[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0936403A - Production of basic body and solar cell employing it - Google Patents

Production of basic body and solar cell employing it

Info

Publication number
JPH0936403A
JPH0936403A JP7180459A JP18045995A JPH0936403A JP H0936403 A JPH0936403 A JP H0936403A JP 7180459 A JP7180459 A JP 7180459A JP 18045995 A JP18045995 A JP 18045995A JP H0936403 A JPH0936403 A JP H0936403A
Authority
JP
Japan
Prior art keywords
mold
substrate
solar cell
furnace
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7180459A
Other languages
Japanese (ja)
Other versions
JP3596828B2 (en
Inventor
Akiyuki Nishida
彰志 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP18045995A priority Critical patent/JP3596828B2/en
Publication of JPH0936403A publication Critical patent/JPH0936403A/en
Application granted granted Critical
Publication of JP3596828B2 publication Critical patent/JP3596828B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a production method for basic body from which a step for slicing an ingot can be eliminated and an inexpensive high quality solar cell having high mass productivity. SOLUTION: The method for producing a basic body supporting a semiconductive layer comprises a first step for injecting a material of Si into the planar groove of a mold 101 extending vertically to the carrying direction, a second step for sustaining the mold at a temperature higher than the melting point of Si to melt 106 the Si material and filling the planar groove with molten Si, a third step for passing the mold through a furnace provided with a negative temperature gradient in the carrying direction of mold, and a fourth step for solidifying 107 the molten Si during passage of the mold through the furnace. A semiconductor layer for fabricating a photoelectric conversion element is formed on the basic body.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、基体の製造方法および
太陽電池に係る。より詳細には、安価で、かつ、不純物
の少ない表面を有する基体の製造方法に関する。また、
上記基体の製造方法による基体を用いることによって、
光電変換特性が改善された太陽電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate manufacturing method and a solar cell. More specifically, the present invention relates to a method for manufacturing a substrate which is inexpensive and has a surface with few impurities. Also,
By using the substrate according to the above method for producing a substrate,
The present invention relates to a solar cell having improved photoelectric conversion characteristics.

【0002】[0002]

【従来の技術】各種機器の駆動エネルギー源や商用電力
と系統連結させる電源として、太陽電池が広く研究され
ている。
2. Description of the Related Art Solar cells have been widely studied as a driving energy source for various devices and a power source for systematic connection with commercial power.

【0003】このような太陽電池は、コスト的要請から
金属のように低価格で入手できる基体上に、光電変換素
子が形成できることが望まれている。
[0003] In such a solar cell, it is desired that a photoelectric conversion element can be formed on a substrate such as a metal that can be obtained at a low price because of cost requirements.

【0004】一方、太陽電池を構成する光電変換素子と
しては、一般にSiからなる半導体が用いられる。光エ
ネルギーを電気エネルギーに変換する効率の点からは、
前記半導体としては、単結晶Siを用いるのが好まし
い。しかし、太陽電池の大面積化および低コスト化の点
から、アモルファスSiが有利である。また近年では、
アモルファスSi並みの低コストと単結晶Si並みの高
い光電変換効率とを同時に得る目的から多結晶Siの使
用が検討されている。
On the other hand, a semiconductor made of Si is generally used as a photoelectric conversion element constituting a solar cell. In terms of efficiency of converting light energy into electric energy,
It is preferable to use single crystal Si as the semiconductor. However, amorphous Si is advantageous in terms of increasing the area and cost of the solar cell. In recent years,
The use of polycrystalline Si is being studied for the purpose of simultaneously obtaining a low cost comparable to that of amorphous Si and a high photoelectric conversion efficiency comparable to that of single crystal Si.

【0005】しかしながら、従来の単結晶Siや多結晶
Siからなる太陽電池では、塊状の結晶をスライスし、
板状体に加工して用いるため、その厚さを0.3mm以
下にすることは困難であった。したがって、光量を吸収
するのに必要十分な厚さ以上となっているため、材料の
有効利用が不十分であった。すなわち、コストを下げる
ためには、さらなる薄型化を図る必要があった。
However, in a conventional solar cell made of single crystal Si or polycrystalline Si, a lump crystal is sliced,
Since it is used after being processed into a plate-like body, it is difficult to reduce the thickness to 0.3 mm or less. Therefore, since the thickness is more than necessary and sufficient to absorb the amount of light, the effective use of the material was insufficient. That is, in order to reduce the cost, it was necessary to further reduce the thickness.

【0006】最近では、上述した薄型化を解決する方法
として、溶融したSiの液滴を鋳型に流し込むスピン法
によりシリコンシートを形成する方法が提案されてい
る。しかし、この方法によっても、厚さは最小0.1m
m〜0.2mm程度であり、結晶Siとして光吸収に必
要十分な膜厚(20〜50μm)に比べて、まだ薄型化
が不十分である。また、このような薄型化によって、シ
リコンシート自体が基体としての強度を維持することが
困難となる。その結果、必然的にシリコンシートを支持
する別の安価な基体が要求される。
[0006] Recently, as a method for solving the above-mentioned thinning, a method of forming a silicon sheet by a spin method of pouring molten Si droplets into a mold has been proposed. However, even with this method, the minimum thickness is 0.1 m.
The thickness is about m to 0.2 mm, and the thinning is still insufficient as compared with the film thickness (20 to 50 μm) necessary for absorbing light as crystalline Si. Further, such thinning makes it difficult for the silicon sheet itself to maintain its strength as a substrate. As a result, there is a need for another inexpensive substrate that necessarily supports the silicon sheet.

【0007】このような別の安価な基体としては、例え
ば金属級Si(T.Warabisako, T.Saitoh, E.Kuroda, H.
Itoh. N.Nakamura and T.Tokuyama, “Efficient Solar
Cells from Metallurgical-GradeSilicon", Proceedin
gs of the 11th Conferenceon Solid State Devices, T
okyo, 1979; Japanese Journal of Applied Physics,
19 (1980) Supplement 19-1, p.539)が挙げられる。T.
Warabisako 等は、前記金属級Siを用いて基体を形成
し、その上に光吸収に必要十分な膜厚のSi層を形成し
て太陽電池とする試みを報告している。
As such another inexpensive substrate, for example, metallic grade Si (T. Warabisako, T. Saitoh, E. Kuroda, H.
Itoh. N. Nakamura and T. Tokuyama, “Efficient Solar
Cells from Metallurgical-GradeSilicon ", Proceedin
gs of the 11th Conferenceon Solid State Devices, T
okyo, 1979; Japanese Journal of Applied Physics,
19 (1980) Supplement 19-1, p.539). T.
Warabisako et al. Reported an attempt to form a substrate by using the above-mentioned metal-grade Si, and form a Si layer having a film thickness necessary and sufficient for light absorption on the substrate to obtain a solar cell.

