JPH09302456A - High corrosion resistant metallic product and its production - Google Patents
High corrosion resistant metallic product and its productionInfo
- Publication number
- JPH09302456A JPH09302456A JP8192797A JP8192797A JPH09302456A JP H09302456 A JPH09302456 A JP H09302456A JP 8192797 A JP8192797 A JP 8192797A JP 8192797 A JP8192797 A JP 8192797A JP H09302456 A JPH09302456 A JP H09302456A
- Authority
- JP
- Japan
- Prior art keywords
- carbon
- treatment
- stainless steel
- austenitic stainless
- metal product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/40—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
- C23C8/42—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions only one element being applied
- C23C8/48—Nitriding
- C23C8/50—Nitriding of ferrous surfaces
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、機械的性質と、高
度の耐蝕性を有する高耐蝕性金属製品およびその製法に
関するものである。TECHNICAL FIELD The present invention relates to a highly corrosion-resistant metal product having mechanical properties and a high degree of corrosion resistance, and a method for producing the same.
【0002】[0002]
【従来の技術】従来から、耐蝕性が重視される分野に使
用されるオーステナイト系ステンレスは、鉄を基材とし
てクロムを18重量%,ニッケルを8重量%含有させた
基本組成のものであり、一般に「18−8ステンレス」
と呼ばれているものである。また、この18−8ステン
レスに、1〜3重量%のモリブデンを含有させたオース
テナイト系ステンレスも汎用鋼種として多用されてい
る。2. Description of the Related Art Conventionally, austenitic stainless steel used in fields where corrosion resistance is important has a basic composition containing 18% by weight of chromium and 8% by weight of nickel with iron as a base material. Generally "18-8 stainless steel"
It is what is called. Further, austenitic stainless steel in which 1 to 3% by weight of molybdenum is added to the 18-8 stainless steel is also widely used as a general-purpose steel type.
【0003】これらの汎用型のオーステナイト系ステン
レスとしては、JISにおいて、SUS304,SUS
316等、用途や特性に合わせて多くの鋼種が規格化さ
れている。これらのなかでもSUS304は、最も多用
される代表的な汎用鋼種であるが、使用される環境によ
っては耐蝕性が不充分な場合がある。例えば、有機,無
機の酸や塩類,薬品類,海水,ハロゲンガス,SO2 等
による強い腐食性環境下では、上記SUS304等の1
8−8ステンレスを用いた金属製品では腐食されてしま
い、安定した使用ができない。そこで、上記のような腐
食性環境下においては、上記基本組成の18−8ステン
レスにモリブデンを3〜7重量%まで多量に含有させた
高耐蝕性向ステンレス鋼が用いられることがある。つま
り、これら高耐蝕性向ステンレス鋼は、モリブデンの添
加により、ステンレスの耐蝕性機能の源である不働態皮
膜が強化されるものと考えられ、海水や硫酸等の腐食性
環境用としては、モリブデンを5〜7重量%まで含有さ
せた鋼種も開発されている。ところが、上記モリブデン
はフェライト安定化元素であり、多量に添加すると、オ
ーステナイト系ステンレスのオーステナイト相を安定化
させるために、オーステナイト安定化元素であるニッケ
ルや銅,窒素(N)等を多量に添加させなければならな
い。さらに、上記のような強い腐食性環境下では、オー
ステナイト系ステンレス以外の金属材料として、26C
r−4Mo,29Cr−4Mo−2Ni等の高クロム含
有フェライト系ステンレスや、ハステロイ,モネル等の
ニッケル基合金材料やチタン合金材料が用いられたり、
あるいは、プラスチック材料,セラミック材料等の非金
属材料等が用いられている。[0003] These general-purpose austenitic stainless steels include SUS304 and SUS in JIS.
Many steel grades such as 316 have been standardized according to the use and characteristics. Among these, SUS304 is the most commonly used typical general-purpose steel type, but its corrosion resistance may be insufficient depending on the environment in which it is used. For example, under a strong corrosive environment with organic or inorganic acids or salts, chemicals, seawater, halogen gas, SO 2, etc.
Metal products made of 8-8 stainless steel are corroded and cannot be used stably. Therefore, under the corrosive environment as described above, a highly corrosion-resistant stainless steel in which a large amount of molybdenum (3 to 7% by weight) is added to 18-8 stainless steel having the above basic composition may be used. In other words, it is considered that the addition of molybdenum to these high-corrosion-resistant stainless steels strengthens the passive film that is the source of the corrosion-resistant function of stainless steel, and molybdenum is used for corrosive environments such as seawater and sulfuric acid. Steel grades containing up to 5-7% by weight have also been developed. However, molybdenum is a ferrite stabilizing element, and when added in a large amount, a large amount of austenite stabilizing elements such as nickel, copper and nitrogen (N) are added in order to stabilize the austenitic phase of austenitic stainless steel. There must be. Furthermore, in the strong corrosive environment as described above, as a metal material other than austenitic stainless steel, 26C
A high chromium content ferritic stainless steel such as r-4Mo, 29Cr-4Mo-2Ni, a nickel-based alloy material such as Hastelloy or Monel or a titanium alloy material is used,
Alternatively, non-metal materials such as plastic materials and ceramic materials are used.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、上記高
耐蝕性向ステンレス鋼は、添加元素が増加することから
くる原料コストや製鋼コストが高くなるだけでなく、市
場流通性も低いことから、材料自体が高価なものにな
る。しかも、難加工性で溶接性も悪いことから量産性に
も劣り、成形加工,溶接等の加工コストも高くなり、上
記高耐蝕性向ステンレス鋼を原料とした金属製品は、上
記SUS304等の汎用鋼種を使用したものと比べては
るかに割高となる。また、ニッケル基合金材料やチタン
合金材料では、上記高耐蝕性向ステンレスよりもさらに
材料コスト,加工コストが高くなる。また、樹脂材料,
セラミック材料等の非金属材料を用いる場合には、機械
的強度等の信頼性の面で金属材料に劣り,適用範囲が限
定されているのが現状である。However, in the above-mentioned stainless steel having high corrosion resistance, not only the raw material cost and the steelmaking cost due to the increase of the additional elements are increased, but also the marketability is low, so that the material itself is It will be expensive. Moreover, since it is difficult to work and poor in weldability, it is inferior in mass productivity, and the processing costs such as forming and welding are high. Metal products made from the above stainless steel with high corrosion resistance are general-purpose steel grades such as SUS304. Much more expensive than using. Further, in the case of a nickel-based alloy material or a titanium alloy material, the material cost and the processing cost are further higher than the above-mentioned stainless steel for high corrosion resistance. Also, resin material,
When a non-metal material such as a ceramic material is used, it is inferior to a metal material in terms of reliability such as mechanical strength and the application range is limited at present.
【0005】本発明は、このような事情に鑑みなされた
もので、基本組成に近い安価な汎用型のステンレスを使
用し、その表面に炭素の濃化層を形成させることによ
り、酸,海水,薬品等に対して優れた耐蝕性を有し、し
かも安価な、高耐蝕性金属製品およびその製法の提供を
その目的とする。The present invention has been made in view of the above circumstances. An inexpensive general-purpose type stainless steel having a basic composition is used, and a carbon concentrated layer is formed on the surface of the stainless steel to form an acid, seawater, It is an object of the present invention to provide a highly corrosion-resistant metal product which has excellent corrosion resistance against chemicals and the like and is inexpensive, and a method for producing the same.
【0006】[0006]
【課題を解決するための手段】上記の目的を達成するた
め、本発明の高耐蝕性金属製品は、母材が、オーステナ
イト相を呈するオーステナイト系ステンレスからなり、
表面の不働態皮膜直下の5〜50μmの深さの表面層
が、炭素原子の浸透によって、炭素の濃化層に形成され
たことを第1の要旨とする。In order to achieve the above object, in the highly corrosion resistant metal product of the present invention, the base material is austenitic stainless steel exhibiting an austenite phase,
The first gist is that the surface layer having a depth of 5 to 50 μm immediately below the passivation film on the surface was formed as a carbon concentrated layer by permeation of carbon atoms.
【0007】また、本発明の高耐蝕性金属製品の製法
は、母材がオーステナイト相を呈するオーステナイト系
ステンレス製品を、フッ素系ガス雰囲気下で加熱状態で
保持し、ついで、400℃〜500℃の温度で炭素原子
の浸透処理を行い、表面から5〜50μmの深さの表面
層に炭素の濃化層を形成させることを第2の要旨とす
る。Further, in the method for producing a highly corrosion-resistant metal product of the present invention, an austenitic stainless steel product whose base material exhibits an austenite phase is held in a heated state in a fluorine-based gas atmosphere, and then at 400 ° C to 500 ° C. A second gist is to perform a carbon atom permeation treatment at a temperature to form a carbon concentrated layer in a surface layer having a depth of 5 to 50 μm from the surface.
【0008】本発明者らは、強い腐食性環境下での使用
に耐える安価な金属製品を得ることを目的として一連の
研究を重ねる過程で、汎用されている安価なオーステナ
イト系ステンレスに対して表面処理を施すことにより、
その耐蝕性をさらに向上させることができるのではない
かと想起し、オーステナイト系ステンレスに対する表面
処理に関して種々実験を繰り返した。その結果、オース
テナイト系ステンレスを母材とした金属製品を、400
〜500℃に加熱した状態で外部から炭素を拡散浸透さ
せ、表面に炭素の濃化層を形成させることにより、この
濃化層が、母材であるオーステナイト系ステンレスより
もはるかに良好な耐蝕性を示し、これによって得られた
金属製品が強い腐食環境下においても安定して使用でき
るようになることを突き止め、本発明に到達した。[0008] The inventors of the present invention have conducted a series of studies to obtain an inexpensive metal product that can withstand use in a strongly corrosive environment. By performing the processing,
Recalling that the corrosion resistance could be further improved, various experiments were repeated on the surface treatment of austenitic stainless steel. As a result, a metal product made of austenitic stainless steel as a base material
Carbon is diffused and permeated from the outside in a state of being heated to ~ 500 ° C to form a concentrated layer of carbon on the surface, and this concentrated layer has much better corrosion resistance than the austenitic stainless steel which is the base material. The inventors have found that the metal product obtained thereby can be stably used even in a strong corrosive environment, and arrived at the present invention.
【0009】すなわち、本発明は、オーステナイト系ス
テンレスがオーステナイト相を呈するうえで最小限のニ
ッケル,クロムあるいはモリブデンを含有する基本組成
の安価な汎用型ステンレスを使用し、この汎用型ステン
レスを加工して得られた金属製品の表面に炭素を浸透さ
せたものであり、これにより、厳しい腐食環境下であっ
ても良好な耐蝕性を発揮し、しかも汎用鋼種を用いるこ
とから安価な金属製品が得られるのである。That is, according to the present invention, an inexpensive general-purpose stainless steel having a basic composition containing nickel, chromium, or molybdenum in a minimum amount for exhibiting an austenitic phase is used, and the general-purpose stainless steel is processed. Carbon is infiltrated into the surface of the obtained metal product, which shows good corrosion resistance even in a severe corrosive environment, and an inexpensive metal product can be obtained by using general-purpose steel grades. Of.
【0010】[0010]
【発明の実施の形態】つぎに、本発明の実施の形態につ
いて詳しく説明する。Next, an embodiment of the present invention will be described in detail.
【0011】本発明は、汎用型のオーステナイト系ステ
ンレスを利用し、このオーステナイト系ステンレスが所
定の製品形状に加工され、その状態で母材がオーステナ
イト相を呈する金属製品に対して、表面処理により炭素
を浸透させ、表面の不働態皮膜直下の表面層に炭素の濃
化層を形成させたものである。The present invention utilizes general-purpose austenitic stainless steel, which is processed into a predetermined product shape, and a metal product whose base material exhibits an austenitic phase in that state is subjected to carbon treatment by surface treatment. And a carbon-enriched layer is formed on the surface layer immediately below the passive film on the surface.
【0012】本発明で使用するオーステナイト系ステン
レスとしては、オーステナイト相を呈したステンレスで
あれば、特に限定されるものではなく、例えば、JIS
に規定されるSUS302,SUS302E,SUS2
02,SUS301,SUS201,SUS301J
1,SUS631,SUS632,SUS303,SU
S303Se,SUS304,SUS304L,SUS
304LN,SUS321,SUS347,SUS30
4N1,SUS304N2,SUS316,SUS31
6N,SUS316L,SUS316LN,SUS31
7,SUS317L,SUS317J1,SUS316
J1,SUS316J1L,SUS305,SUS30
5J1,SUS384,SUS385,SUS309,
SUS309S,SUS310,SUS310S,SU
S330,SUS302B,XM15J1,SUS30
8,SUS308L等各種のものが用いられる。The austenitic stainless steel used in the present invention is not particularly limited as long as it is a stainless steel exhibiting an austenitic phase. For example, JIS
SUS302, SUS302E, SUS2 specified in
02, SUS301, SUS201, SUS301J
1, SUS631, SUS632, SUS303, SU
S303Se, SUS304, SUS304L, SUS
304LN, SUS321, SUS347, SUS30
4N1, SUS304N2, SUS316, SUS31
6N, SUS316L, SUS316LN, SUS31
7, SUS317L, SUS317J1, SUS316
J1, SUS316J1L, SUS305, SUS30
5J1, SUS384, SUS385, SUS309,
SUS309S, SUS310, SUS310S, SU
S330, SUS302B, XM15J1, SUS30
8, various types such as SUS308L are used.
【0013】これらのなかでも、SUS301系やSU
S304は、固溶化状態ではオーステナイト相を呈する
が、冷間加工が進むに従って、フェライトが生成しやす
くなり、耐蝕性が劣化する場合がある。特に、SUS3
01系はこの傾向が著しい。したがって、SUS304
系の材料の場合には、SUS304N1,SUS304
N2等の窒素(N),マンガン(Mn),銅(Cu)等
の元素が添加された鋼種の方が適している。ただし、S
US304であっても、加工程度の低いものは、フェラ
イトの生成がないため、本発明に好適に用いられる。ま
た、モリブデンを含有するSUS316は、もともと耐
蝕性の向上を主眼におかれたもので母材自体の耐蝕性も
SUS304よりは良く、しかも比較的オーステナイト
相が安定であるため、本発明に好適に用いられる。Among these, SUS301 series and SU
S304 exhibits an austenite phase in the solid solution state, but as cold working progresses, ferrite is likely to be generated and corrosion resistance may deteriorate. In particular, SUS3
In the 01 series, this tendency is remarkable. Therefore, SUS304
SUS304N1 and SUS304 in the case of system materials
A steel type added with elements such as nitrogen (N) such as N2, manganese (Mn), copper (Cu) is more suitable. Where S
Even if US304 has a low degree of processing, it does not generate ferrite, and is therefore suitably used in the present invention. In addition, SUS316 containing molybdenum is originally intended to improve the corrosion resistance, the base material itself has better corrosion resistance than SUS304, and the austenite phase is relatively stable. Therefore, SUS316 is suitable for the present invention. Used.
【0014】すなわち、本発明で使用するオーステナイ
ト系ステンレスとしては、最小限のニッケル,クロム,
モリブデンを含有し、常温においてフェライトの生成が
なく完全にオーステナイト相を呈していればよい。ま
た、常温での加工によってもフェライトの生成がない安
定型のオーステナイト系ステンレスであれば、より好ま
しい。また、加工によってフェライトが析出したオース
テナイト系ステンレスであっても、固溶化処理等によ
り、完全にオーステナイト相を呈するようにすれば、本
発明の母材として使用することができる。That is, the minimum austenitic stainless steel used in the present invention is nickel, chromium,
It suffices if it contains molybdenum and does not form ferrite at room temperature and exhibits a complete austenite phase. Further, it is more preferable if it is a stable austenitic stainless steel in which ferrite is not formed even when processed at room temperature. Further, even austenitic stainless steel in which ferrite is precipitated by processing can be used as the base material of the present invention if it is made to completely exhibit an austenite phase by solution treatment or the like.
【0015】本発明は、上記オーステナイト相を呈する
オーステナイト系ステンレスを母材とし、所望の製品形
状に加工したのち、炭素を浸透させて炭素の濃化層を形
成させる。In the present invention, the austenitic stainless steel exhibiting the austenite phase is used as a base material, processed into a desired product shape, and then carbon is permeated to form a carbon concentrated layer.
【0016】上記炭素の濃化層は、製品の表面から、5
〜50μmの厚さに設定するのが好ましく、20〜30
μmであれば一層好ましい。すなわち、5μm未満では
良好な耐蝕性を得るのに不充分であり、50μmを超え
ると、処理時間が長くなってコスト的に不利になるから
である。The carbon enriched layer is formed on the surface of the product by 5
It is preferable to set the thickness to -50 μm, and the thickness is 20 to 30.
It is even more preferable if it is μm. That is, if it is less than 5 μm, it is insufficient to obtain good corrosion resistance, and if it exceeds 50 μm, the processing time becomes longer and the cost becomes disadvantageous.
【0017】上記濃化層において、浸透した炭素原子
は、母材であるオーステナイト系ステンレス(面心立方
格子である)の組織中で、上記面心立方格子の隙間に侵
入型に固溶している。すなわち、本発明においては、上
記炭素原子は、母材中のクロムや鉄と化合して鉄炭化物
やクロム炭化物を生成することがない。したがって、上
記濃化層は、炭素原子が侵入固溶したオーステナイト相
を保っているのである。上記濃化層により、オーステナ
イト系ステンレスの耐蝕性が格段に向上するものと考え
られる。In the concentrated layer, the infiltrated carbon atoms form an interstitial solid solution in the interstices of the face-centered cubic lattice in the structure of the base material, austenitic stainless steel (which is the face-centered cubic lattice). There is. That is, in the present invention, the carbon atom does not combine with chromium or iron in the base material to form an iron carbide or a chromium carbide. Therefore, the concentrated layer maintains the austenite phase in which carbon atoms infiltrate and form a solid solution. It is considered that the thickened layer significantly improves the corrosion resistance of the austenitic stainless steel.
【0018】上記のようなクロム炭化物粒子が存在しな
いオーステナイト相とは、金属材料の結晶構造解析に一
般的に使用されるX線回折計(X−Ray Diffr
action meter)によって、Cr23C6 ,C
r7 C3 ,Cr3 C2 結晶質の炭化物が確認できないオ
ーステナイト相をいう。すなわち、オーステナイト系ス
テンレスの基相であるオーステナイト相(γ−相)は、
その結晶構造が面心立方格子で格子定数がa=3.59
Åであることから、X線回折により特定の回折ピークが
得られる。これに対し、Cr23C6 は、同じ面心立方格
子であっても、格子定数がa=10.6Åであり、Cr
7 C3 は、三方晶で格子定数がa=14.0Å,c=
4.53Åであり、Cr3 C2 は、斜方晶で格子定数が
a=5.53Å,b=2.821Å,c=11.49Å
である。このため、これらのクロム炭化物は、上記オー
ステナイト相とは、結晶構造や格子定数が異なり、上記
オーステナイト相で得られる回折ピークとは異なる回折
ピークを生じる。したがって、浸透層にクロム炭化物が
存在すると、X線回折によってオーステナイト相単相の
場合には見られないクロム炭化物のピークが現出するこ
とになる。一方、本発明における炭素の濃化層は、クロ
ム炭化物が存在せず、炭素原子が侵入固溶して母相のオ
ーステナイト相の格子が等方に歪み膨張したオーステナ
イト相となっていることから、X線回折によってもクロ
ム炭化物のピークが現れない。The austenite phase in which the chromium carbide particles do not exist is the X-ray diffractometer (X-Ray Diffrometer) generally used for the crystal structure analysis of metal materials.
by the action meter), Cr 23 C 6 , C
r 7 C 3 , Cr 3 C 2 It means the austenite phase in which crystalline carbides cannot be confirmed. That is, the austenite phase (γ-phase), which is the base phase of austenitic stainless steel, is
Its crystal structure is a face-centered cubic lattice and the lattice constant is a = 3.59.
Since it is Å, a specific diffraction peak is obtained by X-ray diffraction. On the other hand, Cr 23 C 6 has a lattice constant of a = 10.6Å even if it has the same face-centered cubic lattice,
7 C 3 is a trigonal crystal with a lattice constant of a = 14.0Å, c =
4.53Å, Cr 3 C 2 is orthorhombic and has a lattice constant of a = 5.53Å, b = 2.821Å, c = 11.49Å
It is. Therefore, these chromium carbides have different crystal structures and lattice constants from the austenite phase, and generate diffraction peaks different from those obtained in the austenite phase. Therefore, when chromium carbide is present in the permeation layer, a peak of chromium carbide which is not seen in the case of the austenite phase single phase appears by X-ray diffraction. On the other hand, the carbon-enriched layer in the present invention has no chromium carbide, and the lattice of the austenite phase of the parent phase is a strained and expanded austenite phase in which the carbon atoms are invaded as a solid solution, The peak of chromium carbide does not appear even by X-ray diffraction.
【0019】従来から、金属表面に上記のような炭素の
濃化層を形成させる場合には、炭素鋼や肌焼鋼を、鋼の
A1 変態点(727℃)以上の温度で浸炭性のガス雰囲
気中に保持して炭素を拡散浸透させ、表面から約0.5
〜3mmの深さの浸炭硬化層を形成させる、いわゆる浸
炭処理が行われている。しかしながら、耐蝕性を重視す
るオーステナイト系ステンレスに対しては、上記のよう
な高温で浸炭処理を行うと、耐蝕性がはなはだしく低下
するうえ材料強度も低下することから、行われることは
なかった。このように、オーステナイト系ステンレスに
対して浸炭処理を行うことにより母材の耐蝕性が劣化す
る原因としては、高温で炭素原子を拡散浸透させること
で、母材中のクロムと浸透した炭素が反応し、Cr23C
6 ,Cr7 C3 ,Cr3 C2 等のクロム炭化物が結晶粒
界や転位等の欠陥部分に析出し、母材中の固溶クロムが
消費され、耐蝕性の向上に寄与する固溶クロム濃度が大
幅に低下するためと考えられている。Conventionally, in the case where the above-mentioned carbon enriched layer is formed on the metal surface, carbon steel or case-hardening steel is carburized at a temperature not lower than the A 1 transformation point (727 ° C.) of the steel. Keeping in a gas atmosphere to diffuse and infiltrate carbon, and about 0.5 from the surface
So-called carburizing treatment is performed to form a carburized hardened layer having a depth of ˜3 mm. However, the austenitic stainless steel, which places importance on the corrosion resistance, has not been subjected to the carburizing treatment at a high temperature as described above, because the corrosion resistance remarkably decreases and the material strength also decreases. As described above, the reason why the corrosion resistance of the base material is deteriorated by performing the carburizing treatment on the austenitic stainless steel is that the carbon in the base material reacts with the infiltrated carbon by diffusing and infiltrating carbon atoms at a high temperature. And Cr 23 C
Chromium carbides such as 6 , Cr 7 C 3 and Cr 3 C 2 are deposited on the defect parts such as grain boundaries and dislocations, so that the solid solution chromium in the base material is consumed and the solid solution chromium contributes to the improvement of corrosion resistance. It is believed that the concentration is significantly reduced.
【0020】これに対し、本発明では、炭素を浸透させ
る際の温度が400〜500℃と、上記一般の浸炭温度
領域よりはるかに低いことから、炭素濃化層は、結晶質
のクロム炭化物が形成されることがなく、クロム炭化物
が存在しないオーステナイト相から形成されるため、固
溶クロムが炭化物の生成に消費されず、耐蝕性が低下す
ることがない。それだけでなく、本発明の高耐蝕性金属
製品の炭素の濃化層は、母材であるオーステナイト系ス
テンレスよりも格段に優れた耐蝕性を発揮するのであ
る。On the other hand, in the present invention, the temperature at which carbon is permeated is 400 to 500 ° C., which is far lower than the general carburizing temperature range, so that the carbon-concentrated layer contains crystalline chromium carbide. Since it is not formed and is formed from the austenite phase in which chromium carbide does not exist, solid solution chromium is not consumed for the formation of carbide and corrosion resistance does not deteriorate. Not only that, the carbon-enriched layer of the highly corrosion-resistant metal product of the present invention exhibits significantly higher corrosion resistance than the austenitic stainless steel as the base material.
【0021】このように、本発明の高耐蝕性金属製品の
炭素の濃化層が、母材であるオーステナイト系ステンレ
スよりも優れた耐蝕性を示す理由については、現状では
明確ではないが、つぎの二つの理由によるものと推測さ
れる。すなわち、まず第一に、炭素が高濃度に固溶した
ことによって、最表面に形成される不働態皮膜直下の金
属組織の均等化が進み、不働態皮膜の不働態化機能を強
化させたものと推測される。そして、第二に、表層部に
高濃度のCバンドが形成されているため、金属イオンの
拡散バリヤーが形成されているものと推測される。As described above, the reason why the carbon-enriched layer of the highly corrosion-resistant metal product of the present invention exhibits superior corrosion resistance to the austenitic stainless steel as the base material is not clear at present. It is speculated that there are two reasons. That is, first of all, the solid solution of carbon in a high concentration promotes the equalization of the metal structure immediately below the passivation film formed on the outermost surface and strengthens the passivation function of the passivation film. Presumed to be. Secondly, since a high concentration C band is formed in the surface layer portion, it is presumed that a diffusion barrier for metal ions is formed.
【0022】ここで、本発明において不働態皮膜とは、
ステンレス鋼の最表面に形成される、酸化クロム(Cr
2 O3 )を主体とする金属酸化物で形成された薄い表面
層をいう。Here, in the present invention, the passive film means
Chromium oxide (Cr) formed on the outermost surface of stainless steel
2 O 3 ) A thin surface layer mainly composed of a metal oxide.
【0023】上記炭素の濃化層における炭素濃度は、E
PMAによる線分析および面分析によって測定すること
ができる。図9〜図11に、SUS316材を480℃
で16時間炭素原子の浸透処理したもの(a),450
℃で浸透処理後酸洗処理したもの(b)、および600
℃で浸炭処理したもの(c)の濃化層中の炭素濃度のE
PMA分析結果を示す。本発明における代表的な温度範
囲である480℃で浸透処理したもの(a)〔図9〕お
よび450℃で浸透処理したもの(b)〔図10〕で
は、最大炭素濃度は、1.8〜2.0重量%にも達して
いる。これに対し、600℃で浸炭処理したもの(c)
〔図11〕においては、最大炭素濃度が1.03重量%
程度と低い(最表面のピークは付着物を感知したもので
ある)。このように、本発明では、濃化層の炭素濃度が
非常に高いことが特徴であり、高硬度の濃化層が形成さ
れる一因となっている。なお、本発明において、形成さ
れる濃化層において、炭素濃度が最大になるところは、
図9〜図11のEPMA分析結果からも明らかなように
最表面である。The carbon concentration in the carbon enriched layer is E
It can be measured by line analysis and area analysis by PMA. 9 to 11 shows SUS316 material at 480 ° C.
Treated with carbon atoms for 16 hours at (a), 450
(B) which has been subjected to pickling treatment after permeation treatment at ℃, and 600
E of carbon concentration in the concentrated layer of (c) carburized at ℃
The PMA analysis result is shown. The maximum carbon concentration is 1.8 to 10 in those (a) [FIG. 9] and [b] [FIG. 10] that are permeated at 480 ° C., which is a typical temperature range in the present invention. It has reached 2.0% by weight. On the other hand, carburized at 600 ° C (c)
In FIG. 11, the maximum carbon concentration is 1.03% by weight.
Moderately low (peaks on the outermost surface are those that detect deposits). As described above, the present invention is characterized in that the carbon concentration of the concentrated layer is extremely high, which is one of the causes for forming the concentrated layer having high hardness. In the present invention, in the formed concentrated layer, the place where the carbon concentration is maximum is
As is clear from the EPMA analysis results of FIGS. 9 to 11, it is the outermost surface.
【0024】この表面の最大炭素濃度は、浸透処理の際
の雰囲気ガスのカーボンポテンシャルによって変化する
が、本発明で好適に実施される温度領域である400〜
500℃での処理によって形成される濃化層では、最大
で1.2〜2.6重量%に達することがわかっている。
この数値は、1100℃における純鉄のオーステナイト
相への炭素の固溶限度である1.7重量%よりも高い数
値を示している。なお、一般に、クロムを多量に含有す
るステンレスを600℃以上で浸炭した場合に形成され
る浸炭層中の炭素濃度も、最大1.5%以上になる場合
があるが、この場合の炭素は、全て上述のCr23C6 等
の炭化物として析出し、本発明の場合のようにオーステ
ナイト相の格子中に固溶した状態ではほとんど存在しな
いことが文献的に知られている。一例として、本発明者
らがSUS316ステンレス材に600℃で浸炭処理し
たときのX線回折データと、このときの格子定数を図8
に示す。図から明らかなように、600℃で浸炭処理し
たステンレス材には、Cr23C6 のピークが現れている
ことがわかる。The maximum carbon concentration on this surface changes depending on the carbon potential of the atmospheric gas during the permeation treatment, but is 400 to 400 which is the temperature range that is preferably implemented in the present invention.
It has been found that the concentrated layer formed by the treatment at 500 ° C. reaches a maximum of 1.2 to 2.6% by weight.
This value is higher than the solid solution limit of 1.7% by weight of carbon in the austenite phase of pure iron at 1100 ° C. In general, the carbon concentration in the carburized layer formed when carburizing stainless steel containing a large amount of chromium at 600 ° C. or higher may be up to 1.5% or higher. It is known in the literature that all are precipitated as the above-mentioned carbides such as Cr 23 C 6 and hardly exist in the state of solid solution in the lattice of the austenite phase as in the case of the present invention. As an example, FIG. 8 shows X-ray diffraction data when the present inventors carburized SUS316 stainless steel at 600 ° C. and the lattice constant at this time.
Shown in As is clear from the figure, the peak of Cr 23 C 6 appears in the stainless steel material that has been carburized at 600 ° C.
【0025】つぎに、オーステナイト系ステンレスから
なる金属製品の表面に上述のような炭素の濃化層を形成
させ、本発明の高耐蝕性金属製品を製造する方法につい
て説明する。Next, a method for producing the highly corrosion-resistant metal product of the present invention by forming the above-mentioned carbon concentrated layer on the surface of the metal product made of austenitic stainless steel will be described.
【0026】本発明の高耐蝕性金属製品は、例えば、図
1に示すマッフル炉で炭素原子を浸透させることが行わ
れる。図1において、1はマッフル炉、2はその外殻、
3はヒータ、4は内容器、5はガス導入管、6は排気
管、7はモーター、8はファン、11は金網製のかご、
13は真空ポンプ、14は排ガス処理装置、15,16
はボンベ、17は流量計、18はバルブである。The highly corrosion-resistant metal product of the present invention is impregnated with carbon atoms in a muffle furnace shown in FIG. 1, for example. In FIG. 1, 1 is a muffle furnace, 2 is its outer shell,
3 is a heater, 4 is an inner container, 5 is a gas introduction pipe, 6 is an exhaust pipe, 7 is a motor, 8 is a fan, 11 is a cage made of wire mesh,
13 is a vacuum pump, 14 is an exhaust gas treatment device, 15 and 16
Is a cylinder, 17 is a flow meter, and 18 is a valve.
【0027】上記マッフル炉1内において、オーステナ
イト系ステンレスから形成された金属製品に炭素の濃化
層を形成させる場合には、まずフッ化処理を行い、つい
で炭素原子の浸透処理を行うのである。すなわち、上記
マッフル炉1内に、オーステナイト系ステンレス製品1
0を入れ、ボンベ16を流路に接続し、NF3 等のフッ
素系ガスを上記マッフル炉1内に導入して加熱しながら
フッ化処理を行う。ついで、排気管6からそのガスを真
空ポンプ13の作用で引き出し、排ガス処理装置14内
で無毒化して外部に放出する。つぎに、ボンベ15を流
路に接続しマッフル炉1内に浸炭性ガスを導入して加熱
し、炭素の浸透処理を行う。そののち、排気管6,排ガ
ス処理装置14を経由してガスを外部に排出する。この
一連の作業により母材のオーステナイト相に炭素原子が
浸透し、炭素の濃化層が形成されるのである。In the muffle furnace 1, when a carbon enriched layer is formed on a metal product made of austenitic stainless steel, first, a fluorination treatment is performed, and then a carbon atom infiltration treatment is performed. That is, the austenitic stainless steel product 1 is placed in the muffle furnace 1.
0 is put in, the cylinder 16 is connected to the flow path, and a fluorine-based gas such as NF 3 is introduced into the muffle furnace 1 to perform fluorination while heating. Then, the gas is extracted from the exhaust pipe 6 by the action of the vacuum pump 13, detoxified in the exhaust gas treatment device 14 and discharged to the outside. Next, the cylinder 15 is connected to the flow path, a carburizing gas is introduced into the muffle furnace 1 and heated, and carbon infiltration treatment is performed. After that, the gas is discharged to the outside via the exhaust pipe 6 and the exhaust gas treatment device 14. By this series of operations, carbon atoms permeate the austenite phase of the base material and a carbon enriched layer is formed.
【0028】より詳しく説明すると、まず、オーステナ
イト系ステンレスを所望の製品形状に成形し、このオー
ステナイト系ステンレス製品を上記マッフル炉1に装入
し、窒素雰囲気下で300〜400℃に加熱する。その
後、NF3 等のフッ素系ガスを炉内に導入し、その状態
で10〜30分間保持してオーステナイト系ステンレス
製品の表面をフッ化させ、表面の不働態皮膜を一旦破壊
して製品表面を活性化させる(以上、フッ化処理)。こ
のように、オーステナイト系ステンレス製品をフッ素系
ガス雰囲気下で処理することにより、オーステナイト系
ステンレス製品の表面に形成された、Cr2 O3 を含む
不働態皮膜がフッ化膜に変化する。このフッ化膜は、上
記不働態皮膜に比べ、炭素原子の浸透を容易にすると予
想され、オーステナイト系ステンレスの表面は、上記フ
ッ化処理によって炭素原子の浸透の容易な表面状態にな
るものと推測される。More specifically, first, austenitic stainless steel is formed into a desired product shape, and the austenitic stainless steel product is charged into the muffle furnace 1 and heated to 300 to 400 ° C. in a nitrogen atmosphere. After that, a fluorine-based gas such as NF 3 is introduced into the furnace, and the state is maintained for 10 to 30 minutes to fluorinate the surface of the austenitic stainless steel product, and the passive film on the surface is once destroyed to clean the product surface. Activate (above, fluorination treatment). Thus, by treating the austenitic stainless steel product in a fluorine-based gas atmosphere, the passive film containing Cr 2 O 3 formed on the surface of the austenitic stainless steel product is changed to a fluoride film. It is expected that this fluorinated film will facilitate the permeation of carbon atoms compared to the above-mentioned passive film, and it is speculated that the surface of austenitic stainless steel becomes a surface state in which carbon atom permeation is facilitated by the above fluorination treatment. To be done.
【0029】上記フッ化処理に用いられるフッ素系ガス
としては、上記NF3 に限定されず、F2 ,HF,BF
3 ,CF4 ,SF6 ,ClF3 ,C2 F6 ,WF6 ,C
HF3 ,SiF4等からなるフッ素化合物ガスがあげら
れ、これらは、単独でもしくは2種以上併せて使用され
る。また、これらのガス以外に、分子内にフッ素(F)
を含む他のフッ素系ガスも上記フッ素系ガスとして用い
ることができる。また、このようなフッ素化合物ガスを
熱分解装置で熱分解させて生成させたF2 ガスや、あら
かじめ作られたF2 ガスも上記フッ素系ガスとして用い
ることができる。このようなフッ素化合物ガスとF2 ガ
スとは、場合によって混合使用される。そして、上記フ
ッ素化合物ガス,F2 ガス等のフッ素系ガスは、それの
みで用いることもできるが、通常はN2 ガス等の不活性
ガスで希釈されて使用される。このような希釈されたガ
スにおけるフッ素系ガス自身の濃度は、容量基準で、例
えば、10000〜100000ppmであり、好まし
くは20000〜70000ppm、より好ましくは、
30000〜50000ppmである。このフッ素系ガ
スとして最も実用性を備えているのは上述したNF3 で
ある。このNF3 は、常温でガス状であり、化学的安定
性が高く取扱いが容易であることから、安全性,操作
性,使用効率等の点で有利だからである。The fluorine-based gas used in the fluorination treatment is not limited to the above NF 3 , but may be F 2 , HF, BF.
3 , CF 4 , SF 6 , ClF 3 , C 2 F 6 , WF 6 , C
Fluorine compound gas composed of HF 3 , SiF 4, etc. may be mentioned, and these may be used alone or in combination of two or more kinds. In addition to these gases, fluorine (F) in the molecule
Other fluorine-based gases including can also be used as the above-mentioned fluorine-based gas. Further, it is possible to use such a fluorine compound gas F 2 gas and that generated by thermal decomposition at a thermal decomposition apparatus, as F 2 gas is also the fluorine-based gas premade. Such fluorine compound gas and F 2 gas may be mixed and used depending on the case. The fluorine-based gas such as the fluorine compound gas or F 2 gas may be used alone, but it is usually diluted with an inert gas such as N 2 gas before use. The concentration of the fluorine-based gas itself in such a diluted gas is, for example, 10,000 to 100,000 ppm, preferably 20,000 to 70,000 ppm, and more preferably, on a volume basis.
It is 30,000 to 50,000 ppm. The above-mentioned NF 3 has the most practicality as this fluorine-based gas. This is because this NF 3 is gaseous at room temperature, has high chemical stability and is easy to handle, and is advantageous in terms of safety, operability, use efficiency and the like.
【0030】フッ化処理温度は、300〜400℃が最
適であるが、フッ素系ガスの使用効率が多少悪化するこ
とを考慮に入れなければ、400〜500℃であっても
特に不都合はない。The optimum fluorination temperature is 300 to 400 ° C., but if the temperature of 400 to 500 ° C. is not taken into consideration, taking into consideration that the use efficiency of the fluorine-based gas is slightly deteriorated.
【0031】ついで、上記フッ化処理ののち、フッ素系
ガスを止め、さらに450〜480℃まで炉内を昇温
し、浸炭性ガス(例えば、CO:20体積%,H2 :3
0体積%,CO2 :1体積%,残部:N2 混合ガス)を
吹き込み、3〜20時間保持したのち、炉から取り出す
(以上、炭素の浸透処理)。この浸透処理温度が、50
0℃を超えると、浸透処理によって形成される炭素の濃
化層の耐蝕性が、母材であるオーステナイト系ステンレ
ス材よりも低下し、さらに温度が上がると、急激に耐蝕
性が劣化する。したがって、500℃以下、好ましくは
400〜480℃の温度範囲で処理することが必要であ
る。なお、400℃未満では、炭素の拡散速度が遅くな
るので、処理時間が非常に長くかかり、コスト面等で好
ましくない。Then, after the above-mentioned fluorination treatment, the fluorine-based gas is stopped, the temperature inside the furnace is further raised to 450 to 480 ° C., and a carburizing gas (for example, CO: 20% by volume, H 2 : 3).
0% by volume, CO 2 : 1% by volume, the balance: N 2 mixed gas) is blown in, and after holding for 3 to 20 hours, it is taken out from the furnace (above, carbon permeation treatment). This infiltration treatment temperature is 50
When it exceeds 0 ° C, the corrosion resistance of the carbon-enriched layer formed by the infiltration treatment becomes lower than that of the austenitic stainless steel which is the base material, and when the temperature further rises, the corrosion resistance rapidly deteriorates. Therefore, it is necessary to perform treatment at a temperature of 500 ° C or lower, preferably 400 to 480 ° C. If the temperature is lower than 400 ° C., the diffusion rate of carbon becomes slow, so that the processing time becomes very long, which is not preferable in terms of cost.
【0032】上記浸透処理に用いる浸炭性ガスとして
は、CO,H2 を含む浸炭性のガスであれば特に限定さ
れるものではなく、CO+H2 +CO2 混合ガスや、炭
化水素ガスに空気を混合して変成した、いわゆるRXガ
ス〔RXガスの成分は、例えば、CO:23体積%+C
O2 :1体積%+H2 :31体積%+H2 O:1体積%
+残部:N2 〕等でもよい。また、適宜、C3 H8 ,C
3 H6 ,C2 H4 等の炭化水素ガスを使用してもよい。The carburizing gas used in the infiltration treatment is not particularly limited as long as it is a carburizing gas containing CO and H 2, and a CO + H 2 + CO 2 mixed gas or a hydrocarbon gas mixed with air. The so-called RX gas (the components of RX gas are, for example, CO: 23% by volume + C)
O 2 : 1% by volume + H 2 : 31% by volume + H 2 O: 1% by volume
+ Remainder: N 2 ]. Also, as appropriate, C 3 H 8 , C
3 H 6, hydrocarbon gas such as C 2 H 4 may be used.
【0033】つぎに、上記浸透処理の終了後、50〜7
0℃に加温したHF+HNO3 溶液に30分間浸漬して
酸洗処理する(仕上げ処理)。この酸洗処理により、上
記浸透処理において黒色に変色したオーステナイト系ス
テンレス製品の表面が、ほぼ、母材と同様の光輝性を備
えた外観になるのである。しかも、この酸洗処理を行っ
ても、濃化層の厚さにはほとんど影響がない。ここで、
HF+HNO3 溶液の濃度は、HF:1〜7重量%+H
NO3 :10〜20重量%程度が好ましい。なお、浸透
処理後の酸洗処理としては、HF+HNO3 溶液による
浸漬洗浄処理に限るものではなく、HCl+HNO3 溶
液や、HNO3 溶液,H2 SO4 +HNO3 溶液等を用
いた浸漬洗浄処理でもよい。ここで、HCl+HNO3
溶液の濃度は、HCl:5〜20重量%+HNO3 :1
5〜40重量%程度が好ましく、HNO3 溶液の濃度
は、10〜30重量%程度が好ましい。なお、上記酸洗
処理に用いる溶液の液温としては、50〜70℃に限ら
ず、70℃以上でもよいし、50以下でもよい。また、
仕上げ処理としては、酸洗処理でなくても、機械的研磨
や化学研磨あるいは電解研磨でもよい。この仕上げ処理
ののち大気中に取り出すと、金属製品の表面に再び不働
態皮膜が形成される。Next, after completion of the permeation treatment, 50 to 7
It is soaked in a HF + HNO 3 solution heated to 0 ° C. for 30 minutes for pickling treatment (finishing treatment). By this pickling treatment, the surface of the austenitic stainless steel product, which turned black in the above-mentioned permeation treatment, has an appearance almost as bright as the base material. Moreover, even if this pickling treatment is carried out, there is almost no effect on the thickness of the concentrated layer. here,
The concentration of the HF + HNO 3 solution is HF: 1 to 7% by weight + H
NO 3: 10 to 20% by weight. The pickling treatment after the permeation treatment is not limited to the immersion cleaning treatment using the HF + HNO 3 solution, and may be the immersion cleaning treatment using HCl + HNO 3 solution, HNO 3 solution, H 2 SO 4 + HNO 3 solution or the like. . Where HCl + HNO 3
The concentration of the solution is HCl: 5 to 20% by weight + HNO 3 : 1
It is preferably about 5 to 40% by weight, and the concentration of the HNO 3 solution is preferably about 10 to 30% by weight. The liquid temperature of the solution used for the pickling treatment is not limited to 50 to 70 ° C, and may be 70 ° C or higher, or 50 or lower. Also,
The finishing treatment may be mechanical polishing, chemical polishing, or electrolytic polishing instead of pickling. After this finishing treatment, when taken out into the atmosphere, a passive film is formed again on the surface of the metal product.
【0034】上述のような一連の処理により、表面から
5〜50μmの深さの炭素の濃化層が形成されたオース
テナイト系ステンレス製品が得られる。By the series of treatments described above, an austenitic stainless steel product having a carbon enriched layer having a depth of 5 to 50 μm from the surface is obtained.
【0035】本発明で、炭素を浸透させる浸透処理温度
は、400℃〜500℃であるが、一般の炭素鋼や合金
鋼は、600℃以下という低温(A1 変態点以下)では
オーステナイトに変態せず、ほとんどがフェライト,パ
ーライト相を呈しているため、炭素はほとんど固溶せ
ず、炭素の浸透も行われない。一方、オーステナイト系
ステンレスでは、上記のような低温でもオーステナイト
相を呈するが、500℃以下の低温では強固な不働態皮
膜が形成されていて、鋼中への窒素(N)や炭素(C)
の拡散浸透が阻止されている。そのうえ、炭素は、窒素
に比べて原子半径が大きく、しかもクロムとの親和力も
小さいことから、窒素に比べて母材中への拡散浸透が困
難である。そのため、オーステナイト系ステンレスであ
っても、500℃以下の低温では、通常は、やはり浸炭
は行われない。また、上記のような低温では、浸炭性ガ
スとして使用するCO+H2 +CO2 混合ガスやCO+
CO2 混合ガス等に含まれるCOが、(2CO→CO2
+C)のいわゆるブードア反応を生じ、炉内に炭素が析
出して炉壁等が汚染されるという問題がある。これらの
ような理由から、上記のような低温での炭素の浸透処理
は全く行われていなかった。本発明では、このような技
術常識を破り、上述のようなフッ素系ガスを使用した前
処理を行うことによってオーステナイト系ステンレス製
品の表面を活性化させ、炭素の濃化層が形成された金属
製品を製造することに成功したのである。In the present invention, the infiltration treatment temperature for infiltrating carbon is 400 ° C. to 500 ° C., but general carbon steel and alloy steel are transformed into austenite at a low temperature of 600 ° C. or lower (A 1 transformation point or lower). However, since most of them exhibit ferrite and pearlite phases, carbon hardly dissolves into the steel and carbon does not permeate. On the other hand, austenitic stainless steel exhibits an austenite phase even at the low temperature as described above, but at a low temperature of 500 ° C. or lower, a strong passive film is formed, and nitrogen (N) or carbon (C) in the steel is formed.
The diffusion and permeation of is blocked. In addition, carbon has a larger atomic radius than nitrogen and a smaller affinity with chromium, so that it is more difficult for carbon to diffuse and penetrate into the base material as compared with nitrogen. Therefore, even with austenitic stainless steel, carburization is not normally performed at a low temperature of 500 ° C. or lower. Further, at the above low temperature, a CO + H 2 + CO 2 mixed gas or CO + used as a carburizing gas is used.
CO contained in the CO 2 mixed gas is (2CO → CO 2
There is a problem that the so-called Boudoor reaction of + C) occurs, carbon is deposited in the furnace and the furnace wall and the like are contaminated. For these reasons, the carbon permeation treatment at the low temperature as described above has not been performed at all. In the present invention, by breaking such technical common sense, the surface of an austenitic stainless steel product is activated by performing a pretreatment using a fluorine-based gas as described above, and a metal product in which a carbon-enriched layer is formed. Was successfully manufactured.
【0036】上記炭素の濃化層の深さは、上記浸透処理
の際の処理時間と処理温度とによって決定される。最表
面における最大炭素濃度は、ある程度以上の濃化層の深
さ(すなわち、炭素原子の浸透深さ)があれば、大きな
影響は受けないことから、耐蝕性の観点からは、濃化層
の深さは5〜15μmあれば充分であると考えられる。
また、上記濃化層は、炭素原子の侵入固溶により格子歪
みを起こして硬化しており、15〜50μmの深さをも
つ濃化層であれば、表面硬度はマイクロビッカースでH
v850〜950程度に達する。したがって、炭素の浸
透処理の前にあらかじめ固溶化処理をしたもの等、芯部
硬度が低く、強度の弱い金属製品の場合には、上記濃化
層を深くした方が、製品の損傷等を防ぐ意味で好まし
い。The depth of the carbon-enriched layer is determined by the treatment time and the treatment temperature during the permeation treatment. The maximum carbon concentration at the outermost surface is not significantly affected if the depth of the concentrated layer (that is, the depth of penetration of carbon atoms) is above a certain level. From the viewpoint of corrosion resistance, It is considered that a depth of 5 to 15 μm is sufficient.
The thickened layer is hardened by causing lattice distortion due to solid solution of carbon atoms. If the thickened layer has a depth of 15 to 50 μm, the surface hardness is H by micro Vickers.
It reaches about v850-950. Therefore, in the case of metal products with low core hardness and weak strength, such as those that have undergone solid solution treatment before carbon infiltration treatment, deepening the above-mentioned concentrated layer will prevent product damage, etc. It is preferable in meaning.
【0037】上記炭素の濃化層は、王水等の強いエッチ
ング液によってエッチングすることにより、通常の金属
顕微鏡で容易に観察できる。図2は、SUS316材を
用い、NF3 +N2 ガス雰囲気で350℃で15分間フ
ッ化処理を行い、CO:21体積%+H2 :31体積%
+CO2 :5体積%+残部N2 ガス雰囲気で480℃で
12時間炭素の浸透処理を行ったサンプルを、切断,研
磨後、エッチングし、600倍に拡大した断面顕微鏡写
真である。図の下側から、母材,濃化層,埋め込み用樹
脂(黒色の部分)を示している。図からわかるとおり、
表面層28μmに炭素の濃化層が形成されている。The carbon-enriched layer can be easily observed by an ordinary metallographic microscope by etching it with a strong etching solution such as aqua regia. FIG. 2 shows that SUS316 material is subjected to a fluorination treatment at 350 ° C. for 15 minutes in an NF 3 + N 2 gas atmosphere, and CO: 21% by volume + H 2 : 31% by volume.
+ CO 2 : 5% by volume + remaining N 2 gas atmosphere, a sample that has been subjected to a carbon infiltration treatment at 480 ° C. for 12 hours is cut, polished, and then etched, and a cross-sectional micrograph magnified 600 times. From the bottom of the figure, the base material, the concentrated layer, and the embedding resin (black portion) are shown. As you can see from the figure,
A carbon concentrated layer is formed on the surface layer of 28 μm.
【0038】また、上記炭素の濃化層の組織状態は、X
線回折法(X−ray Diffraction)によ
って把握することができる。その回折結果例を、母材で
ある未処理のオーステナイト系ステンレス材と比較した
結果を図3に示す。すなわち、図3において、(A)は
SUS316材未処理品のX線回折チャートであり、
(B)はSUS316材を480℃で浸透処理後酸洗処
理を行ったもののX線回折チャートである。これらのX
線回折チャートの比較結果からわかるとおり、各チャー
トのオーステナイト相のピーク位置(図において○で示
すピーク)を比較すると、480℃で浸透処理後仕上げ
処理を行ったもの(B)のオーステナイト相のピーク
は、未処理材(A)のピークよりも低角度側(左側)に
シフトしている。すなわち、このことから、上記浸透処
理品(B)は、オーステナイト相に格子歪が生じている
ことが明らかである。この格子歪は、炭素が高濃度に侵
入固溶したことにより、格子が等方に膨張したものであ
り、この歪みが濃化層を硬化させているものと考えられ
る。なお、上記X線回折は、RINT1500装置を用
い、50kV,200mA,Cuターゲットの条件下で
行った。The structural state of the carbon enriched layer is X
It can be grasped by a line diffraction method (X-ray Diffraction). FIG. 3 shows the result of comparison of the example of the diffraction result with an untreated austenitic stainless steel material as a base material. That is, in FIG. 3, (A) is an X-ray diffraction chart of an untreated SUS316 material,
(B) is an X-ray diffraction chart of SUS316 material that has been subjected to pickling treatment after permeation treatment at 480 ° C. These X
As can be seen from the comparison results of the line diffraction charts, comparing the peak positions of the austenite phase of each chart (peaks indicated by circles in the figure), the peak of the austenite phase of the product (B) after the permeation treatment and the finishing treatment at 480 ° C. Is shifted to a lower angle side (left side) than the peak of the untreated material (A). That is, it is clear from this that the infiltration-treated product (B) has lattice distortion in the austenite phase. It is considered that this lattice strain is that the lattice expands isotropically due to the high concentration and solid solution of carbon, and the strain hardens the concentrated layer. The X-ray diffraction was performed using a RINT 1500 apparatus under the conditions of 50 kV, 200 mA and Cu target.
【0039】そして、上記濃化層は、通常の700℃以
上の高温での浸炭処理で得られる浸炭硬化層とは全く異
なった特性を有するのである。一般に、オーステナイト
系ステンレスの母相であるオーステナイト相への炭素の
溶解度は低く、700℃以上の高温で浸炭処理を行う
と、浸透したものの溶解しきれない過剰の炭素が、炭化
物として粒界や転位等の欠陥部分に析出される。このよ
うな場合には、X線回折によって、Cr23C6 ,Cr7
C3 ,Fe3 C等の安定な炭化物が析出しているのが確
認できる。すなわち、本発明の高耐蝕性金属製品の炭素
の濃化層は、図3のX線回折チャート(B)に示すよう
に、Cr23C6 ,Cr7 C3 等の結晶質のクロム炭化物
が析出せず、母材と同様のオーステナイト相であり、格
子定数が母材のそれよりも約2%程度増大している。一
方、上記のように、高温で処理された浸炭硬化層では、
浸透した炭素がクロム等と反応して炭化物を形成するこ
とから、格子定数は母材とほとんど変わらないか、もし
くは増大しても0.02%にとどまる(図8参照)。The thickened layer has completely different characteristics from the carburized hardened layer obtained by the usual carburizing treatment at a high temperature of 700 ° C. or higher. Generally, the solubility of carbon in the austenite phase, which is the parent phase of austenitic stainless steel, is low, and when carburizing is performed at a high temperature of 700 ° C. or higher, excess carbon that has penetrated but cannot be completely dissolved becomes grain boundaries and dislocations. Is deposited on the defective portion such as. In such a case, Cr 23 C 6 , Cr 7 can be obtained by X-ray diffraction.
It can be confirmed that stable carbides such as C 3 and Fe 3 C are deposited. That is, as shown in the X-ray diffraction chart (B) of FIG. 3, the carbon-enriched layer of the highly corrosion-resistant metal product of the present invention contains a crystalline chromium carbide such as Cr 23 C 6 , Cr 7 C 3 or the like. It does not precipitate and has an austenite phase similar to that of the base material, and the lattice constant is increased by about 2% from that of the base material. On the other hand, as described above, in the carburized hardened layer treated at high temperature,
Since the infiltrated carbon reacts with chromium or the like to form a carbide, the lattice constant is almost the same as that of the base material, or even if it is increased, it remains 0.02% (see FIG. 8).
【0040】また、700℃以上の高温で処理されたも
のでは、50〜60℃に加温したHF+HNO3 溶液に
浸漬すると、十数分で浸炭層が溶解し消失してしまう。
これに対し本発明の高耐蝕性金属製品では、上記HF+
HNO3 溶液に浸漬しても濃化層の厚みはほとんど変わ
らない。このことは、本発明の高耐蝕性金属製品の炭素
の濃化層が、高い耐蝕性を有していることを示してい
る。Further, in the case of treatment at a high temperature of 700 ° C. or higher, the carburized layer dissolves and disappears in a dozen minutes when immersed in the HF + HNO 3 solution heated to 50-60 ° C.
On the other hand, in the highly corrosion resistant metal product of the present invention, the above HF +
Even when immersed in the HNO 3 solution, the thickness of the concentrated layer hardly changes. This indicates that the carbon-enriched layer of the highly corrosion-resistant metal product of the present invention has high corrosion resistance.
【0041】つぎに、本発明の高耐蝕性金属製品の耐蝕
性に関して説明する。オーステナイト系ステンレスの耐
蝕性は、表面に形成される不働態皮膜の特性、特に、皮
膜中のCr2 O3 分の濃度や均一性に依存すると考えら
れている。これらは、基材の合金組成だけでなく、加工
履歴等に基づく不働態皮膜直下の組織の不均一性によっ
ても影響を受けると考えられている。本発明の高耐蝕性
金属製品は、母材をオーステナイト相とし、炭素原子の
浸透により、表面層に炭素の濃化層が形成されているこ
とから、不働態皮膜直下に高濃度の炭素バンドが形成さ
れ、その結果として、母材であるオーステナイト系ステ
ンレスよりも格段に優れた耐蝕性を発揮すると考えられ
るのである。Next, the corrosion resistance of the highly corrosive metal product of the present invention will be described. It is considered that the corrosion resistance of austenitic stainless steel depends on the characteristics of the passive film formed on the surface, in particular, the concentration and uniformity of Cr 2 O 3 content in the film. It is considered that these are affected not only by the alloy composition of the base material but also by the nonuniformity of the structure immediately below the passive film based on the processing history and the like. The highly corrosion-resistant metal product of the present invention has a base material as an austenite phase, and due to the permeation of carbon atoms, a carbon concentrated layer is formed in the surface layer. It is thought that, when formed, as a result, it exhibits significantly better corrosion resistance than the base material, austenitic stainless steel.
【0042】例えば、図4および図5に、それぞれSU
S316の未処理材と、このSUS316に480℃で
12時間浸透処理をしたサンプルとのアノード分極曲線
の測定結果を示す。図からわかるとおり、未処理材が、
明瞭な活性態領域のピーク(活性態領域とは、アノード
分極したときに電位の上昇とともに電流が急増する領域
であり、鋼が活性状態で溶解する領域をいう:図4にお
けるE)を示しているのに対し、浸透処理をして炭素の
濃化層が形成されたサンプルは、活性態領域のピークが
ほとんど見られない。また、自然電極電位(鋼の自然腐
食電位である:図示のD)についても、未処理材が−2
80mVであるのに対し、浸透処理品は10mVとはる
かに貴である。これらのことから、濃化層が形成された
サンプルは、未処理材と比べ極めて不働態皮膜を形成し
やすいこと、および炭素の濃化層は母材より貴なる金属
組織であることが判明した。なお、アノード分極曲線の
測定は、以下の条件で行った。 For example, FIG. 4 and FIG.
The measurement result of the anodic polarization curve of the untreated material of S316 and the sample obtained by permeating the SUS316 at 480 ° C. for 12 hours is shown. As you can see from the figure,
A clear peak of the active state region (the active state region is a region where the electric current sharply increases as the potential rises when anodic polarized, and refers to a region where steel melts in the active state: E in FIG. 4) On the other hand, in the sample in which the carbon-enriched layer was formed by the permeation treatment, the peak in the active region was hardly seen. Moreover, regarding the natural electrode potential (the natural corrosion potential of steel: D in the figure), the untreated material is -2.
Compared to 80 mV, the treated product is much more noble with 10 mV. From these facts, it was found that the sample in which the concentrated layer was formed was much more likely to form a passive film than the untreated material, and that the carbon concentrated layer had a metal structure more noble than the base material. . The anodic polarization curve was measured under the following conditions.
【0043】また、SUS304材の未処理材と、この
SUS304材に460℃で12時間浸透処理をして炭
素の濃化層が形成されたサンプルの孔食電位の測定結果
を図6に示す。図からわかるとおり、電位を徐々に上昇
させると、未処理材では約240mV前後の電位で急激
に電流密度が上昇している。これに対し浸透処理品は、
上記未処理材の場合よりもはるかに高い約920mVま
で急激な電流密度の上昇はない。すなわち、この測定に
おいて急激に電流密度が上昇した時点で孔食が発生する
ものと考えられることから、本発明の高耐蝕性金属製品
は、オーステナイト系ステンレス材において弱点とされ
ている耐孔食性について、著しく改善されていることを
示している。なお、孔食電位の測定は、JIS 057
7に規定された条件で行った。FIG. 6 shows the measurement results of the pitting potential of the untreated SUS304 material and the sample in which the SUS304 material was infiltrated at 460 ° C. for 12 hours to form a carbon-enriched layer. As can be seen from the figure, when the potential is gradually increased, the current density of the untreated material rapidly increases at a potential of about 240 mV. In contrast, the permeation-treated products are
There is no sudden increase in current density up to about 920 mV, which is much higher than in the case of the untreated material. That is, since it is considered that pitting corrosion occurs at the time when the current density rapidly increases in this measurement, the highly corrosion-resistant metal product of the present invention is about the pitting corrosion resistance which is a weak point in the austenitic stainless steel material. , Shows that it has been significantly improved. The pitting potential is measured according to JIS 057.
It was performed under the conditions specified in 7.
【0044】なお、本発明では、フッ化処理後、すぐに
炭素の浸透処理に移行するのを基本とするが、場合によ
っては、中間処理として、フッ化処理後、雰囲気ガス中
にNH3 ガスを添加し、10〜30分間加熱保持するこ
ともできる。この中間処理によって、少なくともこれに
続いて行われる炭素の浸透処理が安定化する等の効果が
確かめられている。上記中間処理温度としては、結晶性
CrNの生成を排除するよう、低い温度で処理すること
が望まれ、400〜480℃の範囲で行うことが好まし
い。この中間処理を行ったものをEPMAで分析する
と、浸透した窒素(N)は、炭素の浸透処理が完了した
のち、ごく表層部に炭素と重複してその存在が認めら
れ、その濃度は、約0.5〜1%と低く、多くの場合、
HF−HNO3 溶液等による酸洗処理(仕上げ処理)で
除去されるので、本発明の耐蝕性には悪影響をおよぼさ
ない。In the present invention, the basic procedure is to immediately shift to carbon permeation treatment after the fluorination treatment, but in some cases, as an intermediate treatment, after the fluorination treatment, NH 3 gas is added to the atmosphere gas. Can be added and the mixture can be heated and held for 10 to 30 minutes. It has been confirmed that this intermediate treatment stabilizes at least the subsequent carbon infiltration treatment, and the like. As the intermediate treatment temperature, it is desirable to perform the treatment at a low temperature so as to eliminate the formation of crystalline CrN, and it is preferable to perform the treatment in the range of 400 to 480 ° C. When this intermediate treatment was analyzed by EPMA, the permeated nitrogen (N) was found to overlap with carbon in the very surface layer after the completion of the carbon permeation treatment, and its concentration was about As low as 0.5-1%, in many cases
Since it is removed by the pickling treatment with HF-HNO 3 solution or the like (finishing process), it does not adversely affect the corrosion resistance of the present invention.
【0045】[0045]
【発明の効果】このように、本発明によれば、基本組成
に近い安価な汎用型のステンレスを使用し、その表面に
炭素の濃化層を形成させることにより、耐酸性,耐海水
性,耐薬品性に優れ、高い耐蝕性を有する金属製品を安
価に得ることができる。そのため、ボルト,ナット,ね
じ等のファスナー類から、一般産業分野において使用さ
れる、機械部品、すなわち、各種のシャフト類やインペ
ラー,ベアリング,ばね類,バルブ部品等,多様な機械
部品に有用である。また、特に、食品機械,化学プラン
ト,半導体工業等の分野に用いられる機械部品用として
有望である。As described above, according to the present invention, inexpensive general-purpose stainless steel having a basic composition is used, and a carbon-enriched layer is formed on the surface of the stainless steel. A metal product having excellent chemical resistance and high corrosion resistance can be obtained at low cost. Therefore, it is useful for fasteners such as bolts, nuts, screws, etc., to various mechanical parts used in general industrial fields, that is, various shafts, impellers, bearings, springs, valve parts, etc. . Further, it is particularly promising for machine parts used in fields such as food machinery, chemical plants, and semiconductor industries.
【0046】なお、本発明において対象とする鋼種は、
SUS304やSUS316等安価な汎用型のステンレ
スに限られない。すなわち、本発明の高耐蝕性金属製品
は、母材であるオーステナイト系ステンレス以上の耐蝕
性を有する炭素の濃化層を形成させることにより、優れ
た耐蝕性を発揮するものである。したがって、SUS3
17,SUS310等の上記汎用型ステンレスよりも耐
蝕性のよいオーステナイト系ステンレスを母材として使
用することにより、その母材よりも耐蝕性のよい濃化層
を形成させ、一層優れた耐蝕性を発揮させることもでき
るのである。The steel types targeted in the present invention are
It is not limited to inexpensive general-purpose stainless steel such as SUS304 and SUS316. That is, the highly corrosion-resistant metal product of the present invention exhibits excellent corrosion resistance by forming a carbon-enriched layer having a corrosion resistance higher than that of the austenitic stainless steel as the base material. Therefore, SUS3
By using austenitic stainless steel, which has better corrosion resistance than the above general-purpose stainless steels such as 17, SUS310, as a base material, a concentrated layer with better corrosion resistance than the base material is formed, and more excellent corrosion resistance is exhibited. It can be done.
【0047】つぎに、実施例について説明する。Next, examples will be described.
【0048】[0048]
【実施例1】板厚を2.5mmに圧延し、15mm×1
5mmに切断したSUS304(Cr含量:18.1重
量%,Ni含量:7.9重量%,C含量:0.08重量
%,残部:Fe)板片、ならびに、SUS316(Cr
含量:18.3重量%,Ni含量:12.4重量%,M
o含量:2.5重量%,残部:Fe)板片をそれぞれ複
数個準備した。また、上記SUS304板片の一部は、
真空炉で1020℃に加熱したのち急冷して固溶化処理
を行い、オーステナイト相を呈するようにした。なお、
固溶化処理を行わないSUS304板片は、圧延加工に
よりフェライトが析出している。また、SUS316板
片は、上記圧延加工後もオーステナイト相を呈してい
る。これら板片の硬度を測定したところ、SUS304
の圧延品はHv250、SUS316の圧延品はHv2
90、SUS304の固溶化処理品はHv140であっ
た。[Example 1] Rolled to a plate thickness of 2.5 mm, 15 mm x 1
SUS304 (Cr content: 18.1% by weight, Ni content: 7.9% by weight, C content: 0.08% by weight, balance: Fe) plate piece cut into 5 mm, and SUS316 (Cr
Content: 18.3% by weight, Ni content: 12.4% by weight, M
o content: 2.5% by weight, balance: Fe) A plurality of plate pieces were prepared. In addition, a part of the SUS304 plate piece is
After heating to 1020 ° C. in a vacuum furnace, it was rapidly cooled to carry out a solid solution treatment so as to exhibit an austenite phase. In addition,
Ferrite is deposited on the SUS304 plate pieces that have not been subjected to solution treatment by rolling. Further, the SUS316 plate piece exhibits the austenite phase even after the rolling process. When the hardness of these plate pieces was measured, SUS304
Hv250 for rolled products and Hv2 for SUS316 rolled products
90, the solution-treated product of SUS304 was Hv140.
【0049】つぎに、これらの板片を、図1に示す炉に
装入し、N2 雰囲気下で350℃に加熱したのち、10
体積%NF3 +90体積%N2 混合ガスを15分間吹き
込み、フッ化処理を行った。そののち、N2 雰囲気下で
480℃に昇温し、12時間保持して炭素の浸透処理を
行ったのち取り出した。そののち、65℃に加温した
3.5重量%HF+15重量%HNO3 溶液に40分間
浸漬して仕上げ処理を行った。この仕上げ処理(酸洗)
により、黒色を呈していた浸透処理品は、もとの未処理
品と同等の金属外観を呈するようになった。これら板片
の浸透処理後酸洗前と、酸洗後の表面硬度(マイクロビ
ッカース:Hv)と炭素の濃化層深さを測定した結果
を、下記の表1に示す。Next, these plate pieces were charged into the furnace shown in FIG. 1 and heated to 350 ° C. in an N 2 atmosphere, and then 10
A fluorination treatment was performed by blowing a mixed gas of volume% NF 3 +90 volume% N 2 for 15 minutes. After that, the temperature was raised to 480 ° C. in an N 2 atmosphere, the temperature was maintained for 12 hours to perform a carbon permeation treatment, and then the carbon was taken out. After that, it was immersed in a 3.5 wt% HF + 15 wt% HNO 3 solution heated to 65 ° C. for 40 minutes for finishing treatment. This finishing treatment (pickling)
As a result, the permeation-treated product, which had a black color, now has a metal appearance equivalent to that of the original untreated product. Table 1 below shows the results of measuring the surface hardness (micro Vickers: Hv) and the carbon concentrated layer depth after the pickling after the permeation treatment and after the pickling.
【0050】[0050]
【表1】 [Table 1]
【0051】上記表1の結果から明らかなように、SU
S304の圧延品に浸透処理したものは、圧延加工によ
って母材にフェライトが析出しているため、浸透処理を
施したものでも耐蝕性が悪く、浸透処理後の酸洗によっ
て、濃化層深さが略3分の1以下に減少している。これ
に対し、SUS304固溶化処理品,SUS316圧延
品に浸透処理したものは、母材にフェライトの析出がな
く、オーステナイト相を呈していたため濃化層の耐蝕性
が良好で、浸透処理後の酸洗によっても、ほとんど濃化
層深さが減少していないことがわかる。As is clear from the results in Table 1 above, SU
In the rolled product of S304, since the ferrite is precipitated in the base material by the rolling process, the corrosion resistance is poor even if it is subjected to the rolling process. Is reduced to less than about one third. On the other hand, the SUS304 solution treated product and the SUS316 rolled product that had been subjected to the permeation treatment had no precipitation of ferrite in the base material and exhibited an austenite phase, so the corrosion resistance of the thickened layer was good, and the acid after the permeation treatment was performed. It can be seen that even after washing, the depth of the concentrated layer has hardly decreased.
【0052】つぎに、SUS304圧延品各板片につ
き、50℃に加温した20%硫酸に浸漬し、浸漬時間の
経過とともに板片の重量が減少する減少重量を測定し
た。その結果を図7に示す。図7の結果から明らかなよ
うに、SUS304固溶化処理品の未処理品は、20時
間以上浸漬すると、500g/m2 以上の重量の減少が
あったが、SUS304固溶化処理品に浸透処理を行っ
たものは、24時間浸漬後の減少重量が約220g/m
2 と、未処理品の2分の1以下であった。また、SUS
316圧延品の未処理品は、24時間浸漬後の減少重量
が約420g/m2であったのに対し、SUS316圧
延品に浸透処理を行ったものは、ほとんど重量の減少が
なかった。このように、SUS304固溶化処理品およ
びSUS316圧延品に浸透処理を行ったものは、浸透
処理を行わない未処理の板片よりも格段に良好な耐蝕性
を示すことがわかる。Next, each plate piece of the rolled SUS304 product was immersed in 20% sulfuric acid heated at 50 ° C., and the weight reduction of the plate piece was measured with the lapse of immersion time. FIG. 7 shows the result. As is clear from the results of FIG. 7, the untreated SUS304 solution treated product had a weight loss of 500 g / m 2 or more when immersed for 20 hours or more, but the SUS304 solution treated product was subjected to the permeation treatment. The result is that the weight loss after soaking for 24 hours is about 220 g / m.
2 and less than half of the untreated product. Also, SUS
The untreated 316 rolled product had a reduced weight of about 420 g / m 2 after being immersed for 24 hours, whereas the SUS316 rolled product subjected to the permeation treatment showed almost no weight reduction. Thus, it can be seen that the SUS304 solution treated product and the SUS316 rolled product subjected to the permeation treatment show significantly better corrosion resistance than the untreated plate piece not subjected to the permeation treatment.
【0053】[0053]
【実施例2】一般に市販されているSUS304(Cr
含量:18.5重量%,Ni含量:8.5重量%,C含
量:0.08重量%,残部:Fe)板材の軟質品(母材
硬度Hv170〜180)と、SUS316(Cr含
量:17重量%,Ni含量:13.5重量%,Mo含
量:2.5重量%,C含量:0.06重量%,残部:F
e)板材(母材硬度Hv210〜230)より、それぞ
れ、厚み2mm×10mm×10mmの板片を複数個準
備した。これらの一部を、図1に示す炉において440
℃に昇温し、NF3 :10体積%+N2 :90体積%混
合ガスを25分間吹き込んでフッ化処理を行った。つい
で、H2 :32体積%+CO:20体積%+CO2 :1
体積%+残部:N2 の浸炭性ガスを導入し、8時間保持
して炭素の浸透処理をした後、取り出した。つぎに、5
5℃に加温した4重量%HF+15重量%HNO3 溶液
に20分間浸漬したのち、表面状態を調査したところ、
SUS304板片で、濃化層深さが8μm、表面硬度が
Hv380であった。SUS316板片で、濃化層深さ
が12μm、表面硬度がHv550であった。これら浸
透処理品と、未処理品を、ダイヤモンドペーストによる
研磨仕上げを行ったのち、65℃に加温した15重量%
のHNO3 溶液でパッシベーション処理を施して供試験
サンプルとした。つぎに、生理食塩水(37℃に加温し
た0.5重量%NaCl溶液)を準備し、各サンプルを
1週間浸漬して金属イオンの溶出状況を原子吸光分析に
より調査した。その結果を下記の表2に示す。Example 2 Generally commercially available SUS304 (Cr
Content: 18.5% by weight, Ni content: 8.5% by weight, C content: 0.08% by weight, balance: Fe) Soft plate material (base material hardness Hv 170 to 180) and SUS316 (Cr content: 17) % By weight, Ni content: 13.5% by weight, Mo content: 2.5% by weight, C content: 0.06% by weight, balance: F
e) A plurality of plate pieces each having a thickness of 2 mm × 10 mm × 10 mm were prepared from the plate material (base material hardness Hv 210 to 230). A portion of these is 440 in the furnace shown in FIG.
The temperature was raised to 0 ° C., and a mixed gas of NF 3 : 10% by volume + N 2 : 90% by volume was blown for 25 minutes to perform a fluorination treatment. Then, H 2 : 32% by volume + CO: 20% by volume + CO 2 : 1
Volume% + balance: N 2 carburizing gas was introduced, held for 8 hours for carbon permeation treatment, and then taken out. Next, 5
After immersing in a 4 wt% HF + 15 wt% HNO 3 solution heated to 5 ° C. for 20 minutes, the surface condition was investigated.
The SUS304 plate piece had a concentrated layer depth of 8 μm and a surface hardness of Hv380. The SUS316 plate piece had a concentrated layer depth of 12 μm and a surface hardness of Hv550. These infiltration-treated products and untreated products were polished with diamond paste and then heated to 65 ° C to obtain 15% by weight.
It was subjected the test sample is subjected to a passivation treatment with HNO 3 solution. Next, physiological saline (0.5 wt% NaCl solution heated to 37 ° C.) was prepared, each sample was immersed for 1 week, and the elution state of metal ions was investigated by atomic absorption spectrometry. The results are shown in Table 2 below.
【0054】[0054]
【表2】 [Table 2]
【0055】上記表2の結果から明らかなように、未処
理品は、本発明品に比べ、FeイオンおよびNiイオン
の溶出が多いことがわかる。すなわち、本発明の金属製
品は、浸透処理により、未処理品(すなわち母材)より
も耐蝕性が向上していることがわかる。As is clear from the results in Table 2 above, the untreated product has more Fe and Ni ions eluted than the product of the present invention. That is, it can be seen that the metal product of the present invention has improved corrosion resistance as compared with the untreated product (that is, the base material) due to the permeation treatment.
【図1】本発明の浸透処理に用いる炉の構成図である。FIG. 1 is a configuration diagram of a furnace used for an infiltration treatment of the present invention.
【図2】本発明の高耐蝕性金属製品の表層部の断面拡大
顕微鏡写真である。FIG. 2 is an enlarged cross-sectional micrograph of a surface layer portion of the highly corrosion-resistant metal product of the present invention.
【図3】SUS316未処理品,およびSUS316板
材を480℃で浸透処理した後、強酸浸漬処理を行った
処理品のX線回折チャートである。FIG. 3 is an X-ray diffraction chart of an untreated SUS316 product and a treated product in which a SUS316 plate material was subjected to a permeation treatment at 480 ° C. and then subjected to a strong acid immersion treatment.
【図4】SUS316の未処理材のアノード分極曲線の
測定結果である。FIG. 4 is a measurement result of an anode polarization curve of an untreated material of SUS316.
【図5】SUS316を480℃で浸透処理したサンプ
ルのアノード分極曲線の測定結果である。FIG. 5 is a measurement result of an anodic polarization curve of a sample obtained by permeating SUS316 at 480 ° C.
【図6】SUS316の未処理材と、このSUS316
を480℃で浸透処理したサンプルの孔食電位測定結果
である。[FIG. 6] Untreated material of SUS316 and this SUS316
2 is a measurement result of pitting potential of a sample subjected to permeation treatment at 480 ° C.
【図7】SUS304固溶化処理品,SUS316圧延
品、およびこれらを480℃で浸透処理したサンプルの
硫酸浸漬テストの結果である。FIG. 7 shows the results of a sulfuric acid immersion test of SUS304 solution treated products, SUS316 rolled products, and samples obtained by permeating these at 480 ° C.
【図8】SUS316材を600℃で浸炭処理した処理
品のX線回折チャートである。FIG. 8 is an X-ray diffraction chart of a treated product obtained by carburizing SUS316 material at 600 ° C.
【図9】SUS316材を480℃で浸透処理した処理
品のEPMA分析結果である。FIG. 9 is an EPMA analysis result of a treated product obtained by permeating SUS316 material at 480 ° C.
【図10】SUS316材を450℃で浸透処理した処
理品のEPMA分析結果である。FIG. 10 is an EPMA analysis result of a treated product obtained by permeating SUS316 material at 450 ° C.
【図11】SUS316材を600℃で浸炭処理した処
理品のEPMA分析結果である。FIG. 11 is an EPMA analysis result of a treated product obtained by carburizing SUS316 material at 600 ° C.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 林田 忠司 兵庫県尼崎市中浜町1番8号 大同ほくさ ん株式会社尼崎工場内 (72)発明者 田原 正昭 兵庫県尼崎市中浜町1番8号 大同ほくさ ん株式会社尼崎工場内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Tadashi Hayashida 1-8 Nakahama-cho, Amagasaki-shi, Hyogo Daido Hokusan Co., Ltd. Amagasaki Plant (72) Masaaki Tahara 1-8 Nakahama-cho, Amagasaki-shi, Hyogo Daido Hokusan Co., Ltd. Amagasaki Plant
Claims (9)
ステナイト系ステンレスからなり、表面の不働態皮膜直
下の5〜50μmの深さの表面層が、炭素原子の浸透に
よって、炭素の濃化層に形成されたことを特徴とする高
耐蝕性金属製品。1. A base material is made of austenitic stainless steel exhibiting an austenite phase, and a surface layer having a depth of 5 to 50 μm immediately below the passivation film on the surface is formed as a carbon concentrated layer by permeation of carbon atoms. Highly corrosion resistant metal product characterized by being made.
デンを含有するオーステナイト系ステンレスである請求
項1記載の高耐蝕性金属製品。2. The highly corrosion resistant metal product according to claim 1, wherein the austenitic stainless steel is an austenitic stainless steel containing molybdenum.
ーステナイト相から形成されている請求項1または2記
載の高耐蝕性金属製品。3. The highly corrosion resistant metal product according to claim 1, wherein the concentrated layer is formed of an austenite phase in which chromium carbide is absent.
重量%である請求項3記載の高耐蝕性金属製品。4. The maximum carbon concentration of the concentrated layer is 1.2 to 2.6.
The highly corrosion-resistant metal product according to claim 3, wherein the metal product has a weight percentage.
テナイト系ステンレス製品を、フッ素系ガス雰囲気下で
加熱状態で保持し、ついで、400℃〜500℃の温度
で炭素原子の浸透処理を行い、表面から5〜50μmの
深さの表面層に炭素の濃化層を形成させることを特徴と
する高耐蝕性金属製品の製法。5. An austenitic stainless steel product in which a base material exhibits an austenite phase is held in a heated state in a fluorine-based gas atmosphere, and then carbon atom permeation treatment is performed at a temperature of 400 ° C. to 500 ° C. A method for producing a highly corrosion-resistant metal product, which comprises forming a carbon concentrated layer on a surface layer having a depth of 5 to 50 μm.
00〜500℃である請求項5記載の高耐蝕性金属製品
の製法。6. Heating under a fluorine-based gas atmosphere is 3
The method for producing a highly corrosion-resistant metal product according to claim 5, wherein the temperature is from 00 to 500 ° C.
去する仕上げ処理を行う請求項5または6記載の高耐蝕
性金属製品の製法。7. The method for producing a highly corrosion-resistant metal product according to claim 5, wherein a finish treatment for removing the outermost surface layer is performed after the carbon atom infiltration treatment.
記載の高耐蝕性金属製品の製法。8. The finishing treatment is a pickling treatment.
A method for producing the highly corrosion-resistant metal product described.
後、雰囲気中にNH3 ガスを添加して加熱保持したの
ち、炭素原子の浸透処理を行う請求項5〜8のいずれか
一項に記載の高耐蝕性金属製品の製法。9. The method according to claim 5, wherein after the heating and holding in a fluorine-based gas atmosphere, NH 3 gas is added to the atmosphere and the heating and holding is performed, and then the carbon atom permeation treatment is performed. Manufacturing method of highly corrosion resistant metal products.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08192797A JP3213254B2 (en) | 1996-03-14 | 1997-03-13 | High corrosion resistant metal products and their manufacturing method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5790096 | 1996-03-14 | ||
JP8-57900 | 1996-03-14 | ||
JP08192797A JP3213254B2 (en) | 1996-03-14 | 1997-03-13 | High corrosion resistant metal products and their manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09302456A true JPH09302456A (en) | 1997-11-25 |
JP3213254B2 JP3213254B2 (en) | 2001-10-02 |
Family
ID=26398988
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08192797A Expired - Lifetime JP3213254B2 (en) | 1996-03-14 | 1997-03-13 | High corrosion resistant metal products and their manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3213254B2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000075522A1 (en) * | 1999-06-04 | 2000-12-14 | Nsk Ltd. | Bearing device and method of manufacturing the bearing device |
WO2001048079A1 (en) * | 1999-12-27 | 2001-07-05 | Asahi Kasei Kabushiki Kaisha | Thermoplastic crosslinked rubber compositions |
WO2001069100A1 (en) * | 2000-03-17 | 2001-09-20 | Nsk Ltd. | Rolling support device and method for manufacturing the same |
EP1146136A1 (en) * | 1999-09-07 | 2001-10-17 | Citizen Watch Co. Ltd. | Ornament and method for preparation thereof |
US6382037B1 (en) * | 1999-05-20 | 2002-05-07 | Mitsubishi Denki Kabushiki Kaisha | Starter |
JP2002522645A (en) * | 1998-08-12 | 2002-07-23 | スウエイジロク・カンパニー | Low-temperature selective hardening process |
JP2002266083A (en) * | 2001-03-09 | 2002-09-18 | Citizen Watch Co Ltd | Ornamental parts and method for manufacturing the same |
JP2002266084A (en) * | 2001-03-09 | 2002-09-18 | Citizen Watch Co Ltd | Tableware, and the like, and method for manufacturing the same |
US6905758B1 (en) | 1987-08-12 | 2005-06-14 | Citizen Watch Co., Ltd. | Decorative item and process for producing the same |
JP2008106359A (en) * | 2007-10-04 | 2008-05-08 | Air Water Inc | Stainless steel spring |
JP2010517605A (en) * | 2007-02-02 | 2010-05-27 | ダブリューエムエフ アクティエンゲセルシャフト | Meal and / or cutlery with martensite boundary layer |
JP4931601B2 (en) * | 2003-12-23 | 2012-05-16 | ロールス−ロイス・コーポレーション | Method for carburizing steel components |
-
1997
- 1997-03-13 JP JP08192797A patent/JP3213254B2/en not_active Expired - Lifetime
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6905758B1 (en) | 1987-08-12 | 2005-06-14 | Citizen Watch Co., Ltd. | Decorative item and process for producing the same |
JP2002522645A (en) * | 1998-08-12 | 2002-07-23 | スウエイジロク・カンパニー | Low-temperature selective hardening process |
US6382037B1 (en) * | 1999-05-20 | 2002-05-07 | Mitsubishi Denki Kabushiki Kaisha | Starter |
WO2000075522A1 (en) * | 1999-06-04 | 2000-12-14 | Nsk Ltd. | Bearing device and method of manufacturing the bearing device |
EP1146136A4 (en) * | 1999-09-07 | 2006-09-06 | Citizen Watch Co Ltd | Ornament and method for preparation thereof |
EP1146136A1 (en) * | 1999-09-07 | 2001-10-17 | Citizen Watch Co. Ltd. | Ornament and method for preparation thereof |
WO2001048079A1 (en) * | 1999-12-27 | 2001-07-05 | Asahi Kasei Kabushiki Kaisha | Thermoplastic crosslinked rubber compositions |
WO2001069100A1 (en) * | 2000-03-17 | 2001-09-20 | Nsk Ltd. | Rolling support device and method for manufacturing the same |
US7122086B2 (en) | 2000-03-17 | 2006-10-17 | Nsk Ltd. | Rolling support device and method for manufacturing the same |
JP2002266083A (en) * | 2001-03-09 | 2002-09-18 | Citizen Watch Co Ltd | Ornamental parts and method for manufacturing the same |
JP2002266084A (en) * | 2001-03-09 | 2002-09-18 | Citizen Watch Co Ltd | Tableware, and the like, and method for manufacturing the same |
JP4931601B2 (en) * | 2003-12-23 | 2012-05-16 | ロールス−ロイス・コーポレーション | Method for carburizing steel components |
JP2010517605A (en) * | 2007-02-02 | 2010-05-27 | ダブリューエムエフ アクティエンゲセルシャフト | Meal and / or cutlery with martensite boundary layer |
JP2008106359A (en) * | 2007-10-04 | 2008-05-08 | Air Water Inc | Stainless steel spring |
Also Published As
Publication number | Publication date |
---|---|
JP3213254B2 (en) | 2001-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3161644B2 (en) | Method of nitriding austenitic stainless steel products | |
US5792282A (en) | Method of carburizing austenitic stainless steel and austenitic stainless steel products obtained thereby | |
JP3213254B2 (en) | High corrosion resistant metal products and their manufacturing method | |
EP0678589A1 (en) | Method of carburizing austenitic metal and carburized austenitic metal products | |
JP3064938B2 (en) | Carburizing method for austenitic stainless steel and austenitic stainless steel product obtained thereby | |
CN1160774A (en) | Method of carburizing austenitic stainless and austenitic stainless products obtained thereby | |
JPH0971853A (en) | Carbohardened product for joining and its production | |
JP3064937B2 (en) | Method for carburizing austenitic metal and austenitic metal product obtained by the method | |
JP3174422B2 (en) | Stainless nitride products | |
JP3005952B2 (en) | Method for carburizing austenitic metal and austenitic metal product obtained by the method | |
JP3064908B2 (en) | Carburized and hardened watch parts or accessories and their methods of manufacture | |
JP4947932B2 (en) | Metal gas nitriding method | |
JP3064909B2 (en) | Carburized hardware and its manufacturing method | |
JPH1018017A (en) | Treatment for carburizing austenitic metal and austenitic metal product obtained thereby | |
JPH0453943B2 (en) | ||
JP2004325190A (en) | Method of making austenitic grain boundary of steel emerged | |
JPH09143614A (en) | Ferritic stainless steel excellent in corrosion resistance | |
KR100289286B1 (en) | Stainless Nitride Products | |
JPH10330906A (en) | Production of austenitic stainless steel product | |
JPH07126828A (en) | Production of high corrosion resistant austenitic stainless steel member for semiconductor producing device | |
JP3288166B2 (en) | Micro shaft | |
JP3248772B2 (en) | Corrosion resistant tableware | |
JP3326425B2 (en) | Method of nitriding stainless steel products | |
JPH11100613A (en) | Method for bright-annealing two-phase stainless steel | |
JPH0633264A (en) | Austenitic stainless steel for high purity gas excellent in corrosion resistance and its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20010710 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080719 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080719 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090719 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090719 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100719 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110719 Year of fee payment: 10 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110719 Year of fee payment: 10 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110719 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120719 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120719 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130719 Year of fee payment: 12 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |