JPH11132605A - Air conditioner - Google Patents
Air conditionerInfo
- Publication number
- JPH11132605A JPH11132605A JP9297120A JP29712097A JPH11132605A JP H11132605 A JPH11132605 A JP H11132605A JP 9297120 A JP9297120 A JP 9297120A JP 29712097 A JP29712097 A JP 29712097A JP H11132605 A JPH11132605 A JP H11132605A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- heat exchanger
- detected
- teo
- correction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Air Conditioning Control Device (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、暖房時の室外熱
交換器に対する除霜運転の機能を備えた空気調和機に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner having a function of defrosting an outdoor heat exchanger during heating.
【0002】[0002]
【従来の技術】圧縮機、四方弁、室内熱交換器、減圧
器、室外熱交換器を順次に配管接続して冷媒を循環させ
るヒートポンプ式の冷凍サイクルを備え、室内熱交換器
を凝縮器、室外熱交換器を蒸発器として機能させること
により暖房運転を行なう空気調和機がある。2. Description of the Related Art A heat pump refrigeration cycle for circulating a refrigerant by sequentially connecting a compressor, a four-way valve, an indoor heat exchanger, a decompressor, and an outdoor heat exchanger with a pipe is provided. 2. Description of the Related Art There is an air conditioner that performs a heating operation by making an outdoor heat exchanger function as an evaporator.
【0003】この空気調和機では、暖房時、室外熱交換
器(蒸発器)の表面に徐々に霜が付着し、そのままでは
室外熱交換器における熱交換量が減少して暖房能力の低
下を招いてしまう。[0003] In this air conditioner, during heating, frost gradually adheres to the surface of the outdoor heat exchanger (evaporator), and as it is, the amount of heat exchange in the outdoor heat exchanger decreases, leading to a decrease in heating capacity. I will.
【0004】対策として、室外熱交換器の温度Teを検
知し、その検知温度Teから室外熱交換器の着霜量を判
断し、除霜条件が満足される場合に冷媒の流れを反転し
て圧縮機の吐出冷媒(高温冷媒)をそのまま室外熱交換
器に流入させ、高温冷媒の熱によって霜を除去する除霜
運転(リバース除霜)を行なう。As a countermeasure, the temperature Te of the outdoor heat exchanger is detected, the amount of frost formed in the outdoor heat exchanger is determined from the detected temperature Te, and the flow of the refrigerant is reversed when the defrosting condition is satisfied. The refrigerant discharged from the compressor (high-temperature refrigerant) flows into the outdoor heat exchanger as it is, and a defrosting operation (reverse defrosting) for removing frost by the heat of the high-temperature refrigerant is performed.
【0005】検知温度Teに基づく除霜条件の判別手段
として、温度低下量検出方式がある。これは、圧縮機の
起動または前回の除霜運転終了からta時間後の所定期
間Δtにおいて検知温度Teの最低値Teoを検出して
おき、所定期間Δtの経過後、最低値Teoと熱交換器
温度Teとの差ΔTe(=Teo−Te)が設定値以上
の状態を所定時間以上継続したとき、または検知温度T
eが所定値以下の状態を所定時間以上継続したとき、除
霜運転を開始する。[0005] As a means for determining the defrosting condition based on the detected temperature Te, there is a temperature drop detection method. This is because the minimum value Teo of the detected temperature Te is detected in a predetermined period Δt after a lapse of ta time from the start of the compressor or the end of the previous defrosting operation, and after the predetermined period Δt elapses, the minimum value Teo and the heat exchanger are determined. When the state where the difference ΔTe (= Teo−Te) from the temperature Te is equal to or more than the set value is continued for a predetermined time or longer, or when the detected temperature T
When the state where e is equal to or less than the predetermined value is continued for a predetermined time or more, the defrosting operation is started.
【0006】[0006]
【発明が解決しようとする課題】運転停止時に室外熱交
換器に液冷媒が溜まり込んだり(冷媒寝込み)、冷凍サ
イクルの配管が長い場合など、圧縮機が起動して暖房が
始まっても、あるいは除霜運転(リバース除霜)が終了
して暖房に復帰しても、室外熱交換器の温度Teの立上
がりに時間がかかることがある。この場合、起動後に検
出される最低値Teoが必要以上に低い値となり、その
結果、除霜条件がなかなか成立せず、室外熱交換器の着
霜量が多くなって暖房能力に悪影響を及ぼしてしまう。When the refrigerant is accumulated in the outdoor heat exchanger when the operation is stopped (refrigerant stagnation), or when the piping of the refrigeration cycle is long, even if the compressor starts and heating starts, or Even when the defrosting operation (reverse defrosting) is completed and the operation returns to the heating, it may take time for the temperature Te of the outdoor heat exchanger to rise. In this case, the minimum value Teo detected after the start-up becomes an unnecessarily low value, and as a result, the defrosting condition is not easily satisfied, the amount of frost formed on the outdoor heat exchanger increases, and the heating capacity is adversely affected. I will.
【0007】また、室内温度調節のための設定室内温度
変更があったり、室内風量調節のための室内ファン速度
変更があると、冷凍サイクルの状態が大きく変動する。
このような状況の下では、室外熱交換器の着霜量がまだ
少ないのに室外熱交換器の温度Teが過渡的に低下する
という現象が生じ、不要な除霜運転いわゆる空除霜に入
ってしまう。除霜運転(リバース除霜)は暖房運転を中
断するものであるから、不要な除霜運転の実行は暖房効
率の低下を招いてしまう。[0007] Further, if there is a change in the set indoor temperature for adjusting the indoor temperature or a change in the speed of the indoor fan for adjusting the indoor air flow, the state of the refrigeration cycle greatly changes.
Under such a situation, a phenomenon occurs in which the temperature Te of the outdoor heat exchanger drops transiently even though the amount of frost formed in the outdoor heat exchanger is still small, and unnecessary defrosting operation starts, that is, so-called empty defrosting. Would. Since the defrosting operation (reverse defrosting) interrupts the heating operation, unnecessary execution of the defrosting operation causes a decrease in the heating efficiency.
【0008】この発明は上記の事情を考慮したもので、
その目的とするところは、暖房開始時や暖房復帰時に室
外熱交換器の温度Teの立上がりが遅い場合でも、また
冷凍サイクル変動が大きい場合でも、室外熱交換器の着
霜量を的確に捕らえて最適なタイミングで除霜を行なう
ことができ、これにより暖房能力および暖房効率の低下
を防ぐことができる信頼性にすぐれた空気調和機を提供
することにある。[0008] The present invention has been made in view of the above circumstances,
The purpose is to accurately capture the amount of frost formed in the outdoor heat exchanger even when the temperature of the outdoor heat exchanger Te rises slowly at the time of starting heating or returning to heating, or even when the refrigeration cycle varies greatly. An object of the present invention is to provide an air conditioner that can perform defrosting at an optimal timing, thereby preventing a decrease in heating capacity and heating efficiency, and having excellent reliability.
【0009】[0009]
【課題を解決するための手段】第1の発明の空気調和機
は、圧縮機、室内熱交換器、減圧器、室外熱交換器を接
続して冷媒を循環させる冷凍サイクルを備え、室内熱交
換器を凝縮器、室外熱交換器を蒸発器として機能させる
暖房運転が可能な空気調和機において、上記室外熱交換
器の温度Teを検知する第1温度センサと、上記圧縮機
に吸込まれる冷媒の温度Tsを検知する第2温度センサ
と、暖房時、上記第1温度センサの検知温度Teおよび
上記第2温度センサの検知温度Tsに応じて上記室外熱
交換器に対する除霜運転の実行を制御する制御手段と、
を備える。An air conditioner according to a first aspect of the present invention includes a refrigeration cycle for connecting a compressor, an indoor heat exchanger, a decompressor, and an outdoor heat exchanger to circulate a refrigerant. A first temperature sensor for detecting a temperature Te of the outdoor heat exchanger, and a refrigerant sucked into the compressor in an air conditioner capable of performing a heating operation in which a heat exchanger functions as a condenser and an outdoor heat exchanger functions as an evaporator. A second temperature sensor for detecting the temperature Ts of the outdoor heat exchanger, and controlling the execution of the defrosting operation on the outdoor heat exchanger according to the detected temperature Te of the first temperature sensor and the detected temperature Ts of the second temperature sensor during heating. Control means for performing
Is provided.
【0010】第2の発明の空気調和機は、第1の発明の
制御手段が、検知温度Teを検知温度Tsおよび補正係
数Kにより補正して補正温度TEを求め、圧縮機の起動
または前回の除霜運転終了からta時間後の所定期間Δ
tにおいて補正温度TEの最低値TEoを検出し、圧縮
機の起動または前回の除霜運転終了からtb時間[>
(ta+Δt)]後、最低値TEoと補正温度TEとの
差ΔTE(=TEo−TE)が設定値以上の状態を所定
時間以上継続したとき、または補正温度TEが所定値以
下の状態を所定時間以上継続したとき、除霜運転を開始
する。In the air conditioner of the second invention, the control means of the first invention corrects the detected temperature Te by using the detected temperature Ts and the correction coefficient K to obtain a corrected temperature TE, and starts the compressor or the previous time. A predetermined period Δta time after the end of the defrosting operation Δ
At t, the lowest value TEo of the correction temperature TE is detected, and tb time [>] from the start of the compressor or the end of the previous defrosting operation
(Ta + Δt)], when the difference ΔTE (= TEo−TE) between the minimum value TEo and the correction temperature TE is equal to or higher than the set value for a predetermined time or when the correction temperature TE is equal to or lower than the predetermined value for a predetermined time. When the above is continued, the defrosting operation is started.
【0011】第3の発明の空気調和機は、第1の発明の
制御手段が、検知温度Teを検知温度Tsおよび補正係
数Kにより補正して補正温度TEを求めるとともに、圧
縮機の起動または前回の除霜運転終了からta時間後の
所定期間Δtにおいて検知温度Teの最低値Teoを検
出し、この最低値Teoを検知温度Tsおよび補正係数
Kにより補正して最低値TEoを求め、圧縮機の起動ま
たは前回の除霜運転終了からtb時間[>(ta+Δ
t)]後、最低値TEoと補正温度TEとの差ΔTE
(=TEo−TE)が設定値以上の状態を所定時間以上
継続したとき、または補正温度TEが所定値以下の状態
を所定時間以上継続したとき、除霜運転を開始する。In the air conditioner of the third invention, the control means of the first invention corrects the detected temperature Te using the detected temperature Ts and the correction coefficient K to obtain the corrected temperature TE, and also starts the compressor or determines whether the correction temperature TE has been reached. In the predetermined period Δt after the lapse of ta time from the end of the defrosting operation, the minimum value Teo of the detected temperature Te is detected, and the minimum value Teo is corrected by the detection temperature Ts and the correction coefficient K to obtain the minimum value TEo. Tb time from the start or the end of the previous defrosting operation [> (ta + Δ
t)], and then the difference ΔTE between the minimum value TEo and the correction temperature TE
The defrosting operation is started when the state where (= TEo-TE) is equal to or higher than the set value has been continued for a predetermined time or longer, or when the state where the correction temperature TE is equal to or lower than the predetermined value has been continued for a predetermined time or longer.
【0012】第4の発明の空気調和機は、第2または第
3の発明の制御手段が、室内温度調節のための設定室内
温度変更があったとき、または室内風量調節のための室
内ファン速度変更があったとき、その都度、最低値TE
oを更新する。According to a fourth aspect of the present invention, there is provided an air conditioner, wherein the control means according to the second or third aspect of the present invention is arranged such that when the set indoor temperature for indoor temperature adjustment is changed, or when the indoor fan speed for indoor air volume adjustment is changed. Whenever there is a change, the lowest value TE
Update o.
【0013】第5の発明の空気調和機は、圧縮機、室内
熱交換器、減圧器、室外熱交換器を接続して冷媒を循環
させる冷凍サイクルを備え、室内熱交換器を凝縮器、室
外熱交換器を蒸発器として機能させる暖房運転が可能な
空気調和機において、上記室外熱交換器の温度Teを検
知する第1温度センサと、上記圧縮機に吸込まれる冷媒
の温度Tsを検知する第2温度センサと、暖房時、上記
第1温度センサの検知温度Teと上記第2温度センサの
検知温度Tsとの差(=Te−Ts)を過熱度SHとし
て求め、この過熱度SHと予め定めている目標過熱度S
Hoとの偏差ΔSHが零となるよう上記室外熱交換器へ
の冷媒流量を制御する第1制御手段と、暖房時、上記第
1温度センサの検知温度Teおよび上記偏差ΔSHに応
じて上記室外熱交換器に対する除霜運転の実行を制御す
る第2制御手段と、を備えている。An air conditioner according to a fifth aspect of the present invention includes a refrigeration cycle for connecting a compressor, an indoor heat exchanger, a decompressor, and an outdoor heat exchanger to circulate a refrigerant, wherein the indoor heat exchanger includes a condenser and an outdoor heat exchanger. In an air conditioner capable of performing a heating operation in which a heat exchanger functions as an evaporator, a first temperature sensor for detecting a temperature Te of the outdoor heat exchanger and a temperature Ts of a refrigerant sucked into the compressor are detected. At the time of heating with the second temperature sensor, the difference (= Te−Ts) between the detected temperature Te of the first temperature sensor and the detected temperature Ts of the second temperature sensor is determined as the degree of superheat SH, and this degree of superheat SH is determined in advance. Set target superheat degree S
First control means for controlling the flow rate of refrigerant to the outdoor heat exchanger such that the deviation ΔSH from Ho becomes zero, and the outdoor heat exchanger according to the detected temperature Te of the first temperature sensor and the deviation ΔSH during heating. Second control means for controlling the execution of the defrosting operation on the exchanger.
【0014】第6の発明の空気調和機は、第5の発明の
第2制御手段が、検知温度Teを偏差ΔSHおよび補正
係数Kにより補正して補正温度TEを求め、圧縮機の起
動または前回の除霜運転終了からta時間後の所定期間
Δtにおいて補正温度TEの最低値TEoを検出し、圧
縮機の起動または前回の除霜運転終了からtb時間[>
(ta+Δt)]後、最低値TEoと補正温度TEとの
差ΔTE(=TEo−TE)が設定値以上の状態を所定
時間以上継続したとき、または補正温度TEが所定値以
下の状態を所定時間以上継続したとき、除霜運転を開始
する。In an air conditioner according to a sixth aspect of the present invention, the second control means of the fifth aspect of the present invention corrects the detected temperature Te by using the deviation ΔSH and the correction coefficient K to obtain the corrected temperature TE, and starts the compressor or the previous time. In the predetermined period Δt after the end of the defrosting operation of the present embodiment, the minimum value TEo of the correction temperature TE is detected during the predetermined period Δt, and the start of the compressor or the end of the previous defrosting operation for tb time [>]
(Ta + Δt)], when the difference ΔTE (= TEo−TE) between the minimum value TEo and the correction temperature TE is equal to or higher than the set value for a predetermined time or when the correction temperature TE is equal to or lower than the predetermined value for a predetermined time. When the above is continued, the defrosting operation is started.
【0015】第7の発明の空気調和機は、第5の発明の
第2制御手段が、検知温度Teを偏差ΔSHおよび補正
係数Kにより補正して補正温度TEを求めるとともに、
圧縮機の起動または前回の除霜運転終了からta時間後
の所定期間Δtにおいて検知温度Teの最低値Teoを
検出し、この最低値Teoを偏差ΔSHおよび補正係数
Kにより補正して最低値TEoを求め、圧縮機の起動ま
たは前回の除霜運転終了からtb時間[>(ta+Δ
t)]後、最低値TEoと補正温度TEとの差ΔTE
(=TEo−TE)が設定値以上の状態を所定時間以上
継続したとき、または補正温度TEが所定値以下の状態
を所定時間以上継続したとき、除霜運転を開始する。According to an air conditioner of a seventh aspect, the second control means of the fifth aspect corrects the detected temperature Te by using the deviation ΔSH and the correction coefficient K to obtain a correction temperature TE.
The minimum value Teo of the detected temperature Te is detected during a predetermined period Δt after the start of the compressor or the end of the previous defrosting operation after ta time, and the minimum value Teo is corrected by the deviation ΔSH and the correction coefficient K to set the minimum value TEo. Tb time [> (ta + Δ) from the start of the compressor or the end of the previous defrosting operation.
t)], and then the difference ΔTE between the minimum value TEo and the correction temperature TE
The defrosting operation is started when the state where (= TEo-TE) is equal to or higher than the set value has been continued for a predetermined time or longer, or when the state where the correction temperature TE is equal to or lower than the predetermined value has been continued for a predetermined time or longer.
【0016】第8の発明の空気調和機は、第6または第
7の発明の制御手段が、室内温度調節のための設定室内
温度変更があったとき、または室内風量調節のための室
内ファン速度変更があったとき、その都度、最低値TE
oを更新する。An air conditioner according to an eighth aspect of the present invention is the air conditioner according to the sixth or seventh aspect, wherein the control means according to the sixth or seventh aspect of the present invention is adapted such that when the set indoor temperature for indoor temperature adjustment is changed, or when the indoor fan speed for indoor air volume adjustment is changed. Whenever there is a change, the lowest value TE
Update o.
【0017】[0017]
(1)以下、この発明の一実施例について図面を参照し
て説明する。図2に示すように、室外ユニットAおよび
室内ユニットBにヒートポンプ式冷凍サイクルが搭載さ
れる。(1) An embodiment of the present invention will be described below with reference to the drawings. As shown in FIG. 2, the outdoor unit A and the indoor unit B are equipped with a heat pump refrigeration cycle.
【0018】1は能力可変圧縮機で、その圧縮機1の吐
出口に四方弁2を介して室外熱交換器3が配管接続され
る。室外熱交換器3に減圧器であるところの電動膨張弁
4を介して室内熱交換器5が配管接続され、その室内熱
交換器5は四方弁2を介して圧縮機1の吸込口に配管接
続される。Reference numeral 1 denotes a variable capacity compressor. An outdoor heat exchanger 3 is connected to a discharge port of the compressor 1 via a four-way valve 2 by piping. An indoor heat exchanger 5 is connected to the outdoor heat exchanger 3 via a motorized expansion valve 4 which is a decompressor, and the indoor heat exchanger 5 is connected to a suction port of the compressor 1 via a four-way valve 2. Connected.
【0019】室外熱交換器3の近傍に室外ファン6、室
内熱交換器5の近傍に室内ファン7が設けられる。室外
熱交換器3に、その熱交換器温度Teを検知する熱交換
器温度センサ(第1温度センサ)11が取付けられる。
室内ファン7の吸込み風路に室内温度Taを検知する室
内温度センサ12が設けられる。四方弁2と圧縮機1の
吸込口との間の配管に、圧縮機1に吸込まれる冷媒の温
度Tsを検知する冷媒温度センサ(第2温度センサ)1
3が取付けられる。An outdoor fan 6 is provided near the outdoor heat exchanger 3 and an indoor fan 7 is provided near the indoor heat exchanger 5. A heat exchanger temperature sensor (first temperature sensor) 11 for detecting the heat exchanger temperature Te is attached to the outdoor heat exchanger 3.
An indoor temperature sensor 12 for detecting an indoor temperature Ta is provided in a suction air passage of the indoor fan 7. A refrigerant temperature sensor (second temperature sensor) 1 for detecting a temperature Ts of the refrigerant sucked into the compressor 1 in a pipe between the four-way valve 2 and a suction port of the compressor 1.
3 is attached.
【0020】制御回路を図1に示す。室内ユニットBの
室内制御部20が商用交流電源30に接続され、その室
内制御部20に電源ラインACLおよびシリアル信号ラ
インSLを介して室外ユニットAの室外制御部40が接
続される。FIG. 1 shows the control circuit. The indoor control unit 20 of the indoor unit B is connected to the commercial AC power supply 30, and the outdoor control unit 40 of the outdoor unit A is connected to the indoor control unit 20 via the power line ACL and the serial signal line SL.
【0021】室内制御部20に、受光部21、室内ファ
ンモータ7M、室内温度センサ12が接続される。受光
部21は、リモートコントロール装置(以下、リモコン
と略称する)22から送信される赤外線光を受光する。The indoor control unit 20 is connected to a light receiving unit 21, an indoor fan motor 7M, and an indoor temperature sensor 12. The light receiving unit 21 receives infrared light transmitted from a remote control device (hereinafter, simply referred to as a remote controller) 22.
【0022】室外制御部40に、四方弁2、電動膨張弁
4、室外ファンモータ6M、熱交換器温度センサ11、
冷媒温度センサ13、インバータ回路41が接続され
る。インバータ回路41は、電源ラインACLの電圧を
整流し、それを室外制御部40からの指令に応じた周波
数(およびレベル)の電圧に変換し、出力する。この出
力は圧縮機モータ1Mに駆動電力として供給される。The outdoor control unit 40 includes a four-way valve 2, an electric expansion valve 4, an outdoor fan motor 6M, a heat exchanger temperature sensor 11,
The refrigerant temperature sensor 13 and the inverter circuit 41 are connected. The inverter circuit 41 rectifies the voltage of the power supply line ACL, converts the rectified voltage into a voltage of a frequency (and level) according to a command from the outdoor control unit 40, and outputs the voltage. This output is supplied as drive power to the compressor motor 1M.
【0023】室内制御部20および室外制御部40は、
シリアル信号ラインSLを通して電源電圧同期のデータ
転送を行ないながら当該空気調和機を制御するもので、
次の[1]〜[6]の機能手段を備える。The indoor control unit 20 and the outdoor control unit 40
The air conditioner is controlled while performing data transfer synchronized with the power supply voltage through the serial signal line SL,
The following functional means [1] to [6] are provided.
【0024】[1]圧縮機1の吐出冷媒を図2の実線矢
印の方向に流して冷房サイクルを形成し、室外熱交換器
3を凝縮器、室内熱交換器5を蒸発器として機能させ、
冷房運転を実行する手段。[1] The refrigerant discharged from the compressor 1 flows in the direction of the solid arrows in FIG. 2 to form a cooling cycle, and the outdoor heat exchanger 3 functions as a condenser and the indoor heat exchanger 5 functions as an evaporator.
Means for performing a cooling operation.
【0025】[2]圧縮機1の吐出冷媒を四方弁2の切
換により図2の破線矢印の方向に流して暖房サイクルを
形成し、室内熱交換器5を凝縮器、室外熱交換器3を蒸
発器として機能させ、暖房運転を実行する手段。[2] The refrigerant discharged from the compressor 1 flows in the direction of the dashed arrow in FIG. 2 by switching the four-way valve 2 to form a heating cycle, and the indoor heat exchanger 5 is used as a condenser, and the outdoor heat exchanger 3 is used as a heater. A means for performing a heating operation by functioning as an evaporator.
【0026】[3]冷房時および暖房時、室内温度セン
サ12の検知温度Taとリモコン設定温度Tsとの差Δ
Tを空調負荷として求め、その差ΔTに応じてインバー
タ回路41の出力周波数(圧縮機1の運転周波数)Fを
制御する制御手段。[3] The difference Δ between the detected temperature Ta of the indoor temperature sensor 12 and the set temperature Ts of the remote controller during cooling and heating.
Control means for determining T as the air conditioning load and controlling the output frequency (operating frequency of the compressor 1) F of the inverter circuit 41 in accordance with the difference ΔT.
【0027】[4]暖房時、熱交換器温度センサ11の
検知温度Teと冷媒温度センサ13の検知温度Tsとの
差(=Te−Ts)を過熱度(スーパーヒート量)SH
として求め、この過熱度SHと予め定めている目標過熱
度SHoとの偏差ΔSHが零となるよう電動膨張弁4の
開度を調節して室外熱交換器(蒸発器)3への冷媒流量
を制御する制御手段。[4] At the time of heating, the difference (= Te−Ts) between the detected temperature Te of the heat exchanger temperature sensor 11 and the detected temperature Ts of the refrigerant temperature sensor 13 is determined by the degree of superheat SH.
The opening degree of the electric expansion valve 4 is adjusted so that the deviation ΔSH between the superheat degree SH and a predetermined target superheat degree SHo becomes zero, and the refrigerant flow rate to the outdoor heat exchanger (evaporator) 3 is determined. Control means to control.
【0028】[5]暖房時、四方弁2により暖房サイク
ルを除霜サイクルに切換え、室外熱交換器(蒸発器)3
に高温冷媒を供給して室外熱交換器3に対する除霜運転
を実行する除霜運転手段。[5] At the time of heating, the heating cycle is switched to the defrost cycle by the four-way valve 2, and the outdoor heat exchanger (evaporator) 3
Defrosting operation means for executing a defrosting operation on the outdoor heat exchanger 3 by supplying a high-temperature refrigerant to the outdoor heat exchanger 3.
【0029】[6]暖房時、熱交換器温度センサ11の
検知温度Teおよび冷媒温度センサ13の検知温度Ts
に応じて上記除霜運転手段による除霜運転の実行を制御
する制御手段。[6] During heating, the detected temperature Te of the heat exchanger temperature sensor 11 and the detected temperature Ts of the refrigerant temperature sensor 13
Control means for controlling execution of the defrosting operation by the defrosting operation means according to
【0030】つぎに、上記の構成の作用を説明する。暖
房時、図3のフローチャートに示すように、圧縮機1の
起動(または前回の除霜運転終了)と同時にタイムカウ
ントtが行なわれる(ステップ101 )。Next, the operation of the above configuration will be described. At the time of heating, as shown in the flowchart of FIG. 3, a time count t is performed simultaneously with the activation of the compressor 1 (or the end of the previous defrosting operation) (step 101).
【0031】熱交換器温度センサ11の検知温度(室外
熱交換器5の温度)Teが冷媒温度センサ13の検知温
度(圧縮機1の吸込冷媒温度)Tsおよび補正係数Kに
より補正され、補正温度TEが求められる(ステップ10
2 )。The detection temperature Te of the heat exchanger temperature sensor 11 (the temperature of the outdoor heat exchanger 5) is corrected by the detection temperature Ts of the refrigerant temperature sensor 13 (the suction refrigerant temperature of the compressor 1) Ts and the correction coefficient K, and the correction temperature TE is required (Step 10
2).
【0032】すなわち、補正温度TEは下式により求め
られる。補正係数Kは、“0”より大きく“1”より小
さい値、例えば 0.1〜0.5 である。 TE=Te×K+Ts×(1−K) そして、補正温度TEを用いた除霜条件の判定が行なわ
れる(ステップ103 )。この判定の具体例を図4に示し
ている。That is, the correction temperature TE is obtained by the following equation. The correction coefficient K is a value larger than “0” and smaller than “1”, for example, 0.1 to 0.5. TE = Te × K + Ts × (1−K) Then, the defrosting condition is determined using the correction temperature TE (step 103). FIG. 4 shows a specific example of this determination.
【0033】すなわち、タイムカウントtがta時間
(= 2分)に達すると、その後の所定期間Δt(=10分
40秒)において、補正温度TEの最低値TEoが検出さ
れる。そして、タイムカウントtがtb時間(=27分40
秒)後、最低値TEoと補正温度TEとの差ΔTE(=
TEo−TE)が設定値以上の状態を所定時間(=20
秒)以上継続したとき、除霜条件が成立し(ステップ10
3 のYES )、除霜運転が開始される(ステップ104 )。
設定値は、補正温度TEがAゾーン(−2 ℃<TE≦−
8 ℃)にあるとき 3℃が選定され、補正温度TEがBゾ
ーン(−8 ℃<TE≦−20℃)にあるとき 2.5℃が選定
される。That is, when the time count t reaches the ta time (= 2 minutes), a predetermined period Δt (= 10 minutes) thereafter
At 40 seconds), the minimum value TEo of the correction temperature TE is detected. Then, the time count t is tb time (= 27 minutes 40
Seconds later, the difference ΔTE between the minimum value TEo and the correction temperature TE (=
TEo-TE is equal to or greater than the set value for a predetermined time (= 20).
Seconds) or more, the defrost condition is satisfied (step 10).
3 YES), the defrosting operation is started (step 104).
When the correction temperature TE is in the A zone (-2 ° C <TE ≦-
8 ° C), 3 ° C is selected, and when the correction temperature TE is in the B zone (−8 ° C <TE ≦ −20 ° C), 2.5 ° C is selected.
【0034】また、補正温度TEが所定値(=−20℃)
以下の状態(Cゾーン)を所定時間(=20秒)以上継続
したとき、同じく除霜条件が成立し(ステップ103 のYE
S )、除霜運転が開始される(ステップ104 )。The correction temperature TE is a predetermined value (= −20 ° C.)
When the following state (C zone) is continued for a predetermined time (= 20 seconds) or more, the same defrosting condition is satisfied (YE in step 103).
S), the defrosting operation is started (step 104).
【0035】除霜条件が成立しない場合は(ステップ10
3 のNO)、通常の暖房運転が継続される(ステップ105
)。ところで、室内温度調節のための設定室内温度変
更などによって圧縮機1の運転周波数Fが変化した場合
の、電動膨張弁4の開度変化、熱交換器温度Teの変
化、吸込冷媒温度Tsの変化の例を図5に示している。
SH(=Te−Ts)は過熱度、SHoは目標過熱度、
ΔSHは過熱度SHと目標過熱度SHoとの偏差、ΔT
eは熱交換器温度Teと補正温度TEとの差である。If the defrosting condition is not satisfied (step 10
3) (NO), the normal heating operation is continued (step 105).
). By the way, when the operating frequency F of the compressor 1 changes due to a change in the set indoor temperature for indoor temperature control, the opening degree of the electric expansion valve 4 changes, the heat exchanger temperature Te changes, and the suction refrigerant temperature Ts changes. 5 is shown in FIG.
SH (= Te−Ts) is the degree of superheat, SHo is the target degree of superheat,
ΔSH is the deviation between the superheat degree SH and the target superheat degree SHo, ΔT
e is the difference between the heat exchanger temperature Te and the correction temperature TE.
【0036】運転周波数F(Hz)の変化に伴って熱交換
器温度Teが変化するが、室外熱交換器5の着霜状態を
的確に把握するためには、実際の熱交換器温度Teより
も補正温度TEを用いることが好ましい。Although the heat exchanger temperature Te changes with a change in the operating frequency F (Hz), in order to accurately grasp the frost formation state of the outdoor heat exchanger 5, the actual heat exchanger temperature Te must be calculated. It is also preferable to use the correction temperature TE.
【0037】また、熱交換器温度Teの変化に伴って吸
込冷媒温度Tsが変化しており、両温度Te,Ts間に
は補正係数Kに相当する関係が存在する。したがって、
吸込冷媒温度Tsおよび補正係数Kを用いることによ
り、補正温度TEを求めることができる。Further, the suction refrigerant temperature Ts changes with the change of the heat exchanger temperature Te, and there is a relationship corresponding to the correction coefficient K between the temperatures Te and Ts. Therefore,
The correction temperature TE can be obtained by using the suction refrigerant temperature Ts and the correction coefficient K.
【0038】補正係数Kは、次のように導き出される。 TE=Te+ΔTe ΔTe=f(ΔSH) =K×ΔSH K=−[ΔTe/ΔSH] 熱交換器温度Teと過熱度SHとの定常特性を運転周波
数F(Hz)をパラメータとして実験により求めたのが図
6である。この定常特性から補正係数Kの値を算出する
ことができる。算出結果を図7に示している。そして、
算出された補正係数Kを用いて算出される補正温度TE
を運転周波数F(Hz)をパラメータとして且つ熱交換器
温度Teと対比して示したのが図8である。補正温度T
Eを実線で示し、熱交換器温度Teを破線で示してお
り、熱交換器温度Teの低下にかかわらず安定した補正
温度TEを得ることができる。補正温度TEおよび熱交
換器温度Teの時間的変化を他の温度値Ta、Tc(室
内熱交換器3の温度)、Ts、運転周波数Fと共に示し
たのが図9である。The correction coefficient K is derived as follows. TE = Te + ΔTe ΔTe = f (ΔSH) = K × ΔSH K = − [ΔTe / ΔSH] The steady-state characteristics of the heat exchanger temperature Te and the superheat degree SH were obtained by experiments using the operating frequency F (Hz) as a parameter. FIG. From this steady characteristic, the value of the correction coefficient K can be calculated. The calculation result is shown in FIG. And
Correction temperature TE calculated using the calculated correction coefficient K
FIG. 8 shows the operation frequency F (Hz) as a parameter and in comparison with the heat exchanger temperature Te. Correction temperature T
E is indicated by a solid line, and the heat exchanger temperature Te is indicated by a broken line, so that a stable correction temperature TE can be obtained regardless of a decrease in the heat exchanger temperature Te. FIG. 9 shows temporal changes of the corrected temperature TE and the heat exchanger temperature Te together with other temperature values Ta, Tc (temperature of the indoor heat exchanger 3), Ts, and the operating frequency F.
【0039】このように、熱交換器温度Teを補正して
過渡的低下のない補正温度TEを得、その補正温度TE
により除霜条件を判定することにより、冷媒寝込みが生
じたり配管が長いなどの理由で熱交換器温度Teの立上
がりに時間がかかるような状況であっても、必要以上に
低くならない最適な最低値TEoを得ることができ、よ
って室外熱交換器5の着霜量が多くならないうちにその
着霜量を的確に捕らえて最適なタイミングで除霜を行な
うことができ、暖房能力の低下を未然に防ぐことができ
る。In this manner, the heat exchanger temperature Te is corrected to obtain a corrected temperature TE without a transient drop, and the corrected temperature TE
The optimum minimum value which does not become unnecessarily low even in a situation where it takes a long time for the heat exchanger temperature Te to rise due to refrigerant stagnation or long piping due to the determination of the defrosting condition TEo can be obtained, so that the frost amount of the outdoor heat exchanger 5 can be accurately captured before the frost amount of the outdoor heat exchanger 5 increases, and defrosting can be performed at an optimal timing, thereby preventing a decrease in the heating capacity. Can be prevented.
【0040】また、室内温度調節のための設定室内温度
変更があったり、それに伴って圧縮機1の運転周波数F
が20Hz以上変動したり、室内風量調節のための室内ファ
ン速度変更があるなど、冷凍サイクル変動が大きい場合
には、室外熱交換器5の着霜量がまだ少ないのに熱交換
器温度Teが過渡的に低下するという現象が生じるが、
その熱交換器温度Teを用いず、過渡的低下のない補正
温度TEから除霜条件を判定するので、室外熱交換器5
の着霜量を的確に捕らえて最適なタイミングで除霜を行
なうことができ、不要な除霜運転いわゆる空除霜を回避
して暖房効率の低下を防ぐことができる。Also, there is a change in the set indoor temperature for adjusting the indoor temperature, and accordingly, the operating frequency F of the compressor 1 is changed.
When the refrigerating cycle fluctuates greatly, for example, when the refrigeration cycle fluctuates more than 20 Hz or when there is a change in the indoor fan speed for indoor air flow control, the heat exchanger temperature Te is low even though the amount of frost on the outdoor heat exchanger 5 is still small. Although the phenomenon of transient drop occurs,
Without using the heat exchanger temperature Te, the defrosting condition is determined from the correction temperature TE without a transient decrease.
The defrosting amount can be accurately captured to perform defrosting at an optimal timing, and unnecessary defrosting operation, that is, so-called empty defrosting can be avoided to prevent a decrease in heating efficiency.
【0041】(2)第1変形例 なお、上記実施例では、補正温度TEを求めてからその
最低値TEoを検出したが、検知温度Teの最低値Te
oを検出してその最低値Teoを検知温度Tsおよび補
正係数Kで補正することより最低値TEoを求めるよう
にしてもよい。すなわち、最低値TEoは下式により求
められる。 TEo=Teo×K+Ts×(1−K) この最低値TEoは、室内温度調節のための設定室内温
度変更があったとき、あるいは室内風量調節のための室
内ファン速度変更があったとき、その都度求められて更
新される。(2) First Modification In the above-described embodiment, the minimum value TEo is detected after the correction temperature TE is obtained, but the minimum value Te of the detected temperature Te is detected.
Alternatively, the minimum value TEo may be determined by correcting the minimum value Teo with the detected temperature Ts and the correction coefficient K. That is, the minimum value TEo is obtained by the following equation. TEo = Teo × K + Ts × (1−K) This minimum value TEo is set whenever the set indoor temperature for indoor temperature control is changed or the indoor fan speed is changed for indoor air flow control. Updated as required.
【0042】(3)第2変形例 また、上記実施例では、吸込冷媒温度Tsと補正係数K
から補正温度TEを求めたが、上記したTE=Te+Δ
Te、ΔTe=K×ΔSHに基づき、過熱度SHと目標
過熱度SHoとの偏差ΔSHおよび補正係数Kを用いて
補正温度TEを求めるようにしてもよい。すなわち、補
正温度TEは下式により求められる。(3) Second Modification In the above embodiment, the suction refrigerant temperature Ts and the correction coefficient K
Is obtained from the above equation, the above-mentioned TE = Te + Δ
Based on Te, ΔTe = K × ΔSH, the correction temperature TE may be obtained using the deviation ΔSH between the superheat degree SH and the target superheat degree SHo and the correction coefficient K. That is, the correction temperature TE is obtained by the following equation.
【0043】TE=Te+ΔSH×K そして、この補正温度TEを求めてからその最低値TE
oを検出してもよく、検知温度Teの最低値Teoを検
出してその最低値Teoを偏差ΔSHおよび補正係数K
で補正することにより最低値TEoを求めるようにして
もよい。この場合の最低値TEoは下式により求められ
る。 TEo=Teo+ΔSH×K この最低値TEoは、室内温度調節のための設定室内温
度変更があったとき、あるいは室内風量調節のための室
内ファン速度変更があったとき、その都度求められて更
新される。TE = Te + ΔSH × K Then, after calculating this correction temperature TE, its minimum value TE
may be detected, the minimum value Teo of the detected temperature Te is detected, and the minimum value Teo is determined by the deviation ΔSH and the correction coefficient K.
Alternatively, the minimum value TEo may be obtained by performing the above correction. The minimum value TEo in this case is obtained by the following equation. TEo = Teo + ΔSH × K This minimum value TEo is obtained and updated each time there is a change in the set indoor temperature for indoor temperature control or when there is a change in the indoor fan speed for indoor air flow control. .
【0044】[0044]
【発明の効果】以上述べたようにこの発明によれば、室
外熱交換器の温度Teを検知するとともに、圧縮機に吸
込まれる冷媒の温度Tsを検知し、暖房時、検知温度T
eおよび検知温度Tsに応じて室外熱交換器に対する除
霜運転の実行を制御する構成としたので、暖房開始時や
暖房復帰時に室外熱交換器の温度Teの立上がりが遅い
場合でも、また冷凍サイクル変動が大きい場合でも、室
外熱交換器の着霜量を的確に捕らえて最適なタイミング
で除霜を行なうことができ、これにより暖房能力および
暖房効率の低下を防ぐことができる信頼性にすぐれた空
気調和機を提供できる。As described above, according to the present invention, the temperature Te of the outdoor heat exchanger is detected, and the temperature Ts of the refrigerant sucked into the compressor is detected.
e and the detected temperature Ts, the execution of the defrosting operation on the outdoor heat exchanger is controlled. Therefore, even when the temperature of the outdoor heat exchanger Te rises slowly at the time of starting heating or returning to heating, the refrigeration cycle Even in the case of large fluctuations, it is possible to accurately capture the amount of frost formed in the outdoor heat exchanger and perform defrosting at the optimal timing, thereby providing excellent reliability that can prevent a decrease in heating capacity and heating efficiency. An air conditioner can be provided.
【図1】本発明の一実施例の制御回路のブロック図。FIG. 1 is a block diagram of a control circuit according to one embodiment of the present invention.
【図2】同実施例の冷凍サイクルの構成図。FIG. 2 is a configuration diagram of a refrigeration cycle of the embodiment.
【図3】同実施例の作用を説明するためのフローチャー
ト。FIG. 3 is a flowchart for explaining the operation of the embodiment.
【図4】同実施例の除霜条件の判定を説明するための
図。FIG. 4 is an exemplary view for explaining determination of a defrosting condition in the embodiment.
【図5】同実施例における熱交換器温度Teおよび吸込
冷媒温度Tsの変化の例を示す図。FIG. 5 is a diagram showing an example of changes in a heat exchanger temperature Te and a suction refrigerant temperature Ts in the embodiment.
【図6】同実施例における熱交換器温度Teと過熱度S
Hとの定常特性を運転周波数Fをパラメータとして示す
図。FIG. 6 shows a heat exchanger temperature Te and a superheat degree S in the embodiment.
The figure which shows the steady-state characteristic with H using operating frequency F as a parameter.
【図7】図6の定常特性から算出される補正係数Kの値
を示す図。FIG. 7 is a view showing a value of a correction coefficient K calculated from the steady-state characteristic of FIG. 6;
【図8】同実施例における補正係数Kを用いて算出され
る補正温度TEを運転周波数Fをパラメータとして且つ
熱交換器温度Teと対比して示す図。FIG. 8 is a diagram showing a correction temperature TE calculated using a correction coefficient K in the embodiment with the operating frequency F as a parameter and in comparison with the heat exchanger temperature Te.
【図9】同実施例における補正温度TEおよび熱交換器
温度Teの時間的変化を他の温度値Ta、Tc、Tsお
よび運転周波数Fと共に示す図。FIG. 9 is a diagram showing temporal changes of a correction temperature TE and a heat exchanger temperature Te in the embodiment, together with other temperature values Ta, Tc, Ts, and an operation frequency F.
1…圧縮機 2…四方弁 3…室外熱交換器 4…電動膨張弁 5…室内熱交換器 11…熱交換器温度センサ(第1温度センサ) 12…室内温度センサ 13…冷媒温度温度センサ(第2温度センサ) 20…室内制御部 40…室外制御部 DESCRIPTION OF SYMBOLS 1 ... Compressor 2 ... Four-way valve 3 ... Outdoor heat exchanger 4 ... Electric expansion valve 5 ... Indoor heat exchanger 11 ... Heat exchanger temperature sensor (1st temperature sensor) 12 ... Indoor temperature sensor 13 ... Refrigerant temperature temperature sensor ( (Second temperature sensor) 20 indoor control unit 40 outdoor control unit
Claims (8)
交換器を接続して冷媒を循環させる冷凍サイクルを備
え、室内熱交換器を凝縮器、室外熱交換器を蒸発器とし
て機能させる暖房運転が可能な空気調和機において、 前記室外熱交換器の温度Teを検知する第1温度センサ
と、 前記圧縮機に吸込まれる冷媒の温度Tsを検知する第2
温度センサと、 暖房時、前記第1温度センサの検知温度Teおよび前記
第2温度センサの検知温度Tsに応じて前記室外熱交換
器に対する除霜運転の実行を制御する制御手段と、 を具備したことを特徴とする空気調和機。1. A refrigeration cycle for connecting a compressor, an indoor heat exchanger, a decompressor, and an outdoor heat exchanger to circulate a refrigerant, wherein the indoor heat exchanger functions as a condenser and the outdoor heat exchanger functions as an evaporator. A first temperature sensor for detecting a temperature Te of the outdoor heat exchanger, and a second temperature sensor for detecting a temperature Ts of a refrigerant sucked into the compressor.
A temperature sensor; and control means for controlling execution of a defrosting operation on the outdoor heat exchanger in accordance with the detected temperature Te of the first temperature sensor and the detected temperature Ts of the second temperature sensor during heating. An air conditioner characterized by that:
正係数Kにより補正して補正温度TEを求め、前記圧縮
機の起動または前回の除霜運転終了からta時間後の所
定期間Δtにおいて補正温度TEの最低値TEoを検出
し、圧縮機の起動または前回の除霜運転終了からtb時
間[>(ta+Δt)]後、最低値TEoと補正温度T
Eとの差ΔTE(=TEo−TE)が設定値以上の状態
を所定時間以上継続したとき、または補正温度TEが所
定値以下の状態を所定時間以上継続したとき、除霜運転
を開始することを特徴とする空気調和機。2. The air conditioner according to claim 1, wherein the control unit corrects the detected temperature Te by using the detected temperature Ts and the correction coefficient K to obtain a corrected temperature TE, and starts the compressor or a previous time. The minimum value TEo of the correction temperature TE is detected during a predetermined period Δt after the end of the defrosting operation for a predetermined period Δt, and after the start of the compressor or the end of the previous defrosting operation tb time [> (ta + Δt)], the minimum value TEo is determined. Correction temperature T
The defrosting operation is started when the state where the difference ΔTE from E (= TEo−TE) is equal to or more than the set value has continued for a predetermined time or more, or the state where the correction temperature TE is equal to or less than the predetermined value has continued for a predetermined time or more An air conditioner characterized by the following.
正係数Kにより補正して補正温度TEを求めるととも
に、前記圧縮機の起動または前回の除霜運転終了からt
a時間後の所定期間Δtにおいて検知温度Teの最低値
Teoを検出し、この最低値Teoを検知温度Tsおよ
び補正係数Kにより補正して最低値TEoを求め、圧縮
機の起動または前回の除霜運転終了からtb時間[>
(ta+Δt)]後、最低値TEoと補正温度TEとの
差ΔTE(=TEo−TE)が設定値以上の状態を所定
時間以上継続したとき、または補正温度TEが所定値以
下の状態を所定時間以上継続したとき、除霜運転を開始
することを特徴とする空気調和機。3. The air conditioner according to claim 1, wherein the control means corrects the detected temperature Te by using the detected temperature Ts and the correction coefficient K to obtain a corrected temperature TE, and starts or starts the compressor at a previous time. From the end of the defrosting operation of
At a predetermined time period Δt after the time a, the minimum value Teo of the detection temperature Te is detected, and the minimum value Teo is corrected by the detection temperature Ts and the correction coefficient K to obtain the minimum value TEo. Tb time from the end of operation [>
(Ta + Δt)], when the difference ΔTE (= TEo−TE) between the minimum value TEo and the correction temperature TE is equal to or higher than the set value for a predetermined time or when the correction temperature TE is equal to or lower than the predetermined value for a predetermined time. An air conditioner characterized by starting a defrosting operation when continued.
和機において、 前記制御手段は、室内温度調節のための設定室内温度変
更があったとき、または室内風量調節のための室内ファ
ン速度変更があったとき、その都度、最低値TEoを更
新することを特徴とする空気調和機。4. The air conditioner according to claim 2, wherein the control unit is configured to change the indoor fan speed for adjusting the indoor air flow when there is a change in the set indoor temperature for adjusting the indoor temperature. An air conditioner characterized by updating the minimum value TEo each time there is a change.
交換器を接続して冷媒を循環させる冷凍サイクルを備
え、室内熱交換器を凝縮器、室外熱交換器を蒸発器とし
て機能させる暖房運転が可能な空気調和機において、 前記室外熱交換器の温度Teを検知する第1温度センサ
と、 前記圧縮機に吸込まれる冷媒の温度Tsを検知する第2
温度センサと、 暖房時、前記第1温度センサの検知温度Teと前記第2
温度センサの検知温度Tsとの差(=Te−Ts)を過
熱度SHとして求め、この過熱度SHと予め定めている
目標過熱度SHoとの偏差ΔSHが零となるよう前記室
外熱交換器への冷媒流量を制御する第1制御手段と、 暖房時、前記第1温度センサの検知温度Teおよび前記
偏差ΔSHに応じて前記室外熱交換器に対する除霜運転
の実行を制御する第2制御手段と、 を具備したことを特徴とする空気調和機。5. A refrigeration cycle for connecting a compressor, an indoor heat exchanger, a decompressor and an outdoor heat exchanger to circulate a refrigerant, wherein the indoor heat exchanger functions as a condenser and the outdoor heat exchanger functions as an evaporator. A first temperature sensor for detecting a temperature Te of the outdoor heat exchanger, and a second temperature sensor for detecting a temperature Ts of a refrigerant sucked into the compressor.
A temperature sensor, a heating temperature detected by the first temperature sensor during heating, and the second temperature sensor.
The difference (= Te−Ts) from the temperature detected by the temperature sensor (= Te−Ts) is determined as the superheat degree SH, and the difference ΔSH between the superheat degree SH and the predetermined target superheat degree SHo is set to zero so that the outdoor heat exchanger becomes zero. A first control means for controlling the flow rate of the refrigerant, and a second control means for controlling execution of a defrosting operation on the outdoor heat exchanger in accordance with the detected temperature Te of the first temperature sensor and the deviation ΔSH during heating. An air conditioner, comprising:
補正係数Kにより補正して補正温度TEを求め、前記圧
縮機の起動または前回の除霜運転終了からta時間後の
所定期間Δtにおいて補正温度TEの最低値TEoを検
出し、圧縮機の起動または前回の除霜運転終了からtb
時間[>(ta+Δt)]後、最低値TEoと補正温度
TEとの差ΔTE(=TEo−TE)が設定値以上の状
態を所定時間以上継続したとき、または補正温度TEが
所定値以下の状態を所定時間以上継続したとき、除霜運
転を開始することを特徴とする空気調和機。6. The air conditioner according to claim 5, wherein the second control means corrects the detected temperature Te by using a deviation ΔSH and a correction coefficient K to obtain a correction temperature TE, and starts the compressor or a previous time. The minimum value TEo of the correction temperature TE is detected during a predetermined period Δt after a lapse of ta time from the end of the defrosting operation, and the time tb has elapsed since the compressor was started or the previous defrosting operation was completed.
After the time [> (ta + Δt)], the state where the difference ΔTE (= TEo−TE) between the minimum value TEo and the correction temperature TE is equal to or more than the set value for a predetermined time or more, or the state where the correction temperature TE is equal to or less than the predetermined value Characterized in that the defrosting operation is started when the operation is continued for a predetermined time or more.
補正係数Kにより補正して補正温度TEを求めるととも
に、前記圧縮機の起動または前回の除霜運転終了からt
a時間後の所定期間Δtにおいて検知温度Teの最低値
Teoを検出し、この最低値Teoを偏差ΔSHおよび
補正係数Kにより補正して最低値TEoを求め、圧縮機
の起動または前回の除霜運転終了からtb時間[>(t
a+Δt)]後、最低値TEoと補正温度TEとの差Δ
TE(=TEo−TE)が設定値以上の状態を所定時間
以上継続したとき、または補正温度TEが所定値以下の
状態を所定時間以上継続したとき、除霜運転を開始する
ことを特徴とする空気調和機。7. The air conditioner according to claim 5, wherein the second control means corrects the detected temperature Te by using a deviation ΔSH and a correction coefficient K to obtain a correction temperature TE, and starts the compressor or T since the end of the previous defrost operation
In a predetermined period Δt after the time a, the minimum value Teo of the detected temperature Te is detected, and the minimum value Teo is corrected by the deviation ΔSH and the correction coefficient K to obtain the minimum value TEo, and the start of the compressor or the previous defrost operation Tb time from the end [> (t
a + Δt)], and the difference Δ between the minimum value TEo and the correction temperature TE
The defrosting operation is started when the state where TE (= TEo−TE) is equal to or higher than the set value has continued for a predetermined time or longer, or when the state where the correction temperature TE is equal to or lower than a predetermined value has continued for a predetermined time or longer. Air conditioner.
和機において、前記第2制御手段は、室内温度調節のた
めの設定室内温度変更があったとき、または室内風量調
節のための室内ファン速度変更があったとき、その都
度、最低値TEoを更新することを特徴とする空気調和
機。8. The air conditioner according to claim 6, wherein the second control means is configured to change a set indoor temperature for adjusting the indoor temperature or to adjust an indoor air flow. An air conditioner characterized by updating the minimum value TEo whenever the fan speed is changed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9297120A JPH11132605A (en) | 1997-10-29 | 1997-10-29 | Air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9297120A JPH11132605A (en) | 1997-10-29 | 1997-10-29 | Air conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11132605A true JPH11132605A (en) | 1999-05-21 |
Family
ID=17842482
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9297120A Pending JPH11132605A (en) | 1997-10-29 | 1997-10-29 | Air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11132605A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100640857B1 (en) | 2004-12-14 | 2006-11-02 | 엘지전자 주식회사 | Control method for multi-airconditioner |
KR20150014114A (en) * | 2013-07-29 | 2015-02-06 | 삼성전자주식회사 | Air conditional and method for controlling the same |
KR20150033728A (en) * | 2012-09-21 | 2015-04-01 | 샤프 가부시키가이샤 | Radiant air conditioner |
CN109442807A (en) * | 2018-11-16 | 2019-03-08 | 无锡同方人工环境有限公司 | It can be avoided the heat exchanger and control method of bottom frosting |
CN110469974A (en) * | 2019-07-25 | 2019-11-19 | 青岛海尔空调器有限总公司 | For the control method of air-conditioner defrosting, device and air-conditioning |
CN113819580A (en) * | 2021-10-27 | 2021-12-21 | 合肥美的暖通设备有限公司 | Frequency adjusting method and device, readable storage medium and air conditioner |
-
1997
- 1997-10-29 JP JP9297120A patent/JPH11132605A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100640857B1 (en) | 2004-12-14 | 2006-11-02 | 엘지전자 주식회사 | Control method for multi-airconditioner |
KR20150033728A (en) * | 2012-09-21 | 2015-04-01 | 샤프 가부시키가이샤 | Radiant air conditioner |
KR20150014114A (en) * | 2013-07-29 | 2015-02-06 | 삼성전자주식회사 | Air conditional and method for controlling the same |
CN109442807A (en) * | 2018-11-16 | 2019-03-08 | 无锡同方人工环境有限公司 | It can be avoided the heat exchanger and control method of bottom frosting |
CN110469974A (en) * | 2019-07-25 | 2019-11-19 | 青岛海尔空调器有限总公司 | For the control method of air-conditioner defrosting, device and air-conditioning |
CN113819580A (en) * | 2021-10-27 | 2021-12-21 | 合肥美的暖通设备有限公司 | Frequency adjusting method and device, readable storage medium and air conditioner |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5568732A (en) | Air conditioning apparatus and method of controlling same | |
JP5306007B2 (en) | Air conditioner | |
JP5471873B2 (en) | Air conditioner | |
JP6071648B2 (en) | Air conditioner | |
JP4815281B2 (en) | Air conditioner | |
JPH109683A (en) | Air conditioner | |
US11181308B2 (en) | Air-conditioner that prevents degradation in heating capability during defrosting operation | |
JPH11132605A (en) | Air conditioner | |
JP2008232500A (en) | Refrigerating cycle device | |
JP4264266B2 (en) | Air conditioner | |
JP2004225929A (en) | Air conditioner and control method of air conditioner | |
JPH07120049A (en) | Air conditioner | |
JPH11257718A (en) | Method of controlling air conditioner | |
JP2003050066A (en) | Controller for air conditioner | |
JP4132812B2 (en) | Air conditioner control device | |
JPH0626689A (en) | Multiple type air conditioner | |
JPH09243210A (en) | Control method for air conditioner and apparatus therefor | |
JPS6277538A (en) | Derfosting device of air conditioner | |
JP3105285B2 (en) | Air conditioner | |
JP4156097B2 (en) | Air conditioner | |
JPS61153332A (en) | Defrosting control device | |
JP3169485B2 (en) | Air conditioner | |
JPH10170052A (en) | Air conditioner | |
JPH0721345B2 (en) | Control device for air conditioner | |
JP2001280666A (en) | Air conditioner |