【0008】しかしながら、T.Warabisako 等の方法で
は、金属級Siを引き上げ法によって塊状結晶とした
後、これをスライスして板状基板を作製している。ゆえ
に、従来の単結晶Siを基体として用いたプロセスと同
じであり、安価な材料である金属級Siのメリットが生
かされていないという問題があった。また、現状では、
十分な特性を得るためには前記引き上げを2回行う必要
があり、製造に多大な時間がかかるという問題もあっ
た。
However, in the method of T. Warabisco, et al., A plate-like substrate is prepared by slicing metal-like Si into a lump crystal by a pulling method. Therefore, the process is the same as the conventional process using single crystal Si as a substrate, and there is a problem that the merit of metal-grade Si, which is an inexpensive material, is not utilized. Also, at present,
In order to obtain sufficient characteristics, it is necessary to perform the pulling up twice, and there is also a problem that it takes a lot of time to manufacture.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、安価
で、かつ、不純物の少ない表面を有する基体の製造方法
を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a substrate having a surface which is inexpensive and has a small amount of impurities.

【0010】また、本発明の他の目的は、上記基体の製
造方法による基体を用いることによって、光電変換特性
が改善された太陽電池を提供することである。
Another object of the present invention is to provide a solar cell having improved photoelectric conversion characteristics by using the substrate produced by the above method for producing a substrate.

【0011】[0011]

【課題を解決するための手段】本発明の基体の製造方法
は、半導体層を支持する基体の製造方法において、搬送
される方向に対して垂直方向に板状の溝を有する鋳型
が、前記板状の溝の内部にSiからなる原料を注入され
る第1工程と、前記鋳型をSiの融点よりも高い温度に
保ち、前記Siからなる原料を融解させて前記板状の溝
を満たす第2工程と、前記鋳型が搬送される方向に負の
温度勾配の設けられた炉内を、前記鋳型が移動する第3
工程と、前記鋳型が前記炉内を移動する間に、融解され
た前記Siを固化させる第4工程と、からなることを特
徴とする。
A method of manufacturing a substrate according to the present invention is a method of manufacturing a substrate for supporting a semiconductor layer, wherein the mold having a plate-shaped groove in a direction perpendicular to a conveying direction is the plate. A first step of injecting a raw material made of Si into the inside of the groove having a groove shape; and a second step of melting the raw material made of Si by filling the template groove at a temperature higher than the melting point of Si to fill the plate-shaped groove. And a step of moving the mold in a furnace provided with a negative temperature gradient in a direction in which the mold is conveyed.
And a fourth step of solidifying the melted Si while the mold moves in the furnace.

【0012】また、前記鋳型の材質は、カーボン・グラ
ファイト、シリコン・カーバイト、又は窒化珪素の中か
ら選択され、前記Siからなる原料は、金属級Siであ
ることが好ましい。
It is preferable that the material of the mold is selected from carbon graphite, silicon carbide, and silicon nitride, and the raw material of Si is metallic grade Si.

【0013】さらに、前記板状の溝の内面には、少なく
ともSi34を含む離型剤が被膜されていることが望ま
しい。前記基体は、光電変換素子用として好適に用いら
れる。
Further, it is desirable that the inner surface of the plate-shaped groove is coated with a release agent containing at least Si 3 N 4 . The base is suitably used for a photoelectric conversion element.

【0014】本発明の太陽電池は、光電変換素子をなす
前記半導体層が、請求項1乃至5のいずれか1項に記載
の基体上に形成されたことを特徴とする。
The solar cell of the present invention is characterized in that the semiconductor layer forming a photoelectric conversion element is formed on the substrate according to any one of claims 1 to 5.

【0015】[0015]

【作用】本発明に係る請求項1では、第1工程から第4
工程を設けたため、以下に示す点の改善が図られた基体
の製造方法が得られる。
In the first aspect of the present invention, the first to fourth steps are provided.
Since the steps are provided, it is possible to obtain a method for manufacturing a base body in which the following points are improved.

【0016】まず、搬送される方向に対して垂直方向に
板状の溝を有する鋳型が、前記板状の溝の内部にSiか
らなる原料を注入される第1工程を設けたため、前記板
状の溝の内部に、原料を均一に注入することができる。
First, since the mold having the plate-shaped groove in the direction perpendicular to the carrying direction is provided with the first step of injecting the raw material made of Si into the plate-shaped groove, the plate-shaped groove is formed. The raw material can be uniformly injected into the groove.

【0017】また、前記鋳型をSiの融点よりも高い温
度に保ち、前記Siからなる原料を融解させて前記板状
の溝を満たす第2工程を設けたため、注入された原料は
十分に融解状態となる。
Further, since the second step is provided in which the template is kept at a temperature higher than the melting point of Si and the raw material made of Si is melted to fill the plate-like groove, the injected raw material is sufficiently melted. Becomes

【0018】さらに、前記鋳型が搬送される方向に負の
温度勾配の設けられた炉内を、前記鋳型が移動する第3
工程を設けたため、溶融した金属級Siが固化される
際、前記負の温度勾配により、鋳型の搬送される方向を
向いた面からSiの固化が始まり、これと反対側の面が
最後に固化する。その結果、金属級Siに含まれる不純
物は最後に固化する進行方向とは反対側の面付近に偏析
する。したがって、鋳型の搬送される方向を向いた面が
不純物の比較的少ない基板面として得られる。
Further, the third mold is moved in a furnace provided with a negative temperature gradient in the direction in which the mold is conveyed.
Since a step is provided, when the molten metal-grade Si is solidified, the negative temperature gradient causes the solidification of Si to start from the surface of the mold facing the conveying direction, and the surface opposite to this solidifies last. To do. As a result, the impurities contained in the metallurgical Si are segregated in the vicinity of the surface on the side opposite to the traveling direction in which it is finally solidified. Therefore, the surface of the mold facing the carrying direction is obtained as the surface of the substrate containing relatively few impurities.

【0019】またさらに、前記鋳型が前記炉内を移動す
る間に、融解された前記Siを固化させる第4工程を設
けたため、後加工無しに、金属級Siからなる板状の基
板が得られる。したがって、従来行われていた引き上げ
法のように基板形状をスライスするための工程が省略で
き、時間的・コスト的に改善する。
Furthermore, since the fourth step of solidifying the melted Si is provided while the mold moves in the furnace, a plate-like substrate made of metal-grade Si can be obtained without post-processing. . Therefore, the step for slicing the substrate shape, which is required in the conventional pulling method, can be omitted, and the time and cost can be improved.

【0020】本発明に係る請求項2では、前記鋳型の材
質が、カーボン・グラファイト、シリコン・カーバイ
ト、又は窒化珪素の中から選択されるため、繰り返し使
用に耐える鋳型が形成できる。その結果、低コスト化が
図られ、安価な基体の製造方法が得られる。
According to the second aspect of the present invention, since the material of the mold is selected from carbon graphite, silicon carbide or silicon nitride, it is possible to form a mold that can be used repeatedly. As a result, cost reduction can be achieved and an inexpensive method for manufacturing a substrate can be obtained.

【0021】本発明に係る請求項3では、前記Siから
なる原料が、金属級Siであるため、高純度Si等で比
べた場合、材料費が非常に安く抑えられる。その結果、
通常のウエハと同等の強度を有する安価な基体の製造方
法が得られる。
In the third aspect of the present invention, since the raw material made of Si is metallic grade Si, the material cost can be kept very low when compared with high purity Si or the like. as a result,
It is possible to obtain an inexpensive substrate manufacturing method having a strength equivalent to that of a normal wafer.

【0022】本発明に係る請求項4では、前記板状の溝
の内面には、少なくともSi34を含む離型剤が被膜さ
れているため、固化後の金属級Siからなる板状基体の
鋳型からの取り外しが容易となる。その結果、一度に多
数枚の板状基体の処理が可能になる。
According to a fourth aspect of the present invention, since the inner surface of the plate-like groove is coated with a release agent containing at least Si 3 N 4 , the plate-like substrate made of metal-grade Si after solidification. Can be easily removed from the mold. As a result, a large number of plate-shaped substrates can be processed at one time.

【0023】本発明に係る請求項5では、前記基体が、
光電変換素子用であるため、従来の単結晶Si基体や多
結晶Si基体に比べ材料の有効利用が可能となる。その
結果、製造コストの低い太陽電池を供給できる基体の製
造方法が得られる。
According to a fifth aspect of the present invention, the substrate is
Since it is for a photoelectric conversion element, the material can be effectively used as compared with the conventional single crystal Si substrate or polycrystalline Si substrate. As a result, it is possible to obtain a method for manufacturing a base body that can supply a solar cell with low manufacturing cost.

【0024】本発明に係る請求項6では、光電変換素子
をなす前記半導体層が、請求項1乃至5のいずれか1項
に記載の基体上に形成されたため、Si等からなる半導
体層成長時に、前記基体から前記半導体層ヘの不純物移
動を低減できる。その結果、従来その対策として行われ
ていたゲッタリング処理を省略することができるため、
低コスト化が図れる。
According to a sixth aspect of the present invention, since the semiconductor layer forming the photoelectric conversion element is formed on the substrate according to any one of the first to fifth aspects, a semiconductor layer made of Si or the like is grown. The migration of impurities from the base to the semiconductor layer can be reduced. As a result, the gettering process that was conventionally performed as a countermeasure can be omitted.
Cost reduction can be achieved.

【0025】[0025]

【実施態様例】[Example embodiment]

(基体)本発明に係る基体に使用される金属級Siとし
ては、低純度、具体的には不純物元素を1ppm乃至2
%含むものが安価で容易に用いられる。粉末状にしてか
ら、溶融される前に、必要に応じて予め塩酸等の酸によ
る処理を行い、不純物の量を軽減しておくことも可能で
ある。
(Substrate) The metal-grade Si used for the substrate according to the present invention has a low purity, specifically, 1 ppm to 2 of an impurity element.
% Content is cheap and easy to use. It is also possible to reduce the amount of impurities by performing a treatment with an acid such as hydrochloric acid in advance, if necessary, after the powder is formed and before being melted.

【0026】(鋳型)本発明に係る鋳型としては、縦方
向に板状に溝を設けたものであって、溝の数は一つの鋳
型に対して一つでも複数でもよく、またこのような溝を
持った鋳型を複数個連結した構造のものでも構わない。
鋳型の材質としては、加工の容易性や価格の点からカー
ボン・グラファイトが用いられる。しかし、溶融/固化
したSiを離型させる材料が塗布でき、かつ、融点がS
iのそれよりも高いものであれば何でも良く、シリコン
・カーバイトや窒化珪素等も使用可能である。
(Mold) The mold according to the present invention has a plate-like groove provided in the longitudinal direction, and the number of grooves may be one or plural per one mold. It may have a structure in which a plurality of molds having grooves are connected.
As the material of the mold, carbon graphite is used in terms of easiness of processing and price. However, a material for releasing molten / solidified Si can be applied, and the melting point is S
Any material higher than that of i can be used, and silicon carbide, silicon nitride or the like can be used.

【0027】(離型剤)本発明に係る鋳型内に塗布され
る離型剤としては、溶融したSiに対して反応を起こさ
ず接触角の大きいものが選ばれる。具体的にはSi34
を主成分としたものが用いられ、必要に応じてSiO2
等が添加される。離型剤の鋳型内への被膜の仕方として
は、粉末状のSi34を分散させた有機溶液あるいはシ
ラノール溶液を鋳型内にスプレーし、400℃以上の熱
処理をして被膜を形成する。
(Release Agent) As the release agent applied in the mold according to the present invention, a release agent having a large contact angle without causing a reaction with molten Si is selected. Specifically, Si 3 N 4
Is used as the main component, and if necessary, SiO 2
Etc. are added. As a method of coating the mold release agent in the mold, an organic solution or silanol solution in which powdery Si 3 N 4 is dispersed is sprayed into the mold, and heat treatment is performed at 400 ° C. or higher to form the film.

【0028】(炉)本発明に係る炉としては、電気炉が
制御性の上から好ましい。また、同一炉内にSiを融解
するためにSiの融点以上の温度一定に保たれた部位
と、Siの融点以上の温度から融点以下の温度に至るま
で負の温度勾配の設けられた部位とを有し、これらの部
位の間を鋳型が移動できる構造のものが望ましい。
(Furnace) As the furnace according to the present invention, an electric furnace is preferable from the viewpoint of controllability. Further, in order to melt Si in the same furnace, a portion kept at a temperature equal to or higher than the melting point of Si and a portion provided with a negative temperature gradient from a temperature equal to or higher than the melting point of Si to a temperature equal to or lower than the melting point of Si. It is desirable that the structure has a structure such that the template can move between these sites.

【0029】炉内に設けられる温度勾配、及び、鋳型が
温度勾配のある部位を移動するときの速度は、溶融させ
たSiの固化条件によって適宜決められる。しかし、固
化したシートの結晶性や不純物の偏析効果の点から、鋳
型が移動するときに受ける降温速度(=温度勾配×移動
速度)は、およそ−30℃/min以下となるように設
定されるのが好ましい。
The temperature gradient provided in the furnace and the speed at which the mold moves in the region having the temperature gradient are appropriately determined depending on the solidification conditions of the melted Si. However, from the viewpoint of the crystallinity of the solidified sheet and the segregation effect of impurities, the temperature decreasing rate (= temperature gradient × moving rate) received when the mold moves is set to be about −30 ° C./min or less. Is preferred.

【0030】[0030]

【実施例】以下実施例により、本発明に係る基体の製造
方法および太陽電池について更に詳しく説明するが、本
発明はこれらの実施例により限定されるものではない。
EXAMPLES The method for producing a substrate and the solar cell according to the present invention will be described below in more detail with reference to Examples, but the present invention is not limited to these Examples.

【0031】(実施例1)本例では、図1に示した基体
の製造工程に基づき、金属級Siの溶融/固化によるシ
ート基体の製造方法に関して説明する。図1の鋳型10
1は、縦方向に板状の溝を設けたカーボン製のものを用
いた。また、溝の表面に固化したSiを容易に取り出す
目的で、その内面にはSi34膜を塗布した。
Example 1 In this example, a method of manufacturing a sheet substrate by melting / solidifying metal grade Si will be described based on the substrate manufacturing process shown in FIG. Mold 10 of FIG.
For No. 1, a carbon product having plate-shaped grooves in the longitudinal direction was used. Further, for the purpose of easily taking out the solidified Si on the surface of the groove, a Si 3 N 4 film was applied to the inner surface thereof.

【0032】以下では、上記製造方法を工程に沿って説
明する。 (1)粉末状の金属級Si103を、フィーダー102
を通して鋳型内の溝に投入し、カーボン製の蓋104で
溝の口を塞ぎ、図1に示すような電気炉内に置いた。 (2)Siの融点よりも高い一定温度に設定された電気
炉内に、ある一定時間保持することによって、粉末状金
属級Siを融液106にした。
In the following, the manufacturing method will be described along with steps. (1) The powdery metal grade Si 103 is fed to the feeder 102.
It was charged into the groove in the mold through the through hole, the opening of the groove was closed with a carbon lid 104, and it was placed in an electric furnace as shown in FIG. (2) The powdery metallurgical grade Si was made into the melt 106 by holding for a certain period of time in an electric furnace set at a constant temperature higher than the melting point of Si.

【0033】(3)同じ電気炉内に設けられた水平方向
に温度勾配のある部位の中をゆっくりと一定速度で鋳型
101を移動させた。このとき図1に示すように鋳型の
進行方向に対して温度勾配が負となるように設定した。 (4)鋳型が融点付近に相当する炉の部位を通過した
後、十分離れた所で温度を室温にまで落とした。 (5)固化した板状のシート基体を鋳型から取り出し
た。
(3) The mold 101 was slowly moved at a constant speed in a portion having a temperature gradient in the horizontal direction provided in the same electric furnace. At this time, as shown in FIG. 1, the temperature gradient was set to be negative with respect to the moving direction of the mold. (4) After the mold passed through the part of the furnace near the melting point, the temperature was dropped to room temperature at a sufficiently distant place. (5) The solidified plate-shaped sheet substrate was taken out from the mold.

【0034】以下では、上記工程(1)〜(5)によっ
て得られた、シート基体の表面付近の元素分析を行った
結果に関して説明する。
The results of the elemental analysis near the surface of the sheet substrate obtained by the above steps (1) to (5) will be described below.

【0035】表1は不純物分析の結果である。表1にお
いて、「金属級Si」とは原料の分析結果であり、「進
行方向側」及び「反対側」とは形成したシート基体の場
合を示した。ここで、「進行方向側」とは、鋳型の進行
方向を向いた側の面を意味する。一方、「反対側」と
は、「進行方向側」の反対面である。
Table 1 shows the results of the impurity analysis. In Table 1, “Metal grade Si” is the result of analysis of the raw material, and “advancing direction side” and “opposite side” indicate the case of the formed sheet substrate. Here, the "traveling direction side" means the surface on the side facing the traveling direction of the mold. On the other hand, the “opposite side” is the opposite side of the “traveling direction side”.

【0036】表1から、溶融/固化という過程でかなり
の不純物の移動があったことが分かった。特に、「進行
方向側」は「反対側」に比べて、遥かに不純物の量が減
少していることが確認された。
From Table 1, it was found that there was a considerable migration of impurities in the process of melting / solidification. In particular, it was confirmed that the amount of impurities on the “traveling direction side” was much smaller than that on the “opposite side”.

【0037】[0037]

【表1】 [Table 1]

【0038】表1の結果から、鋳型101が融点付近に
相当する炉の部位を通過する際、融液106は進行方向
を向いた側の面から固化が始まり、反対側の面は最後に
固化したため、金属級Siに含まれる不純物は進行方向
とは反対側の面付近に偏析することが分かった。またSe
ccoエッチングにより結晶粒界を顕在化させたところ、
得られたシートの結晶粒径は数mm〜数cmまで拡大し
ており、通常のキャスティング法で得られるSiインゴ
ットの場合と同等であった。
From the results shown in Table 1, when the mold 101 passes through the part of the furnace corresponding to the vicinity of the melting point, the melt 106 starts to solidify from the surface facing the advancing direction, and the opposite surface finally solidifies. Therefore, it was found that the impurities contained in the metal-grade Si segregated near the surface on the side opposite to the traveling direction. See Se
When the crystal grain boundaries were revealed by cco etching,
The crystal grain size of the obtained sheet was expanded to several mm to several cm, which was equivalent to that of the Si ingot obtained by the ordinary casting method.

【0039】(実施例2)本例では、実施例1で得られ
たシート基体上に、CVD法によりSi層を結晶成長さ
せた場合を説明する。 (1)シート基体の不純物が偏析した側の面をHF/H
NO3系のエッチャントにより数十μmエッチバックし
た。 (2)原料ガスにSiH2Cl2を用いて、成長温度を1
050℃とし、約0.8μm/minの成長速度で、不
純物が少なかった側の面上にSi層を30μm形成し
た。 (3)成長終了後Si層表面を光学顕微鏡及び走査型電
子顕微鏡で観察した。
(Example 2) In this example, a case will be described in which a Si layer is crystal-grown on the sheet substrate obtained in Example 1 by the CVD method. (1) HF / H on the surface of the sheet substrate on the side where the impurities are segregated
Etched back by several tens of μm with a NO 3 based etchant. (2) SiH 2 Cl 2 is used as the source gas and the growth temperature is set to 1
The temperature was set to 050 ° C. and the growth rate was about 0.8 μm / min. (3) After the growth, the surface of the Si layer was observed with an optical microscope and a scanning electron microscope.

【0040】その結果、得られたSi層表面はシート基
体の表面と同等であり、比較的平坦なSi層が形成され
た。また、結晶粒径も下地であるシートの大きさを受け
継いでいた。さらに、得られたSi層表面のエッチピッ
ト密度は、約1×104個/cm2であった。
As a result, the surface of the obtained Si layer was equivalent to the surface of the sheet substrate, and a relatively flat Si layer was formed. Further, the crystal grain size also inherits the size of the base sheet. Furthermore, the etch pit density on the surface of the obtained Si layer was about 1 × 10 4 pieces / cm 2 .

【0041】(実施例3)本例では、実施例2で作製し
たSi層を活性層として、その上に薄膜太陽電池を形成
した場合を説明する。
(Example 3) In this example, the case where the thin film solar cell is formed on the Si layer produced in Example 2 as an active layer will be described.

【0042】以下では、薄膜太陽電池の形成工程に沿っ
て説明する。 (1)Si層の表面に、イオン打ち込み法により、Pを
80keV、1×1015/cm2の条件で打ち込んだ。
その後、アニール(温度800℃、時間30分)して、
+層を形成した。 (2)上記n+層の上に、集電電極(Cr(0.02μ
m)/Ag(1μm)/Cr(0.004μm))/透
明電極(ITO(0.085μm))を、真空蒸着によ
り形成した。 (3)シート基体の裏面に、A1を蒸着し、裏面電極と
した。
The process of forming a thin film solar cell will be described below. (1) P was implanted into the surface of the Si layer by an ion implantation method under the conditions of 80 keV and 1 × 10 15 / cm 2 .
After that, anneal (temperature 800 ℃, time 30 minutes),
An n + layer was formed. (2) On the n + layer, a collector electrode (Cr (0.02μ
m) / Ag (1 μm) / Cr (0.004 μm)) / transparent electrode (ITO (0.085 μm)) was formed by vacuum evaporation. (3) A1 was vapor-deposited on the back surface of the sheet substrate to form a back surface electrode.

【0043】上記工程(1)〜(3)によって作製した
薄膜結晶太陽電池に対して、AM1.5(100mW/
cm2)光照射下でのI−V特性を測定した。その結
果、セル面積2cm2の場合、開放電圧0.57V、短
絡光電流29mA/cm2、曲線因子0.74となり、
変換効率12.2%を得た。
AM1.5 (100 mW / 100 mW / for the thin film crystal solar cell produced by the above steps (1) to (3)
cm 2 ) I-V characteristics under light irradiation were measured. As a result, when the cell area was 2 cm 2 , the open circuit voltage was 0.57 V, the short circuit photocurrent was 29 mA / cm 2 , and the fill factor was 0.74.
A conversion efficiency of 12.2% was obtained.

【0044】本例の結果から、金属級Siを溶融/固化
したシート基体を用い、その上にSi層を積層すること
で、良好な特性を有する薄膜結晶太陽電池が形成できる
ことが分かった。
From the results of this example, it was found that a thin film crystal solar cell having good characteristics can be formed by using a sheet substrate obtained by melting / solidifying metallurgical Si and laminating a Si layer thereon.

【0045】(実施例4)本例では、金属級Siの溶融
/固化によるシート基体の製造方法において、次に示す
2つの点が実施例1と異なる。 (イ)粉末状の金属級Siとして、120℃に加熱した
塩酸/過酸化水混合溶液に粉末状の金属級Siを通して
不純物を浸出させた後、水洗/乾燥したものを用いた。
(Embodiment 4) This embodiment differs from Embodiment 1 in the following two points in the method of manufacturing a sheet substrate by melting / solidifying metal grade Si. (A) As the powdery metal-grade Si, one obtained by leaching impurities through a powdery metal-grade Si into a hydrochloric acid / peroxide water mixed solution heated at 120 ° C., followed by washing / drying was used.

【0046】(ロ)上記(イ)で作製した粉末状の金属
級Siを、フィーダーを用いてカーボン・グラファイト
製の鋳型内の溝に充填した。但し、鋳型の溝の内面に
は、予めSi34粉末を分散させたシラノール溶液を鋳
型内に塗布し、400℃の熱処理をして離型用被膜を形
成した。他の点は、実施例1と同様とした。
(B) The powdery metallurgical grade Si produced in (a) above was filled in the grooves in the carbon graphite mold using a feeder. However, on the inner surface of the groove of the mold, a silanol solution in which Si 3 N 4 powder was previously dispersed was applied to the inside of the mold and heat-treated at 400 ° C. to form a mold release film. Other points were the same as in Example 1.

【0047】以下では、上記製造方法を工程に沿って説
明する。 (1)図1に示す構造の電気炉内に鋳型を投入し、Si
の融点よりも高い一定温度(1500℃)に保持した。 (2)一定時間(30分〜1時間)経過したところで、
同じ炉内の別の部位に設定された負の温度勾配(1℃/
mm)の中を、10mm/minの速度で移動させた。 (3)Siが完全に固化し終わってからもしばらく移動
を続け、融点よりも十分低い温度領域に鋳型が来たとこ
ろで電気炉のヒータを切り、鋳型の温度を室温まで下げ
た。
In the following, the manufacturing method will be described along with steps. (1) The mold is put into an electric furnace having the structure shown in FIG.
It was kept at a constant temperature (1500 ° C) above the melting point of. (2) When a certain time (30 minutes to 1 hour) has passed,
Negative temperature gradient set at another site in the same furnace (1 ℃ /
mm) at a speed of 10 mm / min. (3) Even after Si was completely solidified, it continued to move for a while, and when the mold came to a temperature region sufficiently lower than the melting point, the heater of the electric furnace was turned off and the temperature of the mold was lowered to room temperature.

【0048】以下では、上記工程(1)〜(3)によっ
て得られた、シート基体の表面付近の元素分析を行った
結果に関して説明する。
The results of elemental analysis of the vicinity of the surface of the sheet substrate obtained by the above steps (1) to (3) will be described below.

【0049】表2は不純物分析の結果である。表2にお
いて、「進行方向側」とは、鋳型の進行方向を向いた側
の面を意味する。一方、「反対側」とは、「進行方向
側」の反対面である。
Table 2 shows the results of the impurity analysis. In Table 2, "the advancing direction side" means the surface on the side facing the advancing direction of the mold. On the other hand, the “opposite side” is the opposite side of the “traveling direction side”.

【0050】[0050]

【表2】 表2から、鋳型の進行方向を向いた側の面では、反対側
の面に比ベて遥かに不純物の量が減少していることが分
かった。
[Table 2] From Table 2, it was found that the amount of impurities on the surface facing the advancing direction of the mold was much smaller than that on the opposite surface.

【0051】また、Seccoエッチングにより結晶粒界を
顕在化させたところ、得られたシート基体の結晶粒径は
数mm〜数cmまで拡大しており、通常のキャステイン
グ法で得られるSiインゴットの場合と同等であった。
When the crystal grain boundaries were revealed by Secco etching, the crystal grain size of the obtained sheet substrate was expanded to several mm to several cm. In the case of the Si ingot obtained by the ordinary casting method, Was equivalent to.

【0052】(実施例5)本例では、金属級Siの溶融
/固化によるシート基体の製造方法において、次に示す
2つの点が実施例1と異なる。 (イ)図1に示すようなSiC製の鋳型を作製し、鋳型
内の溝の内面にはSi34粉末を分散させたシラノール
溶液を塗布し、600℃の熱処理をして離型用被膜を形
成した。
Example 5 This example differs from Example 1 in the following two points in the method of manufacturing a sheet substrate by melting / solidifying metal grade Si. (A) A mold made of SiC as shown in FIG. 1 was prepared, and a silanol solution in which Si 3 N 4 powder was dispersed was applied to the inner surface of the groove in the mold, and heat treatment was performed at 600 ° C. for mold release. A film was formed.

【0053】(ロ)120℃に加熱した塩酸/過酸化水
混合溶液に粉末状の金属級Siを通して不純物を浸出さ
せた後、水洗/乾燥してからフィーダーを用いて鋳型内
の溝に充填した。他の点は、実施例1と同様とした。
(B) Impurities were leached through a powdery metallic grade Si into a hydrochloric acid / peroxide water mixed solution heated at 120 ° C., washed with water / dried, and then filled in a groove in a mold using a feeder. . Other points were the same as in Example 1.

【0054】以下では、上記製造方法を工程に沿って説
明する。 (1)図1に示す構造の電気炉内に鋳型を投入し、14
80℃の一定温度に保持した。 (2)40分程経過したところで、同じ炉内の別の部位
に設定された−0.5℃/mmの温度勾配の中を、15
mm/minの速度で移動させた。 (3)Siが完全に固化し終わってからもしばらく移動
を続け、融点よりも十分低い温度領域に鋳型が来たとこ
ろで電気炉のヒータを切り、鋳型の温度を室温まで下げ
た。
The above manufacturing method will be described below step by step. (1) The mold is put into the electric furnace having the structure shown in FIG.
The temperature was kept constant at 80 ° C. (2) When about 40 minutes have passed, a temperature gradient of −0.5 ° C./mm set at another site in the same furnace was changed to 15
It was moved at a speed of mm / min. (3) Even after Si was completely solidified, it continued to move for a while, and when the mold came to a temperature region sufficiently lower than the melting point, the heater of the electric furnace was turned off and the temperature of the mold was lowered to room temperature.

【0055】(4)固化した板状のシートを鋳型から取
り出し、シート基体の不純物が偏析した側の面をHF/
HNO3系のエッチャントにより数十μmエッチバック
した。 (5)エッチバックした面をサンドブラストで荒らして
から、シート基体に対して1100℃、3時間のゲッタ
リング処理を行った。
(4) The solidified plate-shaped sheet was taken out of the mold, and the surface of the sheet substrate on which impurities were segregated was HF /
Etched back by several tens of μm by HNO 3 type etchant. (5) The etched back surface was roughened by sandblasting, and then the sheet substrate was subjected to gettering treatment at 1100 ° C. for 3 hours.

【0056】表3は、上記工程(1)〜(5)によって
得られたシート基体において、鋳型の進行方向を向いた
側の面に対して元素分析を行った結果である。
Table 3 shows the results of elemental analysis on the surface of the sheet substrate obtained by the above steps (1) to (5) facing the advancing direction of the mold.

【0057】[0057]

【表3】 表3から、鋳型の進行方向を向いた側の面の不純物量
は、ゲッタ処理後の方が処理前に比べて低減しているこ
とが分かった。
[Table 3] From Table 3, it was found that the amount of impurities on the surface on the side facing the advancing direction of the mold was smaller after the getter treatment than before the treatment.

【0058】(実施例6)本例では、金属級Siの溶融
/固化によるシート基体の製造方法において、次に示す
2つの点が実施例1と異なる。その後、得られたシート
基体上に、CVD法によりSi層を堆積して太陽電池を
形成した。
(Embodiment 6) This embodiment differs from Embodiment 1 in the following two points in the method of manufacturing a sheet substrate by melting / solidifying metal grade Si. Then, a Si layer was deposited on the obtained sheet substrate by a CVD method to form a solar cell.

【0059】(イ)図1に示すようなSi34製の鋳型
を作製して用いた。 (ロ)120℃に加熱した塩酸/過酸化水混合溶液に粉
末状の金属級Siを通して不純物を浸出させた後、水洗
/乾燥してからフィーダーを用いて鋳型内の溝に充填し
た。他の点は、実施例1と同様とした。
(B) A mold made of Si 3 N 4 as shown in FIG. 1 was prepared and used. (B) Impurities were leached through a powdery metal-grade Si into a hydrochloric acid / peroxide water mixed solution heated to 120 ° C., washed with water / dried, and then filled in a groove in a mold using a feeder. Other points were the same as in Example 1.

【0060】以下では、上述したシート基体の製造方法
と太陽電池の形成を、工程に沿って説明する。 (1)図1に示す構造の電気炉内に鋳型を投入し、14
80℃の一定温度に保持した。 (2)1時間経過したところで、同じ炉内の別の部位に
設定された−0.3℃/mmの温度勾配の中を、30m
m/minの速度で移動させた。 (3)Siが完全に固化し終わってからもしばらく移動
を続け、融点よりも十分低い温度領域に鋳型が来たとこ
ろで電気炉のヒータを切り、鋳型の温度を室温まで下げ
た。
The method of manufacturing the above-mentioned sheet substrate and the formation of the solar cell will be described below along with the steps. (1) The mold is put into the electric furnace having the structure shown in FIG.
The temperature was kept constant at 80 ° C. (2) After 1 hour, a temperature gradient of −0.3 ° C./mm set at another site in the same furnace was changed to 30 m.
It was moved at a speed of m / min. (3) Even after Si was completely solidified, it continued to move for a while, and when the mold came to a temperature region sufficiently lower than the melting point, the heater of the electric furnace was turned off and the temperature of the mold was lowered to room temperature.

【0061】(4)固化した板状のシートを鋳型から取
り出し、シート基体の不純物が偏析した側の面を、HF
/HNO3系のエッチャントにより数十μmエッチバッ
クした。 (5)エッチバックした面をサンドブラストで荒らして
から、シート基体に対して1100℃、3時間のゲッタ
リング処理を行った。 (6)不純物量が低減された側の面(鋳型の進行方向を
向いた側の面)上に、SiH2Cl2を用い、成長温度l
050℃、成長速度約0.8μm/minにて、Si層
を40μm形成した。
(4) The solidified plate-shaped sheet was taken out of the mold, and the surface of the sheet substrate on which impurities were segregated was HF.
/ HNO 3 type etchant was used to etch back several tens of μm. (5) The etched back surface was roughened by sandblasting, and then the sheet substrate was subjected to gettering treatment at 1100 ° C. for 3 hours. (6) SiH 2 Cl 2 is used on the surface on the side where the amount of impurities is reduced (the surface facing the advancing direction of the mold), and the growth temperature 1
A Si layer of 40 μm was formed at 050 ° C. and a growth rate of about 0.8 μm / min.

【0062】(7)Si層の表面に、POCl3を拡散
源として900℃の温度でPの熱拡散を行い、n+層を
形成した。その接合深さは、0.5μm程度であった。 (8)形成されたn+層表面のデッド層をエッチングに
より除去した。その結果、約0.2μmの適度な表面濃
度をもった接合深さを形成した。 (9)n+層の上に、ITOからなる透明導電膜(約
0.1μm)を、電子ビーム蒸着法によって形成した。
(7) On the surface of the Si layer, P was thermally diffused at a temperature of 900 ° C. using POCl 3 as a diffusion source to form an n + layer. The junction depth was about 0.5 μm. (8) The dead layer on the surface of the formed n + layer was removed by etching. As a result, a junction depth having an appropriate surface concentration of about 0.2 μm was formed. (9) A transparent conductive film (about 0.1 μm) made of ITO was formed on the n + layer by an electron beam evaporation method.

【0063】(10)透明導電膜の上に、集電電極(C
r(0.02μm)/Ag(1μm)/Cr(0.00
4μm))を真空蒸着により形成した。 (11)シート基体の裏面に、Alを蒸着して裏面電極
を形成した。
(10) A collector electrode (C
r (0.02 μm) / Ag (1 μm) / Cr (0.00
4 μm)) was formed by vacuum evaporation. (11) On the back surface of the sheet substrate, Al was deposited to form a back surface electrode.

【0064】上記工程(1)〜(11)によって作製し
た薄膜結晶太陽電池に対して、AM1.5(100mW
/cm2)光照射下でのI−V特性を測定した。その結
果、セル面積2cm2の場合、開放電圧0.56V、短
絡光電流31mA/cm2、曲線因子0.75となり、
変換効率13.0%を得た。
AM1.5 (100 mW) was applied to the thin film crystal solar cell manufactured by the above steps (1) to (11).
/ Cm 2 ) I-V characteristics under light irradiation were measured. As a result, when the cell area is 2 cm 2 , the open circuit voltage is 0.56 V, the short-circuit photocurrent is 31 mA / cm 2 , and the fill factor is 0.75.
A conversion efficiency of 13.0% was obtained.

【0065】本例の結果から、金属級Siを溶融/固化
したシート基体を用い、その上にSi層を積層すること
で、良好な特性を有する薄膜結晶太陽電池が形成できる
ことが分かった。
From the results of this example, it was found that a thin film crystal solar cell having good characteristics can be formed by using a sheet substrate obtained by melting / solidifying metallurgical Si and laminating a Si layer thereon.

【0066】[0066]

【発明の効果】以上説明したように、本発明によれば、
インゴットからスライスする工程を省略可能な基体の製
造方法がえられる。
As described above, according to the present invention,
A method for manufacturing a substrate can be obtained in which the step of slicing from an ingot can be omitted.

【0067】また、前記基体の製造方法により形成され
た基体を用いることで、量産性が高く、安価で、かつ良
質の太陽電池がえられる。
Further, by using the substrate formed by the above-mentioned substrate manufacturing method, it is possible to obtain a solar cell of high mass productivity, low cost, and good quality.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明に係る基体の製造工程を説明し
た概略図である。
FIG. 1 is a schematic view illustrating a manufacturing process of a substrate according to the present invention.

【符号の説明】[Explanation of symbols]

101 鋳型、 102 フィーダー、 103 金属級Si、 104 蓋、 105 ヒータ、 106 融液Si、 107 固化Si、 108 不純物偏析領域、 109 炉管。 101 mold, 102 feeder, 103 metal grade Si, 104 lid, 105 heater, 106 melt Si, 107 solidified Si, 108 impurity segregation region, 109 furnace tube.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 半導体層を支持する基体の製造方法にお
いて、搬送される方向に対して垂直方向に板状の溝を有
する鋳型が、前記板状の溝の内部にSiからなる原料を
注入される第1工程と、前記鋳型をSiの融点よりも高
い温度に保ち、前記Siからなる原料を融解させて前記
板状の溝を満たす第2工程と、前記鋳型が搬送される方
向に負の温度勾配の設けられた炉内を、前記鋳型が移動
する第3工程と、前記鋳型が前記炉内を移動する間に、
融解された前記Siを固化させる第4工程と、からなる
ことを特徴とする基体の製造方法。
1. A method of manufacturing a substrate for supporting a semiconductor layer, wherein a mold having a plate-shaped groove in a direction perpendicular to a conveying direction is filled with a raw material made of Si into the plate-shaped groove. A first step of maintaining the mold at a temperature higher than the melting point of Si, melting the raw material of Si to fill the plate-like groove, and a negative direction in which the mold is conveyed. In a furnace provided with a temperature gradient, a third step of moving the mold, and while the mold moves in the furnace,
A fourth step of solidifying the melted Si, the method for producing a substrate.
【請求項2】 前記鋳型の材質が、カーボン・グラファ
イト、シリコン・カーバイト、又は窒化珪素の中から選
択されることを特徴とする請求項1に記載の基体の製造
方法。
2. The method of manufacturing a substrate according to claim 1, wherein the material of the mold is selected from carbon graphite, silicon carbide, and silicon nitride.
【請求項3】 前記Siからなる原料が、金属級Siで
あることを特徴とする請求項1又は2に記載の基体の製
造方法。
3. The method for producing a substrate according to claim 1, wherein the raw material made of Si is metallurgical grade Si.
【請求項4】 前記板状の溝の内面には、少なくともS
34を含む離型剤が被膜されていることを特徴とする
請求項1乃至3のいずれか1項に記載の基体の製造方
法。
4. The inner surface of the plate-shaped groove has at least S.
The method for producing a substrate according to any one of claims 1 to 3, wherein a release agent containing i 3 N 4 is coated.
【請求項5】 前記基体が、光電変換素子用であること
を特徴とする請求項1乃至4のいずれか1項に記載の基
体の製造方法。
5. The method for producing a substrate according to claim 1, wherein the substrate is for a photoelectric conversion element.
【請求項6】 光電変換素子をなす前記半導体層が、請
求項1乃至5のいずれか1項に記載の基体上に形成され
たことを特徴とする太陽電池。
6. A solar cell, wherein the semiconductor layer forming a photoelectric conversion element is formed on the substrate according to any one of claims 1 to 5.
JP18045995A 1995-07-17 1995-07-17 Substrate manufacturing method Expired - Fee Related JP3596828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18045995A JP3596828B2 (en) 1995-07-17 1995-07-17 Substrate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18045995A JP3596828B2 (en) 1995-07-17 1995-07-17 Substrate manufacturing method

Publications (2)

Publication Number Publication Date
JPH0936403A true JPH0936403A (en) 1997-02-07
JP3596828B2 JP3596828B2 (en) 2004-12-02

Family

ID=16083601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18045995A Expired - Fee Related JP3596828B2 (en) 1995-07-17 1995-07-17 Substrate manufacturing method

Country Status (1)

Country Link
JP (1) JP3596828B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6387780B1 (en) 1996-09-19 2002-05-14 Canon Kabushiki Kaisha Fabrication process of solar cell
US6602767B2 (en) 2000-01-27 2003-08-05 Canon Kabushiki Kaisha Method for transferring porous layer, method for making semiconductor devices, and method for making solar battery
EP2132769A1 (en) * 2007-03-21 2009-12-16 Mossey Creek Technology, Llc Method of making a solar grade silicon wafer

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51101466A (en) * 1975-02-28 1976-09-07 Wacker Chemitronic
JPS54121086A (en) * 1978-03-14 1979-09-19 Agency Of Ind Science & Technol Forming method of silicon plate
JPS6139932U (en) * 1984-08-17 1986-03-13 株式会社 ほくさん manufacturing dish
JPH0218927A (en) * 1988-07-07 1990-01-23 Hoxan Corp Manufacture of polycrystalline silicon thin film substrate
JPH02197177A (en) * 1989-01-26 1990-08-03 Mitsubishi Electric Corp Manufacture of semiconductor device
JPH04243168A (en) * 1991-01-17 1992-08-31 Mitsubishi Electric Corp Manufacture of solar cell substrate
JPH04292494A (en) * 1991-03-19 1992-10-16 Union Material Kk Method and device for producing shape-adjusted crystal
JPH04311070A (en) * 1991-04-09 1992-11-02 Mitsubishi Electric Corp Silicon crystal product and manufacture thereof
JPH0690013A (en) * 1992-09-08 1994-03-29 Mitsubishi Electric Corp Thin-film solar cell and production of solar cell, production of semiconductor ingot and production of semiconductor substrate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51101466A (en) * 1975-02-28 1976-09-07 Wacker Chemitronic
JPS54121086A (en) * 1978-03-14 1979-09-19 Agency Of Ind Science & Technol Forming method of silicon plate
JPS6139932U (en) * 1984-08-17 1986-03-13 株式会社 ほくさん manufacturing dish
JPH0218927A (en) * 1988-07-07 1990-01-23 Hoxan Corp Manufacture of polycrystalline silicon thin film substrate
JPH02197177A (en) * 1989-01-26 1990-08-03 Mitsubishi Electric Corp Manufacture of semiconductor device
JPH04243168A (en) * 1991-01-17 1992-08-31 Mitsubishi Electric Corp Manufacture of solar cell substrate
JPH04292494A (en) * 1991-03-19 1992-10-16 Union Material Kk Method and device for producing shape-adjusted crystal
JPH04311070A (en) * 1991-04-09 1992-11-02 Mitsubishi Electric Corp Silicon crystal product and manufacture thereof
JPH0690013A (en) * 1992-09-08 1994-03-29 Mitsubishi Electric Corp Thin-film solar cell and production of solar cell, production of semiconductor ingot and production of semiconductor substrate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6387780B1 (en) 1996-09-19 2002-05-14 Canon Kabushiki Kaisha Fabrication process of solar cell
US6869863B2 (en) 1996-09-19 2005-03-22 Canon Kabushiki Kaisha Fabrication process of solar cell
US6602767B2 (en) 2000-01-27 2003-08-05 Canon Kabushiki Kaisha Method for transferring porous layer, method for making semiconductor devices, and method for making solar battery
EP2132769A1 (en) * 2007-03-21 2009-12-16 Mossey Creek Technology, Llc Method of making a solar grade silicon wafer
EP2132769A4 (en) * 2007-03-21 2011-06-29 Mossey Creek Technology Llc Method of making a solar grade silicon wafer

Also Published As

Publication number Publication date
JP3596828B2 (en) 2004-12-02

Similar Documents

Publication Publication Date Title
JP3616785B2 (en) Manufacturing method of solar cell
McCann et al. A review of thin-film crystalline silicon for solar cell applications. Part 1: Native substrates
US6111191A (en) Columnar-grained polycrystalline solar cell substrate and improved method of manufacture
JP3501606B2 (en) Method for manufacturing semiconductor substrate and method for manufacturing solar cell
JPH06342923A (en) Polycrystal sheet provided with pillar-shaped particle for solar cell and its manufacture
JP3478618B2 (en) Photoelectric conversion element and method for manufacturing the same
JPH11214720A (en) Manufacture of thin-film crystal solar cell
JP2010018513A (en) Method for purifying crystalline silicon substrate and process of manufacturing photovoltaic cell
JP2004296598A (en) Solar cell
TW200834741A (en) Directional crystallization of silicon sheets using rapid thermal processing
JP3596828B2 (en) Substrate manufacturing method
Belouet Growth of silicon ribbons by the RAD process
JP3935747B2 (en) Method for producing silicon ingot
JP2003112252A (en) Method of manufacturing semiconductor substrate, semiconductor substrate, solar battery, and casting mold for manufacturing semiconductor substrate
JP2004140087A (en) Polycrystalline silicon substrate for solar cell and method for manufacturing the same, and method for manufacturing solar cell using the substrate
JP2003092285A (en) Manufacturing method for semiconductor substrate
WO1992010003A1 (en) Method for manufacturing thin silicon solar cell
JP3069208B2 (en) Method for manufacturing thin-film polycrystalline Si solar cell
JP3350064B2 (en) Silicon crystal product and manufacturing method thereof
JP2003267716A (en) Manufacturing device and manufacturing method using the same for polycrystalline semiconductor substrate
JP2000264618A (en) Production of silicon plate polycrystal
AbdelRassoul Chemical-vapor deposited large-area multicrystalline epitaxial silicon solar cells on upgraded metallurgical silicon/graphite substrates
JP2002068724A (en) Polycrystalline silicon and silicon wafer for solar cell
JP2002141529A (en) Method of forming photovoltaic element, photovoltaic element, method of forming semiconductor substrate and semiconductor substrate
JPS6134267B2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070917

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees