 is an anode, 11, 12, 13, 21, 22, 23, 31a, 3
2a, 33a, 31b, 32b, 33b, 41a, 42
a, 43a, 41b, 42b, 43b, 51a, 52
a, 53a, 51b, 52b, 53b, 61, 62, 6
3 is each electron beam passage hole, 36, 37, 38 are vertically long rectangular holes, 44, 45, 46, 47 are vertical plates, 54
(55) indicates a horizontal plate.

【0057】また、Cは電子銃軸(管軸と一致)、S1
はサイド電子ビームの電子銃軸Cからの離軸距離、S2
は陽極60のサイド電子ビーム通過孔61,63の電子
銃軸Cからの離軸距離を示す。
C is the electron gun axis (matches the tube axis), S 1
Is the off-axis distance of the side electron beam from the electron gun axis C, S2
Indicates the off-axis distance of the side electron beam passage holes 61, 63 of the anode 60 from the electron gun axis C.

【0058】第1集束電極30は31a,32a,33
a,31b,32b,33bの円形のビーム通過孔を有
する。第1集束平板電極35は36,37,38の縦長
の矩形孔を有し、第1集束平板電極35と電気的に接続
されている。
The first focusing electrode 30 includes 31a, 32a, 33.
It has circular beam passage holes a, 31b, 32b and 33b. The first focusing plate electrode 35 has vertically elongated rectangular holes 36, 37, 38, and is electrically connected to the first focusing plate electrode 35.

【0059】また、第2集束電極40は第3集束電極5
0側の端面に3個の円形の電子ビーム通過孔41b,4
2b,43bを水平方向から挟んで第3集束電極50に
垂直に植立した4個の平行平板44,45,46,47
からなる第1の平板電極(垂直板)を有している。そし
て、第1の平板電極を包囲し、且つ、この平行平板の先
端44a,45a,46a,47aから第3集束電極5
0側に一定の距離まで延長したリム電極48を有してい
る。
Further, the second focusing electrode 40 is the third focusing electrode 5
Three circular electron beam passage holes 41b, 4 are formed on the end face on the 0 side.
Four parallel plates 44, 45, 46, 47 vertically set on the third focusing electrode 50 with 2b and 43b sandwiched in the horizontal direction.
It has a first plate electrode (vertical plate) consisting of. The third focusing electrode 5 is surrounded by the tips 44a, 45a, 46a, 47a of the parallel plate surrounding the first plate electrode.
It has a rim electrode 48 extended to a certain distance on the 0 side.

【0060】第3電極50は第2集束電極40の端面に
3個の円形の電子ビーム通過孔51a,52a,53a
を有し、この電子ビーム通過孔を垂直方向から挟んで上
記第1集束電極40方向に水平方向に植立した一対の平
行平板54,55からなる第2の平板電極(水平板)を
有している。
The third electrode 50 has three circular electron beam passage holes 51a, 52a, 53a on the end face of the second focusing electrode 40.
And a second flat plate electrode (horizontal plate) composed of a pair of parallel flat plates 54, 55 vertically erected in the direction of the first focusing electrode 40 with the electron beam passage hole interposed therebetween from the vertical direction. ing.

【0061】なお、上記第2の平板電極を構成する平行
平板54,55の先端部54a,55aは第2集束電極
40のリム電極48内まで延長されており、第2集束電
極40の平行平板の先端部44a,45a,46a,4
7aに対して電子銃軸方向に一定間隔Lで設置されてい
る。
The front end portions 54a, 55a of the parallel flat plates 54, 55 constituting the second flat plate electrode extend to the inside of the rim electrode 48 of the second focus electrode 40, and the parallel flat plate of the second focus electrode 40 is formed. Tip portions 44a, 45a, 46a, 4 of the
7a are installed at a constant interval L in the axial direction of the electron gun.

【0062】また、陽極60側の端面には3個の円形の
電子ビーム通過孔61,62,63が設けられており、
サイド電子ビーム通過孔の電子銃軸からの離軸距離S2
は、前段電極であるK1 ,K2 ,K3 、制御電極10、
加速電極20、第2集束電極40、第3集束電極50の
サイド電子ビーム通過孔の離軸距離S1 に対してS2
1 の関係になっており、第3集束電極50と陽極60
との間で主レンズが形成され、サイド電子ビームS
1 、SB2 を蛍光体スクリーン面上に集中させるよう
になっている。
Further, three circular electron beam passage holes 61, 62, 63 are provided on the end face on the anode 60 side,
Off-axis distance S 2 from the electron gun axis of the side electron beam passage hole
Are the front electrodes K 1 , K 2 , and K 3 , the control electrode 10,
Accelerating electrode 20, the second focusing electrode 40, S 2 with respect to off-axis distance S 1 of the side electron beam passage apertures of the third focus electrode 50>
The relationship of S 1 is established, and the third focusing electrode 50 and the anode 60
A main lens is formed between the side electron beam S and
B 1 and SB 2 are concentrated on the phosphor screen surface.

【0063】動作時に各電極に印加される電圧は、陰極
に50〜170V、制御電圧0V、加速電極に400〜
800V、第2集束電極40への印加電圧Vfとして5
〜8kV、陽極電圧Ebとして25kVであり、第1集
束電極30、第1集束平板電極35、第3集束電極50
には電子ビームに垂直、水平変更に同期して変化するダ
イナミック電圧DVfが印加される。
The voltage applied to each electrode during operation is 50 to 170 V for the cathode, 0 V for the control voltage, and 400 to 400 V for the accelerating electrode.
800V, 5 as applied voltage Vf to the second focusing electrode 40
˜8 kV, anode voltage Eb is 25 kV, first focusing electrode 30, first focusing plate electrode 35, third focusing electrode 50
Is applied with a dynamic voltage DVf that changes in synchronization with vertical and horizontal changes of the electron beam.

【0064】電子ビームの偏向量が0の時は第1集束電
極30、第1集束平板電極35、第2集束電極40、第
3集束電極50との間に電位差が無いため第1集束平板
電極35の縦長の矩形孔36,37,38と第2集束電
極40内部の平行平板(垂直版)44,45,46,4
7と第3集束電極50に取り付けられている平行平板
(水平版)54,55による影響は無く、カソードから
の電子ビームは、第3集束電極50と陽極60との間の
主レンズにより蛍光体スクリーンでは円形で且つ小さな
ビームスポット形状となる。
When the deflection amount of the electron beam is 0, there is no potential difference between the first focusing electrode 30, the first focusing plate electrode 35, the second focusing electrode 40, and the third focusing electrode 50, and thus the first focusing plate electrode. Vertical rectangular holes 36, 37, 38 of 35 and parallel plates (vertical plate) 44, 45, 46, 4 inside the second focusing electrode 40.
7 and the parallel flat plates (horizontal plates) 54 and 55 attached to the third focusing electrode 50 have no influence, and the electron beam from the cathode is a phosphor by the main lens between the third focusing electrode 50 and the anode 60. The screen is circular and has a small beam spot shape.

【0065】電子ビームの偏向量を増すと、第1集束電
極30、第1集束平板電極35と第3集束電極50の電
位が第2集束電極より高くなることから第1集束平板電
極35の縦長のスリット孔36,37,38により図2
(b)に示すように縦長の発散レンズが形成され、電子
ビームは垂直方向に対して水平方向で強い発散作用(F
h>Fv)を受け電子ビームは横長となる。
When the deflection amount of the electron beam is increased, the potentials of the first focusing electrode 30, the first focusing plate electrode 35 and the third focusing electrode 50 become higher than that of the second focusing electrode. 2 through the slit holes 36, 37 and 38 of FIG.
As shown in (b), a vertically long divergence lens is formed, and the electron beam has a strong divergence action (F
The electron beam becomes horizontally long due to h> Fv).

【0066】また、第2集束電極40内部の平行平板
(垂直板)44,45,46,47と第3集束電極50
につけられた平行平板(水平板)54,55とによって
前記四極レンズ電界が形成されるとともに、第3集束電
極50と陽極60との電位差が減少して主レンズによる
集束作用が弱くなる。
Further, the parallel flat plates (vertical plates) 44, 45, 46, 47 inside the second focusing electrode 40 and the third focusing electrode 50.
The quadrupole lens electric field is formed by the parallel flat plates (horizontal plates) 54 and 55 attached to the first plate, and the potential difference between the third focusing electrode 50 and the anode 60 is reduced to weaken the focusing action of the main lens.

【0067】前記、第1集束平板電極35と第2集束電
極40との四重極レンズによってなる横長の電子ビーム
は四極レンズ口径が電子ビーム束に対して大きいために
電流密度分布は均一となる。また、横長の電子ビームは
第2集束電極40−第3集束電極50間と第3集束電極
50−陽極60間とのレンズ倍率のアンバランスの補正
を従来と同様に作用させる。
Since the laterally long electron beam formed by the quadrupole lens of the first focusing plate electrode 35 and the second focusing electrode 40 has a quadrupole lens aperture larger than the electron beam bundle, the current density distribution becomes uniform. . Further, the laterally long electron beam causes the correction of the unbalance of the lens magnification between the second focusing electrode 40 and the third focusing electrode 50 and between the third focusing electrode 50 and the anode 60 in the same manner as in the conventional case.

【0068】このように、本実施例によれば、蛍光体ス
クリーンの全面において良好な解像度を得ることができ
る。
As described above, according to this embodiment, good resolution can be obtained on the entire surface of the phosphor screen.

【0069】[0069]

【発明の効果】以上説明したように、本発明によれば、
電子ビームの偏向量が0の時に陰極から出射した電子ビ
ームは第3集束電極と陽極間の主レンズの水平方向と垂
直方向のレンズ倍率を同じにすることができるため、電
子ビームスポツトが略々真円に、かつ小さくなる。
As described above, according to the present invention,
The electron beam emitted from the cathode when the deflection amount of the electron beam is 0 can make the lens magnification in the horizontal direction and the vertical direction of the main lens between the third focusing electrode and the anode the same. It becomes a perfect circle and becomes smaller.

【0070】また、電子ビームの偏向量を増すと、第1
集束電極と第2集束電極との間では水平方向に発散作用
を、垂直方向に集束作用をもつ四極レンズ作用により電
子ビームは横長となり、第2集束電極と第3集束電極と
の間では垂直方向に発散作用を、水平方向に集束作用を
有する四極レンズによる垂直と水平方向のレンズ倍率の
アンバランスが補正される。
When the deflection amount of the electron beam is increased, the first
The electron beam becomes horizontally long due to the quadrupole lens effect having a horizontal divergence action between the focusing electrode and the second focusing electrode and a vertical focusing action, and the electron beam becomes laterally long between the second focusing electrode and the third focusing electrode. A quadrupole lens having a diverging action and a focusing action in the horizontal direction is used to correct the imbalance between the vertical and horizontal lens magnifications.

【0071】これにより、蛍光体スクリーン面全域にお
いて良好な解像度を高輝度から低輝度にわたって得るこ
とが出来る。
As a result, a good resolution can be obtained from high luminance to low luminance over the entire phosphor screen surface.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるカラー陰極線管用の電子銃の1実
施例の構成を説明する断面図である。
FIG. 1 is a sectional view illustrating the configuration of an embodiment of an electron gun for a color cathode ray tube according to the present invention.

【図2】図1の矢印A方向から見た第1集束平板電極の
正面図と電子ビームへの作用説明図である。
2A and 2B are a front view of a first focusing plate electrode viewed from the direction of arrow A in FIG. 1 and an explanatory view of its action on an electron beam.

【図3】本発明が適用されるカラー陰極線管の構造例を
説明する模式断面図である。
FIG. 3 is a schematic cross-sectional view illustrating a structural example of a color cathode ray tube to which the present invention is applied.

【図4】偏向ヨークで生成される電子ビームに作用する
偏向磁界の説明図である。
FIG. 4 is an explanatory diagram of a deflection magnetic field that acts on an electron beam generated by a deflection yoke.

【図5】偏向磁界による電子ビームの偏向作用とそのス
ポツト形状歪みの説明図である。
FIG. 5 is an explanatory diagram of the deflection action of an electron beam by a deflection magnetic field and its spot shape distortion.

【図6】蛍光体スクリーン上でのビームスポット形状の
説明図である。
FIG. 6 is an explanatory diagram of a beam spot shape on a phosphor screen.

【図7】従来技術の電子銃の構成を説明する断面図であ
る。
FIG. 7 is a cross-sectional view illustrating the configuration of a conventional electron gun.

【図8】図7の矢印Aから見た加速電極の平面図であ
る。
8 is a plan view of the accelerating electrode viewed from an arrow A in FIG.

【図9】図7の矢印Bから見た第2集束電極の平面図で
ある。
9 is a plan view of the second focusing electrode viewed from the arrow B in FIG. 7. FIG.

【図10】図7の矢印Cから見た第3集束電極の平面図
である。
10 is a plan view of the third focusing electrode viewed from the arrow C in FIG. 7. FIG.

【図11】図7の動作電圧条件における蛍光体スクリー
ン上のビームスポツト形状の説明図である。
FIG. 11 is an explanatory diagram of a beam spot shape on the phosphor screen under the operating voltage condition of FIG. 7.

【図12】蛍光体スクリーン上のビームの偏向磁界によ
る作用を電子光学的に表現した模式図である。
FIG. 12 is a schematic diagram in which the action of the deflection magnetic field of the beam on the phosphor screen is electro-optically expressed.

【図13】第2集束電極内部の平行平板(垂直板)と第
3集束電極に取り付けられている平行平板(水平板)に
よるビームスポツトへの影響の説明図である。
FIG. 13 is an explanatory view of the influence on the beam spot by a parallel plate (vertical plate) inside the second focusing electrode and a parallel plate (horizontal plate) attached to the third focusing electrode.

【図14】第3集束電極に取り付けられている平行平板
(水平板)によるビームスポツトへの影響の説明図であ
る。
FIG. 14 is an explanatory diagram of an influence on a beam spot by a parallel plate (horizontal plate) attached to a third focusing electrode.

【図15】電子ビームを水平偏向させた時の電子ビーム
軌道を光学系に置き換えた説明図である。
FIG. 15 is an explanatory diagram in which an electron beam orbit when the electron beam is horizontally deflected is replaced with an optical system.

【図16】加速電極のスリット孔による水平方向と垂直
方向のレンズ倍率の補正を光学系に置き換えた説明図で
ある。
FIG. 16 is an explanatory diagram in which the correction of the lens magnification in the horizontal direction and the vertical direction by the slit hole of the acceleration electrode is replaced with an optical system.

【符号の説明】[Explanation of symbols]

1 ,K2 ,K3 陰極 10 制御電極 20 加速電極 30 第1集束電極 35 第1集束平板電極 40 第2集束電極 48 リム電極 50 第3集束電極 60 陽極 11,12,13,21,22,23,31a,32
a,33a,31b,32b,33b,41a,42
a,43a,41b,42b,43b,51a,52
a,53a,51b,52b,53b,61,62,6
3 電子ビーム通過孔 36,37,38 縦長の矩形孔 44,45,46,47 垂直板 54(55) 水平板。
K 1 , K 2 , K 3 cathode 10 control electrode 20 acceleration electrode 30 first focusing electrode 35 first focusing flat plate electrode 40 second focusing electrode 48 rim electrode 50 third focusing electrode 60 anode 11, 12, 13, 21, 22, 22 , 23, 31a, 32
a, 33a, 31b, 32b, 33b, 41a, 42
a, 43a, 41b, 42b, 43b, 51a, 52
a, 53a, 51b, 52b, 53b, 61, 62, 6
3 Electron beam passage hole 36, 37, 38 Vertically long rectangular hole 44, 45, 46, 47 Vertical plate 54 (55) Horizontal plate.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】電子ビームを出射するための陰極と、この
陰極に対して少なくとも制御電極、加速電極、集束電
極、陽極電極とをこの順で管軸方向に一組以上配置して
なる電子銃において、 前記集束電極を第1集束電極、第2集束電極、第3集束
電極で構成したときに、第1集束電極の第2集束電極と
の対向面、または第2集束電極の第1集束電極との対向
面の少なくとも一方に第1の四極レンズ作用の電極構造
を備えると共に、第2集束電極の第3集束電極との対向
面、または第3集束電極の第2集束電極との対向面の少
なくとも一方に第2の四極レンズ作用の電極構造を備え
たことを特徴とする電子銃。
1. An electron gun comprising a cathode for emitting an electron beam, and at least one set of a control electrode, an acceleration electrode, a focusing electrode and an anode electrode arranged in this order in the tube axis direction with respect to the cathode. In the above, when the focusing electrode is composed of a first focusing electrode, a second focusing electrode, and a third focusing electrode, a surface of the first focusing electrode facing the second focusing electrode, or a first focusing electrode of the second focusing electrode At least one of the facing surfaces of the second focusing electrode and the facing surface of the second focusing electrode facing the third focusing electrode, or the facing surface of the third focusing electrode facing the second focusing electrode. An electron gun comprising at least one electrode structure having a second quadrupole lens action.
【請求項2】電子ビームを出射するための陰極と、この
陰極に対して少なくとも制御電極、加速電極、集束電
極、陽極電極とをこの順で管軸方向に一組以上配置して
なる電子銃を備えたカラー陰極線管において、 前記電子銃の前記集束電極を第1集束電極、第2集束電
極、第3集束電極で構成したときに、第1集束電極の第
2集束電極との対向面、または第2集束電極の第1集束
電極との対向面の少なくとも一方に第1の四極レンズ作
用の電極構造を備えると共に、第2集束電極の第3集束
電極との対向面、または第3集束電極の第2集束電極と
の対向面の少なくとも一方に第2の四極レンズ作用の電
極構造を備え、 前記集束電極を構成する第1集束電極と第3集束電極に
電子ビームの偏向に伴い第2集束電極に印加される電圧
より高い値に変化する集束電圧を印加することにより前
記第1の四極レンズにより電子ビームを横長とし、前記
第2の四極レンズで電子ビームを縦長形状とすることを
特徴とするカラー陰極線管。
2. An electron gun comprising a cathode for emitting an electron beam, and at least one set of a control electrode, an acceleration electrode, a focusing electrode and an anode electrode arranged in this order in the tube axis direction with respect to the cathode. A color cathode ray tube comprising: a first focusing electrode, a second focusing electrode, and a third focusing electrode, wherein the focusing electrode of the electron gun is a surface facing the second focusing electrode of the first focusing electrode; Alternatively, at least one of the surfaces of the second focusing electrode facing the first focusing electrode is provided with an electrode structure having a first quadrupole lens action, and the surface of the second focusing electrode facing the third focusing electrode, or the third focusing electrode. A second quadrupole lens action electrode structure on at least one of the surfaces of the second focusing electrode facing the second focusing electrode, and the second focusing with the deflection of the electron beam on the first focusing electrode and the third focusing electrode which constitute the focusing electrode. Value higher than the voltage applied to the electrodes Wherein the first quadrupole lens of the electron beam horizontally long, the color cathode ray tube, characterized in that the electron beam vertically long shape by the second quadrupole lens by applying a focusing voltage varying.
JP6291325A 1994-11-25 1994-11-25 Electron gun and color cathode-ray tube provided with this electron gun Pending JPH08148095A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP6291325A JPH08148095A (en) 1994-11-25 1994-11-25 Electron gun and color cathode-ray tube provided with this electron gun
EP95118059A EP0714115A3 (en) 1994-11-25 1995-11-16 Color display system utilizing quadrupole lenses
CN95119692A CN1130302A (en) 1994-11-25 1995-11-24 Colour display system by using quadrupole lens
KR1019950043776A KR960019453A (en) 1994-11-25 1995-11-25 Color cathode ray tube using quadrupole lens and color display device provided with same
US08/902,018 US5936338A (en) 1994-11-25 1997-07-29 Color display system utilizing double quadrupole lenses under optimal control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6291325A JPH08148095A (en) 1994-11-25 1994-11-25 Electron gun and color cathode-ray tube provided with this electron gun

Publications (1)

Publication Number Publication Date
JPH08148095A true JPH08148095A (en) 1996-06-07

Family

ID=17767455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6291325A Pending JPH08148095A (en) 1994-11-25 1994-11-25 Electron gun and color cathode-ray tube provided with this electron gun

Country Status (4)

Country Link
EP (1) EP0714115A3 (en)
JP (1) JPH08148095A (en)
KR (1) KR960019453A (en)
CN (1) CN1130302A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5936338A (en) * 1994-11-25 1999-08-10 Hitachi, Ltd. Color display system utilizing double quadrupole lenses under optimal control
WO2000031772A1 (en) * 1998-11-20 2000-06-02 Kabushiki Kaisha Toshiba Cathode-ray tube
KR20030033217A (en) * 2001-10-19 2003-05-01 삼성에스디아이 주식회사 Electron gun for the cathode ray tube with unipotential and bipotential lens

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW446984B (en) 1999-01-26 2001-07-21 Toshiba Corp Color cathode ray tube device
KR100384675B1 (en) * 2000-11-28 2003-05-22 가부시키가이샤 히타치세이사쿠쇼 Color image receiving tube
US6949895B2 (en) * 2003-09-03 2005-09-27 Axcelis Technologies, Inc. Unipolar electrostatic quadrupole lens and switching methods for charged beam transport

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0640468B2 (en) * 1985-09-09 1994-05-25 松下電子工業株式会社 Color picture tube device
JP2645061B2 (en) * 1988-03-11 1997-08-25 株式会社東芝 Color picture tube equipment
JPH07134953A (en) * 1993-11-09 1995-05-23 Hitachi Ltd Color picture tube

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5936338A (en) * 1994-11-25 1999-08-10 Hitachi, Ltd. Color display system utilizing double quadrupole lenses under optimal control
WO2000031772A1 (en) * 1998-11-20 2000-06-02 Kabushiki Kaisha Toshiba Cathode-ray tube
US6472832B1 (en) 1998-11-20 2002-10-29 Kabushiki Kaisha Toshiba Cathode ray tube
KR20030033217A (en) * 2001-10-19 2003-05-01 삼성에스디아이 주식회사 Electron gun for the cathode ray tube with unipotential and bipotential lens

Also Published As

Publication number Publication date
KR960019453A (en) 1996-06-17
EP0714115A2 (en) 1996-05-29
EP0714115A3 (en) 1997-07-16
CN1130302A (en) 1996-09-04

Similar Documents

Publication Publication Date Title
JP3576217B2 (en) Picture tube device
JPH0831333A (en) Color cathode-ray tube
JPH0393135A (en) Color picture tube
US5936338A (en) Color display system utilizing double quadrupole lenses under optimal control
JPH08148095A (en) Electron gun and color cathode-ray tube provided with this electron gun
US6614156B2 (en) Cathode-ray tube apparatus
JPH05325825A (en) Electron gun for color cathode-ray tube
US6646381B2 (en) Cathode-ray tube apparatus
JP3672390B2 (en) Electron gun for color cathode ray tube
US6489736B1 (en) Color cathode ray tube apparatus
JP3734327B2 (en) Color cathode ray tube equipment
JP3315173B2 (en) Color picture tube equipment
JP3074176B2 (en) Electron gun for cathode ray tube
US5448134A (en) Cathode ray tube having improved structure for controlling image quality
JP3050386B2 (en) Electron gun for color picture tube
JP2878731B2 (en) Color picture tube equipment
JPH07147145A (en) Electron gun for cathode-ray tube
KR0129381Y1 (en) Electron gun for color cathode ray tube
JPH07262935A (en) Cathode-ray tube and electron gun
JPH09259787A (en) Color cathode-ray tube
KR20040076117A (en) Electron gun for Color Cathode Ray Tube
JP2960498B2 (en) Color picture tube equipment
JP3004658B2 (en) Color picture tube equipment
KR100546579B1 (en) Electron gun for color cathode ray tube
JP2758231B2 (en) Color picture tube equipment