[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH01107056A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH01107056A
JPH01107056A JP62263966A JP26396687A JPH01107056A JP H01107056 A JPH01107056 A JP H01107056A JP 62263966 A JP62263966 A JP 62263966A JP 26396687 A JP26396687 A JP 26396687A JP H01107056 A JPH01107056 A JP H01107056A
Authority
JP
Japan
Prior art keywords
compressor
operating frequency
temperature
frequency
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62263966A
Other languages
Japanese (ja)
Inventor
Masaya Yamazaki
雅也 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62263966A priority Critical patent/JPH01107056A/en
Publication of JPH01107056A publication Critical patent/JPH01107056A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE: To prevent possible oil shortage in a compressor and wet vapor suction to the compressor by providing a control part to accomplish a gradual raise in the operation frequency of the compressor at the start of operation or after the end of the defrosting operation while restricting the rise until the temperature of a condenser reaches a specified value. CONSTITUTION: At the start of a compressor, the temperature of a room heat exchanger working as condenser is detected by a sensor 23. In the unstable operation in which the temperature fails to reach a set value, a start braking means 35 in a control section 20 continues to output an operation frequency command higher than the commercial power source frequency but lower than the maximum operation frequency to suppress the rise in the frequency operation frequency of the compressor. Then, in the stable operation in which the temperature of a room heat exchanger, the start braking means 35 ceases the outputting of the operation frequency command and instead, an operation frequency command of an operation frequency determining means 31 is supplied to an inverter drive circuit 36. As a result, the operating frequency of the compressor is raised to the maximum.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、圧縮機に駆動電力を供給するインバータ回
路を備えた空気調和機に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an air conditioner equipped with an inverter circuit that supplies driving power to a compressor.

(従来の技術) 空気調和機においては、圧縮機に駆動電力を供給するイ
ンバータ回路を備え、そのインバータ回路の出力周波数
を空調負荷に応じて制御することにより、空調負荷に対
応する最適な能力を得、快適性の向上および省エネルギ
効果の向上を図るものがある。
(Prior art) Air conditioners are equipped with an inverter circuit that supplies driving power to the compressor, and by controlling the output frequency of the inverter circuit according to the air conditioning load, it is possible to achieve the optimal capacity to handle the air conditioning load. There are some that aim to improve the benefits, comfort, and energy saving effects.

このような空気調和機においては、運転開始時または除
霜運転終了後、インバータ回路の出力周波数(以下、圧
縮機の運転周波数Fと称す)を空調負荷に対応する目標
周波数へと上昇させることになるが、その上昇を一気に
行なうと、冷凍サイクル機器の寿命に悪影響を与えてし
まう。
In such an air conditioner, at the start of operation or after the end of defrosting operation, the output frequency of the inverter circuit (hereinafter referred to as compressor operating frequency F) is increased to a target frequency corresponding to the air conditioning load. However, if the temperature increases all at once, it will adversely affect the life of the refrigeration cycle equipment.

そこで、従来、第7図に示すように、運転開始時または
除霜運転終了後、運転周波数Fの上昇を一定時間ごとに
段階的に行なうようにしている。
Therefore, conventionally, as shown in FIG. 7, the operating frequency F is increased in stages at regular intervals after the start of operation or after the end of defrosting operation.

すなわち、初めの1分間は運転周波数Fを商用電源周波
数よりも低い値F7に設定し、次の1分間は運転周波数
Fを商用電源周波数よりも高く月つ最高運転周波数F 
maxよりも低い値F9に設定し、その後に運転周波数
Fを目標周波数であるところの最高運転周波数F 1l
laXへと至らせている。
That is, for the first minute, the operating frequency F is set to a value F7 lower than the commercial power frequency, and for the next minute, the operating frequency F is set to a value F7 higher than the commercial power frequency.
Set the operating frequency F to a value F9 lower than max, and then set the operating frequency F to the maximum operating frequency F1l, which is the target frequency.
It has led to laX.

なお、目標周波数が最高運転周波数F waxとなって
いるが、これは運転開始時や除霜運転終了後が高負荷状
態であるからである。
Note that the target frequency is the highest operating frequency Fwax, but this is because the load is high at the start of operation and after the defrosting operation is completed.

しかしながら、このように単に一定時間ごとに運転周波
数Fを上昇させていく制御では、次のような不具合を生
じることがある。
However, such control in which the operating frequency F is simply increased at regular intervals may cause the following problems.

たとえば、運転停止が長時間に及んだり、外気温度が極
端に低い場合、圧縮機内でいわゆる冷媒寝込みが生じて
おり、その状態で圧縮機を起動し、運転周波数Fの上昇
を続けても、その入力は圧縮機内の寝込み冷媒を分離さ
せることに費やされてしまい、冷凍サイクルの高圧側と
低圧側との簡になかなか圧力差が生じない。こうして、
圧力差がないまま運転周波数Fの上昇がさらに続くと、
圧縮機内の潤滑オイルが寝込み冷媒と共に吐出され、そ
の回収が不可能となり、いわゆる油面切れを生じてしま
う。しかも、冷凍サイクル中に溜まっていた液冷媒がそ
のまま圧縮機に吸込まれてしまういわゆる液バツクを生
じる。特に、この液バツクは除霜運転終了後の暖房復帰
時において顕著である。
For example, if the operation is stopped for a long time or the outside temperature is extremely low, so-called refrigerant stagnation occurs in the compressor, and even if the compressor is started in this state and the operating frequency F continues to increase, The input is used to separate the stale refrigerant in the compressor, making it difficult to create a pressure difference between the high-pressure side and the low-pressure side of the refrigeration cycle. thus,
If the operating frequency F continues to rise without any pressure difference,
The lubricating oil in the compressor is discharged together with the stagnant refrigerant, making it impossible to recover it and causing a so-called oil level shortage. Moreover, liquid refrigerant accumulated in the refrigeration cycle is sucked into the compressor as it is, resulting in so-called liquid back. This liquid backlog is particularly noticeable when heating is resumed after the defrosting operation is completed.

すなわち、油面切れは、圧縮機のメインベアリングの潤
滑不良を招き、圧縮機の寿命に悪影響を与える。また、
液バツクは圧縮機の寿命に悪影響を与えることは勿論、
圧縮機の損傷を招くことさえある。
That is, the lack of oil level causes insufficient lubrication of the main bearing of the compressor, which adversely affects the life of the compressor. Also,
Of course, liquid backlog has a negative impact on the life of the compressor.
It may even cause damage to the compressor.

この発明は上記のような事情に鑑みてなされたもので、
その目的とするところは、圧縮機における油面切れや圧
縮機への液バツクを防ぐことができ、これにより圧縮機
の寿命向上が図れるとともに、効率のよい運転を可能と
する空気調和機を提供することにある。
This invention was made in view of the above circumstances,
The purpose of this is to prevent the oil level in the compressor from running out and liquid back-up to the compressor, thereby extending the life of the compressor and providing an air conditioner that enables efficient operation. It's about doing.

[発明の構成] (問題点を解決するための手段) 運転開始時または除霜運転終了後、圧縮機の運転周波数
の上昇を段階的に行なう手段と、この運転周波数の上昇
を凝縮器の温度またはその変化率が設定値に達するまで
所定値に抑える手段とを設ける。
[Structure of the Invention] (Means for Solving the Problems) A means for increasing the operating frequency of the compressor in stages at the start of operation or after the end of defrosting operation, and a means for increasing the operating frequency by increasing the operating frequency by adjusting the temperature of the condenser. Alternatively, means for suppressing the rate of change to a predetermined value until it reaches a set value is provided.

(作用) 凝縮器の温度またはその変化率がまだ設定値に達しない
不安定運転では運転周波数の上昇が所定値に抑えられ、
凝縮器の温度またはその変化率が設定値に達する安定運
転では運転周波数の上昇が許容される。
(Function) In unstable operation where the condenser temperature or its rate of change has not yet reached the set value, the increase in operating frequency is suppressed to a predetermined value.
In stable operation where the temperature of the condenser or its rate of change reaches the set value, an increase in the operating frequency is allowed.

(実施例) 以下、この発明の一実施例について図面を参照して説明
する。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図において、1は能力可変圧縮機で、その圧縮機1
に四方弁2、室外熱交換器3、減圧器たとえば膨張弁4
、室内熱交換器5などが順次連通され、ヒートポンプ式
冷凍サイクルが構成されている。つまり、冷房運転時は
図示実線矢印の方向に冷媒が流れ、室外熱交換器3が凝
縮器、室内熱交換器5が蒸発器として作用する。暖房運
転時は四方弁2の切換作動により図示破線矢印の方向に
冷媒が流れ、室内熱交換器5が凝縮器、室外熱交換器3
が蒸発器として作用する。
In Fig. 1, 1 is a variable capacity compressor;
A four-way valve 2, an outdoor heat exchanger 3, a pressure reducer such as an expansion valve 4
, an indoor heat exchanger 5, etc. are successively connected to form a heat pump type refrigeration cycle. That is, during cooling operation, the refrigerant flows in the direction of the solid arrow in the figure, and the outdoor heat exchanger 3 acts as a condenser and the indoor heat exchanger 5 acts as an evaporator. During heating operation, the refrigerant flows in the direction of the dashed arrow in the figure by switching the four-way valve 2, and the indoor heat exchanger 5 becomes a condenser and the outdoor heat exchanger 3 becomes a condenser.
acts as an evaporator.

そして、室外熱交換器3の近傍には室外ファン6が配設
され、室内熱交換器5の近傍には室内ファン7が配設さ
れている。
An outdoor fan 6 is provided near the outdoor heat exchanger 3, and an indoor fan 7 is provided near the indoor heat exchanger 5.

一方、10は商用交流電源で、その電源10にインバー
タ回路11が接続されている。このインバータ回路11
は、電源10の交流電圧を整流し、それをスイッチング
によって所定周波数の交流電圧に変換し、それを駆動電
力として圧縮機1の駆動モータに供給するものである。
On the other hand, 10 is a commercial AC power supply, and an inverter circuit 11 is connected to the power supply 10. This inverter circuit 11
This rectifies the AC voltage of the power supply 10, converts it into an AC voltage of a predetermined frequency by switching, and supplies the AC voltage to the drive motor of the compressor 1 as driving power.

また、20は空気調和機全般にわたる制御を行なう制御
部で、外部には四方弁2、室外ファン6、室内ファン7
、インバータ回路11、運転操作部21、室内温度セン
サ22、熱交温度センサ23が接続されている。熱交温
度センサ23は、室内熱交換器5に取付けられている。
Further, 20 is a control unit that performs overall control of the air conditioner, and external parts include a four-way valve 2, an outdoor fan 6, and an indoor fan 7.
, an inverter circuit 11, an operation section 21, an indoor temperature sensor 22, and a heat exchanger temperature sensor 23 are connected. The heat exchanger temperature sensor 23 is attached to the indoor heat exchanger 5.

ここで、制御部20の要部を第2図に示す。Here, the main parts of the control section 20 are shown in FIG.

31は運転周波数決定手段で、運転操作部21における
室内温度設定器21aの設定潤度Taと室内温度センサ
22の検知潤度TSとの差(空調負荷)に応じて目標運
転周波数を決定し、その決定内容に対応する運転周波数
指令を指令切替手段32に供給するようになっている。
Reference numeral 31 denotes an operating frequency determining means, which determines a target operating frequency according to the difference (air conditioning load) between the moisture level Ta set by the indoor temperature setting device 21a in the operating unit 21 and the detected moisture level TS of the indoor temperature sensor 22; An operating frequency command corresponding to the determined content is supplied to the command switching means 32.

33は凝縮器温度を設定するための凝縮器温度設定器で
、その設定値T1と熱交温度センサ23の検知温度TO
とが比較器34で比較されるようになっている。比較器
34は、検知温度TCが設定値T1に達すると一致信号
を発するもので、その一致信号は起動制御手段35に供
給されるようになっている。
33 is a condenser temperature setting device for setting the condenser temperature, and the set value T1 and the detected temperature TO of the heat exchanger temperature sensor 23 are set.
are compared by a comparator 34. The comparator 34 emits a coincidence signal when the detected temperature TC reaches a set value T1, and the coincidence signal is supplied to the activation control means 35.

起動制御手段35は、起動信号または除霜終了信号に応
答して一定時間ごとに異なる運転周波数指令A、Bを順
次発するもので、そのうち運転周波数指令Bについては
比較器34から一致信号が供給されるまで継続して出力
するようになっている。
The startup control means 35 sequentially issues different operating frequency commands A and B at regular intervals in response to the starting signal or the defrosting end signal, and for the operating frequency command B, a matching signal is supplied from the comparator 34. It is designed to continue outputting until the

指令切替手段32は、起動信号または除霜終了信号が供
給された後、起動制御手段35から供給される運転周波
数指令をインバータ駆動回路36に与えるが、その起動
制御手段35からの運転周波数指令の供給がなくなると
、今度は運転周波数決定手段31から供給される運転周
波数指令をインバータ回路36に与えるようになってい
る。
After the command switching means 32 is supplied with the starting signal or the defrosting end signal, the command switching means 32 gives the operating frequency command supplied from the starting control means 35 to the inverter drive circuit 36; When the supply runs out, the operating frequency command supplied from the operating frequency determining means 31 is then given to the inverter circuit 36.

インバータ回路36は、指令切替回路32からの運転周
波数指令に応じてインバータ回路11をスイッチング駆
動するものである。
The inverter circuit 36 switches and drives the inverter circuit 11 in accordance with the operating frequency command from the command switching circuit 32.

つぎに、上記のような構成において第3図、第4図、お
よび第5図を参照しながら動作を説明する。
Next, the operation of the above configuration will be explained with reference to FIGS. 3, 4, and 5.

運転操作部21で暖房運転を設定し、かつ所望の室内温
度Taを設定し、運転開始操作を行なう。
The heating operation is set using the operation control unit 21, a desired indoor temperature Ta is set, and an operation start operation is performed.

すると、制御部20が四方弁2を切換作動する。Then, the control section 20 switches the four-way valve 2.

さらに、制御部20において、起動信号が起動制御手段
35に入力され、起動制御手段35から運転周波数指令
Aが発せられる。この運転周波数指令Aは、商用電源周
波数よりも低い運転周波数F7に相当するもので、指令
切替手段32を介してインバータ駆動回路36に供給さ
れる。
Furthermore, in the control section 20, a start signal is input to the start control means 35, and the start control means 35 issues an operating frequency command A. This operating frequency command A corresponds to an operating frequency F7 lower than the commercial power supply frequency, and is supplied to the inverter drive circuit 36 via the command switching means 32.

こうして、圧縮機1が先ず運転周波数F7で起動する。Thus, the compressor 1 is first started at the operating frequency F7.

圧縮機1が起動すると、四方弁2が切換作動しているの
で暖房サイクルが形成され、室内熱交換器5が凝縮器、
室外熱交換器3が蒸発器として作用する。
When the compressor 1 starts, the four-way valve 2 is in switching operation, so a heating cycle is formed, and the indoor heat exchanger 5 becomes the condenser,
Outdoor heat exchanger 3 acts as an evaporator.

起動制御手段35は、運転周波数指令Aの発生と同時に
時間カウントtを開始しており、その時間カウントtが
一定値ti (たとえば1分間)に達すると、今度は運
転周波数指令Bを発する。この運転周波数指令Bは、商
用電源周波数よりも高く且つ最高運転周波数F n+a
xよりも低い運転周波数Fsに相当するもので、指令切
替手段32を介してインバータ駆動回路36に供給され
る。
The activation control means 35 starts a time count t at the same time as the operating frequency command A is generated, and when the time count t reaches a certain value ti (for example, one minute), it issues an operating frequency command B. This operating frequency command B is higher than the commercial power supply frequency and has a maximum operating frequency F n+a
It corresponds to an operating frequency Fs lower than x, and is supplied to the inverter drive circuit 36 via the command switching means 32.

こうして、起動から一定時間たとえば1分後に圧縮機1
の運転周波数FはF7からFBへと段階的に上昇する。
In this way, after a certain period of time, for example, 1 minute, the compressor 1
The operating frequency F increases stepwise from F7 to FB.

一方、凝縮器として作用する室内熱交換器5の温度が熱
交温度センサ23によって検知されており、その検知温
度TCが設定値T1に達しない状態では起動制御手段3
5が運転周波数指令Bを継続して発生し、運転周波数F
9の運転が継続するなお、運転周波数F9は、商用電源
周波数と最高運転周波数F maxの平均値以下が望ま
しい。
On the other hand, the temperature of the indoor heat exchanger 5 acting as a condenser is detected by the heat exchanger temperature sensor 23, and if the detected temperature TC does not reach the set value T1, the activation control means 3
5 continuously generates the operating frequency command B, and the operating frequency F
Note that it is desirable that the operating frequency F9 is equal to or lower than the average value of the commercial power supply frequency and the maximum operating frequency Fmax.

検知温度TCが設定値T1に達すると、起動制御手段3
5が運転周波数指令Bを発しなくなり、それに代わって
運転周波数決定手段31の運転周波数指令がインバータ
駆動回路36に供給される。
When the detected temperature TC reaches the set value T1, the activation control means 3
5 no longer issues the operating frequency command B, and instead, the operating frequency command of the operating frequency determining means 31 is supplied to the inverter drive circuit 36.

運転周波数決定手段31から発せられる運転周波数指令
は空調負荷に対応しており、運転開始時は一般に高負荷
状態であるから最高運転周波数Fm−axに相当する。
The operating frequency command issued from the operating frequency determining means 31 corresponds to the air conditioning load, and since the load is generally high at the start of operation, it corresponds to the maximum operating frequency Fm-ax.

こうして、圧縮機1の運転周波数FはFBから最高運転
周波数F maxへと上昇する。
In this way, the operating frequency F of the compressor 1 increases from FB to the maximum operating frequency F max.

このとき、制御部20は、運転周波数Fの上昇と同時に
室内ファン7を運転オンする。
At this time, the control unit 20 turns on the indoor fan 7 at the same time as the operating frequency F increases.

このように、運転開始時、冷媒寝込みなどの影響で凝縮
器湿度TCがまだ設定値T1に達しない不安定運転では
運転周波数Fの上昇を最高運転周波数FIIla×より
も低い所定値に抑え、凝縮器温度TOが設定値T1に達
する安定運転つまり冷凍サイクルの高圧側と低圧側との
間に」−分な圧力差が生じた状態において運転周波数F
の上昇を最高運転周波数F maxまで許容することに
より、圧縮機1の潤滑オイルの吐出量を少なくすること
ができ、よって油面切れを生じることなく、暖房運転を
開始することができる。さらに、圧縮機1への液バツク
を防ぐことができる。
In this way, at the start of operation, in unstable operation where the condenser humidity TC has not yet reached the set value T1 due to refrigerant stagnation, the increase in the operating frequency F is suppressed to a predetermined value lower than the maximum operating frequency FIIla×, and the condensation During stable operation in which the chamber temperature TO reaches the set value T1, that is, in a state where a pressure difference of 10-minutes occurs between the high-pressure side and the low-pressure side of the refrigeration cycle, the operating frequency F
By allowing the increase in the maximum operating frequency F max to the maximum operating frequency F max, the amount of lubricating oil discharged from the compressor 1 can be reduced, and therefore heating operation can be started without running out of oil level. Furthermore, liquid backflow to the compressor 1 can be prevented.

したがって、圧縮機1の寿命向上が図れる。Therefore, the life of the compressor 1 can be extended.

特に、油面切れや液バツクを生じないので、圧縮機1の
効率のよい起動を行なうことができ、結果的に暖房能力
の立上がりが良好となる。しかも、運転周波数Fの上昇
を抑えている間は室内ファン7の運転をオフしているの
で、高圧側圧力の上昇が速く、よって安定運転に至るま
でに要する時間を短縮することができ、立上がり特性の
向上に大きく貢献することができる。
In particular, since there is no oil level shortage or liquid back up, the compressor 1 can be started efficiently, resulting in a good start-up of the heating capacity. Moreover, since the operation of the indoor fan 7 is turned off while the increase in the operating frequency F is suppressed, the pressure on the high pressure side increases quickly, and the time required to reach stable operation can be shortened. It can greatly contribute to improving the characteristics.

ところで、暖房運転が進むと、蒸発器として作用してい
る室外熱交換器3の表面に徐々に霜が付き、そのままで
は暖房能力の低下となってしまう。
By the way, as the heating operation progresses, frost gradually forms on the surface of the outdoor heat exchanger 3, which acts as an evaporator, and if left as it is, the heating capacity will decrease.

しかして、制御部20は、定期的または必要に応じて四
方弁2を復帰作動し、暖房サイクルを除霜サイクル(冷
房サイクルと同じ)に切換える。
Thus, the control unit 20 periodically or as needed returns the four-way valve 2 and switches the heating cycle to the defrosting cycle (same as the cooling cycle).

つまり、高温冷媒の熱で室外熱交換器3の除霜を行なう
That is, the outdoor heat exchanger 3 is defrosted using the heat of the high-temperature refrigerant.

この除雪運転時、制御部20は運転周波数Fを除霜用運
転周波数F defに設定する。さらに、除霜運転中は
室内ファン7の運転をオフし、室内に冷風が吹出される
のを防止する。
During this snow removal operation, the control unit 20 sets the operating frequency F to the defrosting operating frequency F def. Furthermore, during the defrosting operation, the operation of the indoor fan 7 is turned off to prevent cold air from being blown into the room.

その後、制御部20は、四方弁2を切換作動し、除霜運
転を終了して暖房運転に復帰する。このとき、上述した
運転開始時と同様に運転周波数Fを先ずF7に設定し、
1分後にFeに設定し、その状態を凝縮器温度TCが設
定値T1に達するまで継続する。そして、凝縮器温度T
Cが設定値T1に達すると、運転周波数FはFeから最
高運転周波数F laXへと上昇する。
Thereafter, the control unit 20 switches the four-way valve 2, ends the defrosting operation, and returns to the heating operation. At this time, the operating frequency F is first set to F7 in the same way as at the start of operation described above,
After one minute, it is set to Fe, and this state is continued until the condenser temperature TC reaches the set value T1. And the condenser temperature T
When C reaches the set value T1, the operating frequency F increases from Fe to the highest operating frequency F laX.

このとき、制御部20は、運転周波数Fの上昇と同時に
室内ファン7を運転オンする。
At this time, the control unit 20 turns on the indoor fan 7 at the same time as the operating frequency F increases.

このように、除霜運転終了後の暖房復帰時においても、
凝縮器温度Tcがまだ設定値T1に達しない不安定運転
では運転周波数Fの上昇を最高運転周波数F 1lla
Xよりも低い所定値に抑え、凝縮器温度TOが設定値T
1に達する安定運転において運転周波数Fの上昇を最高
運転周波数F I!laxまで許容することにより、圧
縮機1への液バツクを防ぐことができ、圧縮機1の寿命
向上となる。
In this way, even when returning to heating after defrosting operation,
In unstable operation where the condenser temperature Tc has not yet reached the set value T1, increase the operating frequency F to the maximum operating frequency F1lla
Keep the condenser temperature TO at a predetermined value lower than X, and keep the condenser temperature TO at the set value T.
The increase in operating frequency F during stable operation reaching 1 is the highest operating frequency F I! By allowing up to 100 mL of liquid, liquid backflow to the compressor 1 can be prevented, and the life of the compressor 1 can be extended.

特に、液バツクを生じないので、圧縮機1の効率のよい
運転を行なうことができ、暖房能力の立上がりが良好と
なる。しかも、運転周波数Fの上昇を抑えている間は室
内ファン7の運転をオフしているので、高圧側圧力の上
昇が速く、よって安定運転に至るまでに要する時間を短
縮することができ、立上がり特性の向上に大きく貢献す
ることができる。
In particular, since no liquid back up occurs, the compressor 1 can be operated efficiently, and the heating capacity can be started up easily. Moreover, since the operation of the indoor fan 7 is turned off while the increase in the operating frequency F is suppressed, the pressure on the high pressure side increases quickly, and the time required to reach stable operation can be shortened. It can greatly contribute to improving the characteristics.

なお、上記実施例では、冷凍サイクルが安定運転状態に
あるかどうかを凝縮器温度TCと設定値T1どの比較に
よって判断したが、凝縮器温度Tcの変化率によって判
断するようにしてもよい。
In the above embodiment, whether or not the refrigeration cycle is in a stable operating state is determined by comparing the condenser temperature TC and the set value T1, but the determination may be made based on the rate of change in the condenser temperature Tc.

この場合、第6図に示すように、凝縮器温度TCの変化
率を算出する変化率算出手段37が設けられるとともに
、凝縮器温度設定器33に代わって変化率設定器38が
設けられ、さらにタイマ39が設けられる。
In this case, as shown in FIG. 6, a change rate calculating means 37 for calculating the rate of change of the condenser temperature TC is provided, a change rate setting device 38 is provided in place of the condenser temperature setting device 33, and a change rate setting device 38 is provided instead of the condenser temperature setting device 33. A timer 39 is provided.

すなわち、運転開始時、または除霜運転終了後、タイマ
39の計時に基づく一定時間において凝縮器温度TCの
変化率とそれに対する設定値とが比較器34で比較され
る。そして、変化率が設定値に達するまでは運転周波数
Fの上昇がFeに抑えられ、変化率が設定値に達したと
ころで運転周波数FがFeから最高運転周波数F !l
1aXへと上昇する。
That is, at the start of the operation or after the end of the defrosting operation, the rate of change of the condenser temperature TC and the corresponding set value are compared by the comparator 34 for a certain period of time based on the time measured by the timer 39. The increase in operating frequency F is suppressed to Fe until the rate of change reaches the set value, and when the rate of change reaches the set value, the operating frequency F changes from Fe to the highest operating frequency F! l
It rises to 1aX.

このように、凝縮器温度TCの変化率を用いれば、冷凍
サイクルが安定運転状態にあるかどうかを的確に判断す
ることができ、液バツク保護の確実性が大幅に向上する
という利点がある。
In this way, by using the rate of change in the condenser temperature TC, it is possible to accurately judge whether the refrigeration cycle is in a stable operating state, and there is an advantage that the reliability of liquid bag protection is greatly improved.

また、上記実施例では、暖房運転についてのみ説明した
が、冷房運転の運転開始時においても同様の制御が行な
われる。
Further, in the above embodiment, only the heating operation has been described, but the same control is performed at the start of the cooling operation.

その他、この発明は上記実施例に限定されるものではな
く、要旨を変えない範囲で種々変形実施可能である。
In addition, the present invention is not limited to the above-mentioned embodiments, and various modifications can be made without changing the gist.

[発明の効果] 以上述べたようにこの発明によれば、運転開始時または
除霜運転終了後、圧縮機の運転周波数の上昇を段階的に
行なう手段と、この運転周波数の上昇を凝縮器の温度ま
たはその変化率が設定値に達するまで所定値に抑える手
段とを設けたので、圧縮機における油面切れや圧縮機へ
の液バツクを防ぐことができ、これにより圧縮機の寿命
向上が図れるとともに、効率のよい運転を可能とする空
気調和機を提供できる。
[Effects of the Invention] As described above, according to the present invention, there is provided a means for increasing the operating frequency of the compressor in stages at the start of operation or after the end of defrosting operation, and a means for increasing the operating frequency of the condenser. Since a means is provided to keep the temperature or its rate of change at a predetermined value until it reaches the set value, it is possible to prevent the oil level in the compressor from running out and liquid back into the compressor, thereby extending the life of the compressor. At the same time, it is possible to provide an air conditioner that enables efficient operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例における冷凍サイクルおよ
び制御回路の構成を示す図、第2図は同実施例における
制御部の要部の構成を示す図、第3図は同実施例の動作
を説明するためのフローヂャート、第4図および第5図
はそれぞれ同実施例の動作を説明するための図、第6図
は同実施例における制御部の変形例の構成を示す図、第
7図は従来の空気調和機の動作を説明するための図であ
る。 1・・・圧縮機、2・・・四方弁、3・・・室外熱交換
器、4・・・膨張弁(減圧器)、5・・・室内熱交換器
、11・・・インバータ回路、20・・・制御部。 出願人代理人 弁理士 鈴江武彦 第4図 時間(妙)− 第5図
FIG. 1 is a diagram showing the configuration of a refrigeration cycle and a control circuit in one embodiment of the present invention, FIG. 2 is a diagram showing the configuration of the main part of the control section in the same embodiment, and FIG. 3 is a diagram showing the operation of the same embodiment. FIGS. 4 and 5 are flowcharts for explaining the operation of the same embodiment, FIG. 6 is a diagram showing the configuration of a modification of the control section in the same embodiment, and FIG. is a diagram for explaining the operation of a conventional air conditioner. DESCRIPTION OF SYMBOLS 1... Compressor, 2... Four-way valve, 3... Outdoor heat exchanger, 4... Expansion valve (pressure reducer), 5... Indoor heat exchanger, 11... Inverter circuit, 20...control unit. Applicant's Representative Patent Attorney Takehiko Suzue Figure 4 Time (Mysterious) - Figure 5

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、凝縮器、減圧器、蒸発器などを順次連通してな
る冷凍サイクルを備え、空調負荷に応じて前記圧縮機の
運転周波数を制御する空気調和機において、運転開始時
または除霜運転終了後、前記圧縮機の運転周波数の上昇
を段階的に行なう手段と、この運転周波数の上昇を前記
凝縮器の温度またはその変化率が設定値に達するまで所
定値に抑える手段とを具備したことを特徴とする空気調
和機。
In an air conditioner that is equipped with a refrigeration cycle in which a compressor, a condenser, a pressure reducer, an evaporator, etc. are connected in sequence, and that controls the operating frequency of the compressor according to the air conditioning load, at the start of operation or at the end of defrosting operation. and means for increasing the operating frequency of the compressor in stages; and means for suppressing the increase in the operating frequency to a predetermined value until the temperature of the condenser or the rate of change thereof reaches a set value. Characteristic air conditioner.
JP62263966A 1987-10-21 1987-10-21 Air conditioner Pending JPH01107056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62263966A JPH01107056A (en) 1987-10-21 1987-10-21 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62263966A JPH01107056A (en) 1987-10-21 1987-10-21 Air conditioner

Publications (1)

Publication Number Publication Date
JPH01107056A true JPH01107056A (en) 1989-04-24

Family

ID=17396704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62263966A Pending JPH01107056A (en) 1987-10-21 1987-10-21 Air conditioner

Country Status (1)

Country Link
JP (1) JPH01107056A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6807819B2 (en) 2002-07-01 2004-10-26 Denso Corporation Vapor compression refrigerant cycle
JP2007040555A (en) * 2005-08-01 2007-02-15 Matsushita Electric Ind Co Ltd Heat pump type water heater
JP2014119147A (en) * 2012-12-14 2014-06-30 Sharp Corp Air conditioner
CN104487777A (en) * 2012-07-13 2015-04-01 株式会社日立制作所 Heat source system
JP2016001069A (en) * 2014-06-11 2016-01-07 富士電機株式会社 Automatic vending machine
CN106642771A (en) * 2016-11-29 2017-05-10 珠海格力电器股份有限公司 Oil return control method and device for refrigeration house multi-connected unit and refrigeration house multi-connected unit
CN107250679A (en) * 2015-02-18 2017-10-13 三菱电机株式会社 Conditioner
CN107367095A (en) * 2017-07-28 2017-11-21 广东美芝制冷设备有限公司 Compressor horsepower module temperature control method and control system
CN107560255A (en) * 2017-08-23 2018-01-09 珠海格力电器股份有限公司 Heat pump unit and control method thereof
CN108759205A (en) * 2018-06-08 2018-11-06 广东美的暖通设备有限公司 The method for controlling oil return of air-conditioning system and air-conditioning system, device
WO2020111200A1 (en) * 2018-11-29 2020-06-04 東芝キヤリア株式会社 Air conditioning device
WO2022264199A1 (en) * 2021-06-14 2022-12-22 三菱電機株式会社 Temperature adjusting device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6807819B2 (en) 2002-07-01 2004-10-26 Denso Corporation Vapor compression refrigerant cycle
JP2007040555A (en) * 2005-08-01 2007-02-15 Matsushita Electric Ind Co Ltd Heat pump type water heater
CN104487777A (en) * 2012-07-13 2015-04-01 株式会社日立制作所 Heat source system
JP2014119147A (en) * 2012-12-14 2014-06-30 Sharp Corp Air conditioner
JP2016001069A (en) * 2014-06-11 2016-01-07 富士電機株式会社 Automatic vending machine
CN107250679A (en) * 2015-02-18 2017-10-13 三菱电机株式会社 Conditioner
US20170363332A1 (en) * 2015-02-18 2017-12-21 Mitsubishi Electric Corporation Air-conditioning apparatus
CN106642771A (en) * 2016-11-29 2017-05-10 珠海格力电器股份有限公司 Oil return control method and device for refrigeration house multi-connected unit and refrigeration house multi-connected unit
CN107367095B (en) * 2017-07-28 2020-08-04 广东美芝制冷设备有限公司 Compressor power module temperature control method and control system
CN107367095A (en) * 2017-07-28 2017-11-21 广东美芝制冷设备有限公司 Compressor horsepower module temperature control method and control system
CN107560255A (en) * 2017-08-23 2018-01-09 珠海格力电器股份有限公司 Heat pump unit and control method thereof
CN107560255B (en) * 2017-08-23 2018-11-30 珠海格力电器股份有限公司 Heat pump unit and control method thereof
CN108759205A (en) * 2018-06-08 2018-11-06 广东美的暖通设备有限公司 The method for controlling oil return of air-conditioning system and air-conditioning system, device
WO2019233034A1 (en) * 2018-06-08 2019-12-12 广东美的暖通设备有限公司 Air conditioning system and oil retrieval control method and device therefor
WO2020111200A1 (en) * 2018-11-29 2020-06-04 東芝キヤリア株式会社 Air conditioning device
CN113167518A (en) * 2018-11-29 2021-07-23 东芝开利株式会社 Air conditioner
JPWO2020111200A1 (en) * 2018-11-29 2021-09-27 東芝キヤリア株式会社 Air conditioner
EP3889522A4 (en) * 2018-11-29 2022-08-10 Toshiba Carrier Corporation Air conditioning device
CN113167518B (en) * 2018-11-29 2022-12-27 东芝开利株式会社 Air conditioner
WO2022264199A1 (en) * 2021-06-14 2022-12-22 三菱電機株式会社 Temperature adjusting device
GB2621800A (en) * 2021-06-14 2024-02-21 Mitsubishi Electric Corp Temperature adjusting device

Similar Documents

Publication Publication Date Title
KR101739407B1 (en) Method for controlling of air conditioner
JPH01107056A (en) Air conditioner
KR101954151B1 (en) Air conditioner and Method for controlling it
JPH0136040Y2 (en)
KR100239576B1 (en) Dry operation control apparatus and method for air conditioner
JP3609286B2 (en) Air conditioning equipment
JP6022291B2 (en) Air conditioner
CN112178894B (en) Control method, air conditioner, and computer-readable storage medium
CN111981641A (en) Air conditioner defrosting control method and air conditioner system
JP4906255B2 (en) refrigerator
JP2001235211A (en) Air conditioner
JP4156097B2 (en) Air conditioner
KR100367583B1 (en) Operation frequency control method for inverter air conditioner
JPH11132605A (en) Air conditioner
JP7315059B1 (en) air conditioner
JP2000161752A (en) Air conditioner
JP3169485B2 (en) Air conditioner
JP5761066B2 (en) Air conditioner
JP2006207983A (en) Air conditioner
JP2001280714A (en) Refrigerating system
JPH0623879Y2 (en) Air conditioner
JP2001193993A (en) Refrigerating cycle system
JPH01277161A (en) Airconditioner
JPH02150664A (en) Air conditioner
JPH01312345A (en) Air conditioner