[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004325190A - Method of making austenitic grain boundary of steel emerged - Google Patents

Method of making austenitic grain boundary of steel emerged Download PDF

Info

Publication number
JP2004325190A
JP2004325190A JP2003118877A JP2003118877A JP2004325190A JP 2004325190 A JP2004325190 A JP 2004325190A JP 2003118877 A JP2003118877 A JP 2003118877A JP 2003118877 A JP2003118877 A JP 2003118877A JP 2004325190 A JP2004325190 A JP 2004325190A
Authority
JP
Japan
Prior art keywords
grain boundary
polishing
nitriding
steel
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003118877A
Other languages
Japanese (ja)
Inventor
Hiroshi Nagao
博 永尾
Kimio Kamimura
公夫 上村
Izuru Yamamoto
出 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003118877A priority Critical patent/JP2004325190A/en
Publication of JP2004325190A publication Critical patent/JP2004325190A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of making an austenitic grain boundary emerged clearly relative to a quenching material of a high alloy steel including many kinds of alloy elements, which is difficult to be emerged by the conventional corrosive liquid. <P>SOLUTION: This method of making the austenitic grain boundary of a steel emerged is characterized by having a polishing process for slicing a sample from the object steel and polishing the sample surface, a nitriding process for applying nitriding to the polished sample surface, a re-polishing process for re-polishing the nitrided sample surface, and a grain boundary emergence process for applying corrosion processing for corroding preferentially the grain boundary on the re-polished surface. The nitriding is preferably applied in an ammonia atmosphere for 30 minutes to 10 hours at a temperature of 450-700°C. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は鋼のオーステナイト粒界を現出する方法に関し、特に、焼き入れ処理を行った高合金鋼のオーステナイト粒界の現出方法に関する。
【0002】
【従来の技術】
昨今の材料技術の進歩に伴い多種多様な高合金鋼が開発されるようになった。これらの高合金鋼は多種類の合金元素を含有しているため従来の腐食液では明瞭なオーステナイト結晶粒界の現出が困難な場合が多い。このため高合金鋼のオーステナイト結晶粒界を鮮明に現出するための腐食液や試料調製方法に関する提案がなされている。例えば、ピクリン酸に、硝酸、塩酸および硫酸を加え、さらに塩化第一鉄と過酸化水素と界面活性剤などを添加した腐食液が提案されている(特許文献1参照)。
【0003】
【特許文献1】
特開平7−325080号公報
【0004】
【発明が解決しようとする課題】
しかし、特許文献1の腐食液ではCr含有量が0.05重量%以上の鋼材については鮮明な粒界を現出することが可能であるが、さらに多くの合金元素、例えばNiやMoなどを0.2重量%以上含むような高合金鋼においてはこの腐食液であっても必ずしも明瞭な粒界を得ることができなかった。
【0005】
そこで本発明の課題は、従来の腐食液では現出が困難であった多種類の合金元素を含有する高合金鋼の焼き入れ材料について、そのオーステナイト粒界を鮮明に現出する方法を提供することである。
【0006】
【課題を解決するための手段】
本発明者らは、焼き入れ処理後の高合金鋼のオーステナイト粒界を現出する方法について研究を重ね、腐食処理前の試料に窒化処理を施すことに思い至った。試料に窒化処理を施すことにより、窒素はオーステナイト結晶粒の粒界に沿って深く拡散して粒界に析出しているCやCr等の添加元素と窒化物を形成する。そのため、その後の腐食処理によりオーステナイト結晶粒の粒内と粒界との腐食の程度に大きな差が生じて粒界を鮮明に現出できることを見出した。この知見をもとに鋭意実験を重ねて本発明を完成したものである。
【0007】
すなわち、本発明の鋼のオーステナイト粒界の現出方法は、対象とする鋼から試料を切り出して試料表面を研磨する研磨工程と、研磨された試料表面に窒化処理を施す窒化処理工程と、窒化された試料表面を再度研磨する再研磨工程と、この再研磨面に粒界を優先的に腐食する腐食処理を施す粒界現出工程とを有することを特徴とする方法である。
【0008】
ここで、窒化処理はアンモニア雰囲気中で450〜700℃で30分〜10時間の処理を施すことが望ましい。
【0009】
また、再研磨後の粒界現出工程は、5〜30%のクロム酸溶液中で電解エッチングすることが好ましい。
【0010】
さらに、オーステナイト粒界をより鮮明に現出するために窒化処理後の再研磨工程と粒界現出工程とを複数回繰り返すことが好ましい。
【0011】
【発明の実施の形態】
本発明の鋼のオーステナイト粒界の現出方法は、試料を切り出して試料表面を研磨する研磨工程と、研磨された試料に窒化処理を施す窒化処理工程と、窒化された試料表面を再度研磨する再研磨工程と、この再研磨面に粒界を優先的に腐食する腐食処理を施す粒界現出工程とを有することを特徴とする方法である。
【0012】
切り出された試料の表面研磨工程では、通常のバフ研磨などによって試料表面を鏡面仕上げすることが望ましい。これは、その後の窒化処理において試料のオーステナイト結晶粒界及び粒内へ窒素が侵入しやすくするためである。なお、バフ研磨後は試料表面を純水やアルコールなどで洗浄して乾燥させることが好ましい。
【0013】
窒化処理工程は試料のオーステナイト結晶粒の粒内及び粒界に窒素を侵入させ析出物などと窒化物を形成する工程である。窒化処理方法には特に限定はないが、安全性や取り扱いの容易さを考慮するとアンモニアガスによるガス窒化が好ましい。ここで、窒化処理温度は、450〜700℃の範囲が望ましい。窒化処理温度が450℃未満では窒素の粒界への侵入が十分でないために窒化物の析出が少なく鮮明な結晶粒界を得ることができない。他方、700℃を越えると結晶粒が成長することがあり本来観察すべき必要な結晶粒を観察できなくなることがあるので適当ではない。より好ましくは500〜650℃である。
【0014】
また、窒化処理時間は30分〜10時間が望ましい。処理時間が30分未満では粒界における窒化物の形成が不十分であるため、明瞭な粒界の現出が困難な場合がある。一方、10時間以上窒化処理しても効果が飽和してしまいかえって作業効率を低下させるので適当ではない。より好ましくは1〜5時間である。
【0015】
なお、窒化処理における残留アンモニア濃度は20%以上が適当である。これは、残留アンモニア濃度が20%以下では、窒化能力が不足し、窒化物の析出が不十分な場合があるからである。
【0016】
再研磨工程は、窒化により処理品の表面に形成される窒化物層を除去するための工程である。この窒化物層は一般に白層と呼ばれる鉄の窒化物の層であるが、この層は窒化処理により、粒界、粒内を問わず処理品最表面に形成される。窒化物層が存在すると、腐食を行っても粒界の現出は困難であるため、再研磨を施すことで試料の最表面に形成された窒化物層を除去する。再研磨は例えば、ダイヤモンドペースト等の研磨剤を用いて、表面粗さ0.01Ra程度の鏡面仕上げ加工を施すことが望ましい。
【0017】
粒界現出工程における腐食方法は、5〜30重量%のクロム酸水溶液中で電解エッチングを施すことが好ましい。クロム酸水溶液のクロム酸濃度が5重量%未満では明瞭な粒界を現出することができない。また、30重量%を越えると腐食の程度を調整することが困難となるので適当ではない。より好ましくは8〜15重量%である。また、電解エッチングは通常の方法で行えばよい。例えば、電流:0.2〜1mA、電圧:0.5〜20V、時間:1〜10分、温度:10〜30℃とすることができる。
【0018】
なお、窒化処理後の再研磨工程と粒界現出工程とを複数回(例えば2〜3回)繰り返すことによりさらに鮮明な粒界を得ることができる。特に焼き戻し処理を施した高合金鋼については粒内に形成される析出物の量が多いので、粒内の窒化物をできるだけ除去して粒界が明瞭となるように確認しながら窒化処理後の再研磨工程と粒界現出工程とを複数回実施することが好ましい。
【0019】
【実施例】
以下実施例により本発明をさらに詳細に説明する。
(供試材)
組成が重量比でC:0.2%、Cr:0.5%、Mo:0.25%、Ni:1.8%を含有する高合金鋼の焼き入れ焼き戻し処理した材料を供試材とした。供試材の形状は、直径:10mm、長さ:20mmの丸棒であった。なお、熱処理条件は、焼き入れ:900℃×1時間、油焼き入れ、焼き戻し:600℃×2時間であった。
(試料調製)
上記の供試材から観察用の試料を3個切り出して各々観察面を研磨した。研磨はダイヤモンドペーストを研磨剤としたバフ研磨で鏡面仕上げして、試料1、2、3を得た。
【0020】
鏡面仕上げした試料1に窒化処理を施して本発明の実施例とし、試料2、3は比較例として窒化処理なしでそれぞれ異なる腐食液で腐食処理しオーステナイト粒界の現出を試みた。
(実施例)
研磨後の試料1に残留アンモニア濃度が75〜85容量%となるように流量調整したアンモニアガス雰囲気中で650℃×4時間の窒化処理を施した。次に、ダイヤモンドペースト(丸本ストルアス社製)で窒化処理された観察面を再研磨し、表面粗さ0.001Raの鏡面仕上げとした。再研磨後10%クロム酸水溶液中で丸本ストルアス社製のエッチング装置で電解エッチングを施した。電解エッチング条件は、電流:0.5A、電圧:4V、温度:20℃、時間:4分であった。なお、再研磨と電解エッチングは同一条件で2回繰り返した。現出した粒界の顕微鏡観察写真を図1に示す。
【0021】
図1から明瞭な結晶粒界が得られたことが分かる。
(比較例1)
鏡面研磨後の試料2を腐食液1で70℃×2分間腐食処理した。
【0022】
腐食液1は、水:300mlに対して、ピクリン酸:6g、塩酸:4ml、および界面活性剤としてラウリルベンゼンスルホン酸ナトリウム:9gを加えたものである。なお、この腐食液1は、例えば炭素鋼やクロム鋼などのオーステナイト粒界を現出するのに好適に使用される腐食液である。
【0023】
得られた顕微鏡観察写真を図2に示す。粒内の析出物と粒界の析出物との腐食程度が同程度であるため粒界を明瞭に区別できないことが分かる。
(比較例2)
鏡面研磨後の試料3を腐食液2で常温で25分間腐食処理した。
【0024】
なお、腐食液2の組成は特許文献1に開示されている以下の組成であった。
【0025】
すなわち、ピクリン酸飽和水溶液:1100mlに、61%硝酸:5ml、36%塩酸:11ml、97%硫酸:0.6ml、30%過酸化水素水:0.5ml、ドデシルベンゼンスルホン酸ナトリウム:100mg、グリセリン:20ml、塩化第一鉄:30mgを加えて、全腐食液量を1137mlとしたものである。
【0026】
得られた顕微鏡観察写真を図3に示す。比較例1と同様に粒内の析出物と粒界の析出物との腐食程度が同程度であるため粒界を明瞭に区別できないことが分かる。
【0027】
【発明の効果】
本発明によれば、従来観察困難であった焼き入れ処理後の高合金鋼のオーステナイト粒界を、ムラなく均一にかつ明瞭に現出することが可能である。従って、結晶粒度による高合金鋼の評価が可能となり、高合金材料の研究開発や品質管理に大きな効果を奏し工業的価値は極めて大である。特に、マルエージング鋼、SNCM鋼、あるいはCr−Mo−V鋼などの高合金鋼に適用して好適である。
【図面の簡単な説明】
【図1】本発明のオーステナイト粒界を現出する方法で観察された粒界を示す金属顕微鏡写真である。
【図2】窒化処理を施さないで腐食液1で現出した粒界を観察した金属顕微鏡写真である。
【図3】窒化処理を施さないで腐食液2で現出した粒界を観察した金属顕微鏡写真である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing austenite grain boundaries in steel, and more particularly, to a method for producing austenite grain boundaries in a high-alloy steel that has been subjected to quenching.
[0002]
[Prior art]
A variety of high alloy steels have been developed with recent advances in materials technology. Since these high alloy steels contain various kinds of alloying elements, it is often difficult to clearly show austenite crystal grain boundaries with a conventional corrosive liquid. For this reason, proposals have been made on a corrosive liquid and a sample preparation method for clearly showing austenite crystal grain boundaries of a high alloy steel. For example, there has been proposed a corrosion liquid in which nitric acid, hydrochloric acid, and sulfuric acid are added to picric acid, and further, ferrous chloride, hydrogen peroxide, a surfactant, and the like are added (see Patent Document 1).
[0003]
[Patent Document 1]
JP-A-7-325080
[Problems to be solved by the invention]
However, in the corrosive liquid of Patent Document 1, it is possible to show clear grain boundaries for steel having a Cr content of 0.05% by weight or more, but more alloy elements such as Ni and Mo are used. In a high alloy steel containing 0.2% by weight or more, a clear grain boundary could not always be obtained even with this corrosion liquid.
[0005]
Therefore, an object of the present invention is to provide a method for clearly showing austenite grain boundaries in a hardened material of a high alloy steel containing various types of alloy elements, which has been difficult to appear with a conventional corrosion liquid. That is.
[0006]
[Means for Solving the Problems]
The present inventors have repeated research on a method for producing austenite grain boundaries of a high alloy steel after quenching, and have come to realize that a sample before corrosion treatment is subjected to nitriding. By subjecting the sample to nitriding treatment, nitrogen diffuses deeply along the grain boundaries of austenite crystal grains to form nitrides with additional elements such as C and Cr precipitated at the grain boundaries. Therefore, it has been found that the subsequent corrosion treatment causes a large difference in the degree of corrosion between the inside of the austenite crystal grains and the grain boundary, and the grain boundary can clearly appear. The present invention has been completed through intensive experiments based on this finding.
[0007]
That is, the method of presenting the austenite grain boundary of steel according to the present invention includes a polishing step of cutting out a sample from a target steel and polishing the sample surface, a nitriding step of performing a nitriding process on the polished sample surface, The method comprises a re-polishing step of re-polishing the sample surface that has been made, and a grain boundary appearing step of performing a corrosion treatment on the re-polished surface to preferentially corrode the grain boundaries.
[0008]
Here, the nitriding treatment is preferably performed in an ammonia atmosphere at 450 to 700 ° C. for 30 minutes to 10 hours.
[0009]
In addition, in the grain boundary appearance step after the re-polishing, it is preferable to perform electrolytic etching in a 5 to 30% chromic acid solution.
[0010]
Further, in order to make the austenite grain boundaries appear more clearly, it is preferable to repeat the repolishing step after the nitriding treatment and the grain boundary appearance step a plurality of times.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The method for revealing austenite grain boundaries of steel according to the present invention includes a polishing step of cutting out a sample and polishing the surface of the sample, a nitriding step of nitriding the polished sample, and re-polishing the nitrided sample surface. The method comprises a re-polishing step and a grain boundary appearance step of performing a corrosion treatment on the re-polished surface to preferentially corrode grain boundaries.
[0012]
In the surface polishing step of the cut sample, it is desirable that the surface of the sample is mirror-finished by ordinary buffing or the like. This is to make it easier for nitrogen to enter the austenite crystal grain boundaries and grains in the sample during the subsequent nitriding treatment. After buffing, it is preferable to wash the sample surface with pure water or alcohol and dry it.
[0013]
The nitriding step is a step of injecting nitrogen into the austenite crystal grains of the sample and into the grain boundaries to form nitrides with precipitates and the like. Although there is no particular limitation on the nitriding method, gas nitriding with ammonia gas is preferable in consideration of safety and ease of handling. Here, the nitriding temperature is preferably in the range of 450 to 700 ° C. If the nitriding temperature is lower than 450 ° C., the penetration of nitrogen into the grain boundaries is not sufficient, so that a small amount of nitride precipitates and clear crystal grain boundaries cannot be obtained. On the other hand, if the temperature exceeds 700 ° C., the crystal grains may grow, and it may not be possible to observe the necessary crystal grains that should be originally observed. More preferably, it is 500 to 650 ° C.
[0014]
The nitriding time is preferably 30 minutes to 10 hours. If the treatment time is less than 30 minutes, formation of a nitride at a grain boundary is insufficient, so that it may be difficult to make a clear grain boundary appear. On the other hand, even if the nitriding treatment is performed for 10 hours or more, the effect is saturated and the working efficiency is reduced, which is not appropriate. More preferably, it is 1 to 5 hours.
[0015]
Note that the residual ammonia concentration in the nitriding treatment is suitably 20% or more. This is because if the residual ammonia concentration is 20% or less, the nitriding ability may be insufficient, and the precipitation of nitride may be insufficient.
[0016]
The repolishing step is a step for removing a nitride layer formed on the surface of the processed product by nitriding. This nitride layer is an iron nitride layer generally called a white layer, and this layer is formed on the outermost surface of the processed product by the nitriding treatment regardless of the grain boundaries or the inside of the grains. If a nitride layer is present, it is difficult to reveal grain boundaries even if corrosion is performed. Therefore, the nitride layer formed on the outermost surface of the sample is removed by performing repolishing. For the re-polishing, for example, it is desirable to perform a mirror finishing process with a surface roughness of about 0.01 Ra using an abrasive such as a diamond paste.
[0017]
As a corrosion method in the grain boundary appearance step, it is preferable to perform electrolytic etching in a 5 to 30% by weight aqueous solution of chromic acid. If the chromic acid concentration of the chromic acid aqueous solution is less than 5% by weight, a clear grain boundary cannot be produced. On the other hand, if it exceeds 30% by weight, it becomes difficult to adjust the degree of corrosion, so that it is not appropriate. More preferably, it is 8 to 15% by weight. The electrolytic etching may be performed by a usual method. For example, current: 0.2 to 1 mA, voltage: 0.5 to 20 V, time: 1 to 10 minutes, and temperature: 10 to 30 ° C.
[0018]
By repeating the repolishing step after the nitriding treatment and the grain boundary appearance step a plurality of times (for example, two to three times), a clearer grain boundary can be obtained. In particular, in the case of tempered high-alloy steel, the amount of precipitates formed in the grains is large, so after removing the nitrides in the grains as much as possible and confirming that the grain boundaries are clear, It is preferable to perform the re-polishing step and the grain boundary appearance step a plurality of times.
[0019]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples.
(Test material)
A test material was a material obtained by quenching and tempering a high alloy steel containing 0.2% by weight, Cr: 0.5%, Mo: 0.25%, and Ni: 1.8% by weight. And The shape of the test material was a round bar having a diameter of 10 mm and a length of 20 mm. The heat treatment conditions were as follows: quenching: 900 ° C. × 1 hour, oil quenching and tempering: 600 ° C. × 2 hours.
(Sample preparation)
Three specimens for observation were cut out from the above test materials, and the observation surfaces were polished. Polishing was performed by buff polishing using diamond paste as an abrasive to obtain mirror samples 1, 2, and 3.
[0020]
The mirror-finished sample 1 was subjected to a nitriding treatment to provide an example of the present invention, and samples 2 and 3 were subjected to corrosion treatment with different corrosion liquids without nitriding treatment as comparative examples to try to reveal austenite grain boundaries.
(Example)
The polished sample 1 was subjected to a nitriding treatment at 650 ° C. for 4 hours in an ammonia gas atmosphere whose flow rate was adjusted so that the residual ammonia concentration was 75 to 85% by volume. Next, the observation surface nitrided with a diamond paste (manufactured by Marumoto Struers) was polished again to obtain a mirror finish with a surface roughness of 0.001 Ra. After the repolishing, electrolytic etching was performed in a 10% aqueous chromic acid solution using an etching apparatus manufactured by Marumoto Struers. The electrolytic etching conditions were as follows: current: 0.5 A, voltage: 4 V, temperature: 20 ° C., time: 4 minutes. Note that repolishing and electrolytic etching were repeated twice under the same conditions. FIG. 1 shows a microscopic observation photograph of the grain boundaries that have appeared.
[0021]
FIG. 1 shows that a clear grain boundary was obtained.
(Comparative Example 1)
The sample 2 after the mirror polishing was subjected to a corrosion treatment with a corrosion liquid 1 at 70 ° C. for 2 minutes.
[0022]
Corrosion liquid 1 is obtained by adding picric acid: 6 g, hydrochloric acid: 4 ml, and sodium laurylbenzenesulfonate: 9 g as a surfactant to 300 ml of water. The corrosive liquid 1 is a corrosive liquid that is preferably used for producing austenite grain boundaries of, for example, carbon steel and chromium steel.
[0023]
The obtained microscopic observation photograph is shown in FIG. It can be seen that the grain boundaries cannot be clearly distinguished because the degree of corrosion between the precipitates in the grains and the precipitates at the grain boundaries is almost the same.
(Comparative Example 2)
The sample 3 after the mirror polishing was subjected to a corrosion treatment with a corrosive liquid 2 at room temperature for 25 minutes.
[0024]
The composition of the etchant 2 was the following composition disclosed in Patent Document 1.
[0025]
Specifically, saturated picric acid aqueous solution: 1100 ml, 61% nitric acid: 5 ml, 36% hydrochloric acid: 11 ml, 97% sulfuric acid: 0.6 ml, 30% hydrogen peroxide solution: 0.5 ml, sodium dodecylbenzenesulfonate: 100 mg, glycerin : 20 ml and ferrous chloride: 30 mg were added to make the total amount of corrosive liquid 1137 ml.
[0026]
The obtained microscopic observation photograph is shown in FIG. As in Comparative Example 1, since the degree of corrosion between the precipitates in the grains and the precipitates in the grain boundaries is almost the same, it can be seen that the grain boundaries cannot be clearly distinguished.
[0027]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the austenitic grain boundary of the high alloy steel after the quenching process which was difficult to observe conventionally can be uniformly and clearly revealed without unevenness. Therefore, it is possible to evaluate a high alloy steel based on crystal grain size, which has a great effect on research and development and quality control of a high alloy material, and has an extremely large industrial value. In particular, it is suitably applied to a high alloy steel such as a maraging steel, an SNCM steel, or a Cr-Mo-V steel.
[Brief description of the drawings]
FIG. 1 is a metallurgical micrograph showing a grain boundary observed by a method for producing an austenite grain boundary according to the present invention.
FIG. 2 is a metallurgical micrograph showing a grain boundary that appeared in a corrosion liquid 1 without being subjected to nitriding treatment.
FIG. 3 is a metallurgical micrograph showing a grain boundary that appears in a corrosive liquid 2 without being subjected to a nitriding treatment.

Claims (4)

鋼のオーステナイト粒界を現出する方法において、
該鋼から試料を切り出して該試料表面を研磨する研磨工程と、
該研磨された試料表面に窒化処理を施す窒化処理工程と、
該窒化された試料表面を再度研磨する再研磨工程と、
該再研磨面に粒界を優先的に腐食する腐食処理を施す粒界現出工程と、
を有することを特徴とする鋼のオーステナイト粒界の現出方法。
In a method of revealing austenite grain boundaries of steel,
A polishing step of cutting a sample from the steel and polishing the sample surface;
A nitriding step of subjecting the polished sample surface to a nitriding treatment;
A re-polishing step of re-polishing the nitrided sample surface,
A grain boundary appearance step of subjecting the polished surface to a corrosion treatment that preferentially corrodes the grain boundaries;
A method for producing austenite grain boundaries in steel, characterized by having:
前記窒化処理工程はアンモニア雰囲気中で450〜700℃で30分〜10時間の処理を施す工程である請求項1に記載の鋼のオーステナイト粒界の現出方法。2. The method of claim 1, wherein the nitriding step is a step of performing a treatment at 450 to 700 ° C. for 30 minutes to 10 hours in an ammonia atmosphere. 3. 前記粒界現出工程は、5〜30%のクロム酸水溶液中で電解エッチングを施す工程である請求項1または2に記載の鋼のオーステナイト粒界の現出方法。3. The method according to claim 1, wherein the grain boundary appearance step is a step of performing electrolytic etching in a 5 to 30% chromic acid aqueous solution. 前記窒化処理後に前記再研磨工程と前記粒界現出工程とを複数回繰り返す請求項1〜3のいずれかに記載の鋼のオーステナイト粒界の現出方法。4. The method according to claim 1, wherein the re-polishing step and the grain boundary appearance step are repeated a plurality of times after the nitriding treatment.
JP2003118877A 2003-04-23 2003-04-23 Method of making austenitic grain boundary of steel emerged Pending JP2004325190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003118877A JP2004325190A (en) 2003-04-23 2003-04-23 Method of making austenitic grain boundary of steel emerged

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003118877A JP2004325190A (en) 2003-04-23 2003-04-23 Method of making austenitic grain boundary of steel emerged

Publications (1)

Publication Number Publication Date
JP2004325190A true JP2004325190A (en) 2004-11-18

Family

ID=33498295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003118877A Pending JP2004325190A (en) 2003-04-23 2003-04-23 Method of making austenitic grain boundary of steel emerged

Country Status (1)

Country Link
JP (1) JP2004325190A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5572251B1 (en) * 2013-09-06 2014-08-13 タイ パーカライジング カンパニー リミテッド Surface hardening treatment method and surface hardening treatment apparatus for steel members
JP2018135596A (en) * 2017-02-22 2018-08-30 学校法人トヨタ学園 Production method of metal product
CN113670691A (en) * 2021-08-18 2021-11-19 广东韶钢松山股份有限公司 Ultra-low carbon cold heading steel ferrite grain boundary display method
CN114354321A (en) * 2021-12-23 2022-04-15 包头钢铁(集团)有限责任公司 Method for displaying grain size of high-manganese austenitic steel
CN114383917A (en) * 2021-12-10 2022-04-22 江苏大学 Microalloyed carbon steel original austenite grain boundary etching method
CN114486461A (en) * 2022-02-09 2022-05-13 松山湖材料实验室 High-chromium steel sample, preparation method thereof, and grain size determination and grain boundary display method thereof
CN114486460A (en) * 2022-01-28 2022-05-13 东方电气(广州)重型机器有限公司 Electrolyte of austenitic stainless steel and application thereof
CN116659982A (en) * 2023-04-23 2023-08-29 鞍钢股份有限公司 Austenitic stainless steel grain display method
CN116773311A (en) * 2023-06-26 2023-09-19 陕西长羽航空装备股份有限公司 Multistage corrosion method of deformed superalloy material for aeroengine part test

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5572251B1 (en) * 2013-09-06 2014-08-13 タイ パーカライジング カンパニー リミテッド Surface hardening treatment method and surface hardening treatment apparatus for steel members
JP7078220B2 (en) 2017-02-22 2022-05-31 学校法人トヨタ学園 Manufacturing method of metal products
JP2018135596A (en) * 2017-02-22 2018-08-30 学校法人トヨタ学園 Production method of metal product
CN113670691A (en) * 2021-08-18 2021-11-19 广东韶钢松山股份有限公司 Ultra-low carbon cold heading steel ferrite grain boundary display method
CN114383917A (en) * 2021-12-10 2022-04-22 江苏大学 Microalloyed carbon steel original austenite grain boundary etching method
CN114383917B (en) * 2021-12-10 2024-04-09 江苏大学 Method for etching original austenite grain boundary of microalloyed carbon steel
CN114354321A (en) * 2021-12-23 2022-04-15 包头钢铁(集团)有限责任公司 Method for displaying grain size of high-manganese austenitic steel
CN114486460A (en) * 2022-01-28 2022-05-13 东方电气(广州)重型机器有限公司 Electrolyte of austenitic stainless steel and application thereof
CN114486460B (en) * 2022-01-28 2024-07-12 东方电气(广州)重型机器有限公司 Electrolyte of austenitic stainless steel and application thereof
CN114486461B (en) * 2022-02-09 2023-11-21 松山湖材料实验室 Sample of high chromium steel, preparation thereof, determination of grain size and grain boundary display method
CN114486461A (en) * 2022-02-09 2022-05-13 松山湖材料实验室 High-chromium steel sample, preparation method thereof, and grain size determination and grain boundary display method thereof
CN116659982A (en) * 2023-04-23 2023-08-29 鞍钢股份有限公司 Austenitic stainless steel grain display method
CN116773311A (en) * 2023-06-26 2023-09-19 陕西长羽航空装备股份有限公司 Multistage corrosion method of deformed superalloy material for aeroengine part test
CN116773311B (en) * 2023-06-26 2024-05-10 陕西长羽航空装备股份有限公司 Multistage corrosion method of deformed superalloy material for aeroengine part test

Similar Documents

Publication Publication Date Title
CN105092437B (en) Ultra supercritical martensite heat resisting cast steel original austenite grains degree display methods
JP7113739B2 (en) Corrosive solution for observing structure of steel and method for preparing sample for observing structure of steel using the same
RU2563611C2 (en) Method of making article of stainless steel
KR101373975B1 (en) Process for pickling silicon steel with an acidic pickling solution containing ferricions
EP3289109B1 (en) Martensitic stainless steel, method for the production of a semi-finished product from said steel, and cutting tool produced from the semi-finished product
NO339865B1 (en) A method of improving the corrosion resistance of a stainless steel and stainless steel produced by the process.
JP2004325190A (en) Method of making austenitic grain boundary of steel emerged
JP3400934B2 (en) Nitriding steel and nitriding method
AU2001279169B2 (en) Surface treatments to improve corrosion resistance of austenitic stainless steels
JPH09302456A (en) High corrosion resistant metallic product and its production
JP3064937B2 (en) Method for carburizing austenitic metal and austenitic metal product obtained by the method
WO2010032769A1 (en) Heat-treatment furnace, method of heat treatment, and method of using heat-treatment furnace
JP4947932B2 (en) Metal gas nitriding method
JP3829189B2 (en) Grain boundary measurement method for steel with prior austenite grain boundaries.
JP3005952B2 (en) Method for carburizing austenitic metal and austenitic metal product obtained by the method
TWI529254B (en) Use of a chrome steel with martensitic structure and enclosures from carbide material
JPH072993B2 (en) Baths and methods for chemical polishing of stainless steel surfaces.
JPH10324986A (en) Alkaline molten salt bath for descaling high-chromium stainless steel
JP4651837B2 (en) Tableware and manufacturing method thereof
EP2287361B1 (en) Recast removal method
JP4601845B2 (en) Decorative part and manufacturing method thereof
JPH0613754B2 (en) Method for revealing grain boundaries of γ-based stainless steel
JP2003226990A (en) Ferritic stainless steel sheet and production method therefor
JPH0115564B2 (en)
JP2005330565A (en) Surface hardening treatment method for malaging steel