[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH09258836A - Power circuit - Google Patents

Power circuit

Info

Publication number
JPH09258836A
JPH09258836A JP8093324A JP9332496A JPH09258836A JP H09258836 A JPH09258836 A JP H09258836A JP 8093324 A JP8093324 A JP 8093324A JP 9332496 A JP9332496 A JP 9332496A JP H09258836 A JPH09258836 A JP H09258836A
Authority
JP
Japan
Prior art keywords
current
voltage
load
power supply
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8093324A
Other languages
Japanese (ja)
Inventor
Shinsuke Seki
信介 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP8093324A priority Critical patent/JPH09258836A/en
Publication of JPH09258836A publication Critical patent/JPH09258836A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Direct Current Feeding And Distribution (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the power consumption and stabilize the output voltage of the power source of a load circuit which has large current variation like a CMOS circuit by providing a variable current source means which absorbs a variation part of a current flowing to the load. SOLUTION: At a current supply part for the load 20, a power source 10 and a variable current source part 30 are connected in parallel. A comparison part 40 compares the voltage Vi generated by converting a current I3 with an expected value Vex to generate a control voltage Vc for controlling the current of the variable current source part 30. Here, the expected value Vex is set to a voltage expected value that maximizes the current I1 flowing to the load 20. Further, the variable current source part 30 decreases the current I2 of the variable current source part 30 with the control voltage Vc when a detected current increases. When the detected current I3 decreases, on the other hand, the current I2 of the variable current source part 30 is increased with the control voltage Vc. Then the current I3 flowing to the power source 10 is controlled so as to be kept constant at all times.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電子回路、特にC
MOS回路用の電源として、最大消費電力が小さく、電
圧の安定な電源回路に関する。
FIELD OF THE INVENTION The present invention relates to electronic circuits, especially C
The present invention relates to a power supply circuit having a small maximum power consumption and a stable voltage as a power supply for a MOS circuit.

【0002】[0002]

【従来の技術】従来、高速ロジック回路にはECLが使
用されていたが、CMOS技術の高速化技術により10
0MHz程度まではCMOS回路が使用できるようにな
った。CMOS回路は高集積化が容易であり、消費電力
も低減できるためロジック回路の主流になりつつある。
2. Description of the Related Art Conventionally, ECL has been used for a high-speed logic circuit.
A CMOS circuit can be used up to about 0 MHz. CMOS circuits are becoming the mainstream of logic circuits because they can be easily highly integrated and can reduce power consumption.

【0003】しかし、CMOS回路は回路遅延時間が電
源電圧に対する依存性を持つため、数mVの電源電圧変
動もタイミング精度劣化の原因となる。また、CMOS
回路は構造上、動作周波数に比例して回路電流も大きく
変化する。従って、さまざまな周波数で動作させる必要
があるCMOS回路用電源としては、負荷の大きな電流
変動に対して極力小さな電圧変動におさえる電圧安定化
能力が要求されている。さらに、CMOS回路の動作電
圧も低くなっているので、電源の電圧が低く最大消費電
力が小さい電源による電源回路が装置の小型化のために
要求されている。
However, since the CMOS circuit has a circuit delay time dependent on the power supply voltage, fluctuations in the power supply voltage of several mV also cause deterioration in timing accuracy. Also, CMOS
Due to the structure of the circuit, the circuit current changes greatly in proportion to the operating frequency. Therefore, a CMOS circuit power supply that needs to be operated at various frequencies is required to have a voltage stabilizing ability that can suppress a voltage fluctuation as small as possible against a large current fluctuation of a load. Further, since the operating voltage of the CMOS circuit is also low, a power supply circuit using a power supply with a low power supply voltage and a small maximum power consumption is required for downsizing of the device.

【0004】従来技術の例について、図4を参照して説
明する。従来の電源回路の構成は、図4に示すように、
電源10と、基準電圧11と、ボルテージフォロワのオ
ペアンプ12と、オペアンプ13と、電流バッファトラ
ンジスタ14とで構成している。そして、負荷20のC
MOS回路の電源入力部の電圧をセンスライン100と
センスライン200でセンスして負荷20に供給する電
圧の安定化をはかっている。
An example of the prior art will be described with reference to FIG. The configuration of a conventional power supply circuit is as shown in FIG.
It is composed of a power supply 10, a reference voltage 11, a voltage follower operational amplifier 12, an operational amplifier 13, and a current buffer transistor 14. And C of load 20
The voltage of the power supply input portion of the MOS circuit is sensed by the sense line 100 and the sense line 200 to stabilize the voltage supplied to the load 20.

【0005】通常、負荷20のCMOS回路は等価的に
可変電流源とみなすことが出来、その電流I1はCMO
S回路の動作周波数に比例して変化する。そして、負荷
20のCMOS回路におけるVDDの電圧は、センスライ
ン200で検出した電圧をボルテージフォロワのオペア
ンプ12を介して基準電圧11の+側とする。また、負
荷20のCMOS回路におけるVSSの電圧は、センスラ
イン100で検出して、オペアンプ12にフィードバッ
クをかけて、基準電圧11の電圧と等しくなる様に電流
バッファトランジスタ14に流れる電流を制御して電圧
の安定化をはかっている。
Normally, the CMOS circuit of the load 20 can be equivalently regarded as a variable current source, and its current I1 is CMO.
It changes in proportion to the operating frequency of the S circuit. Then, the voltage of VDD in the CMOS circuit of the load 20 is the voltage detected by the sense line 200 and is set to the + side of the reference voltage 11 via the operational amplifier 12 of the voltage follower. The voltage of VSS in the CMOS circuit of the load 20 is detected by the sense line 100 and is fed back to the operational amplifier 12 to control the current flowing through the current buffer transistor 14 so as to be equal to the voltage of the reference voltage 11. We are trying to stabilize the voltage.

【0006】[0006]

【発明が解決しようとする課題】上記説明のように、従
来の回路方式では電源10の電圧は、例えば基準電圧1
1の電圧を3.3Vとすると、電流バッファトランジス
タ14を動作させるのに約1V高い電圧が必要なため、
電源10の電圧は約4.3V必要となる。 そのため、
電源10の最大消費電力は負荷20のCMOS回路に必
要な電圧3.3Vのときと比較して、常に30%増加す
るという実用上の不便があった。
As described above, in the conventional circuit system, the voltage of the power source 10 is, for example, the reference voltage 1
If the voltage of 1 is 3.3V, a voltage higher by about 1V is required to operate the current buffer transistor 14,
The voltage of the power supply 10 needs to be about 4.3V. for that reason,
There is a practical inconvenience that the maximum power consumption of the power supply 10 is constantly increased by 30% as compared with the case where the voltage required for the CMOS circuit of the load 20 is 3.3V.

【0007】そこで、本発明はこうした問題に鑑みなさ
れたもので、その目的は、CMOS回路のような電流変
動の大きな負荷回路の電源として、最大消費電力が低
く、しかも出力電圧の安定な電源回路を提供することを
目的としている。
Therefore, the present invention has been made in view of these problems, and an object thereof is a power supply circuit having a low maximum power consumption and a stable output voltage as a power supply of a load circuit having a large current fluctuation such as a CMOS circuit. Is intended to provide.

【0008】[0008]

【課題を解決する為の手段】前記の課題を解決するため
に請求項1に記載の発明は、負荷20に流れる電流の変
動部分を吸収する可変電流源手段を設け、電源10の電
流変動を安定化したことを特徴とした電源回路を要旨と
している。
In order to solve the above-mentioned problems, the invention according to claim 1 is provided with variable current source means for absorbing a fluctuation portion of the current flowing through the load 20 to suppress the current fluctuation of the power source 10. The gist is a power supply circuit characterized by being stabilized.

【0009】また、前記の課題を解決するために請求項
2に記載の発明は、電源10に流れる電流を検出して電
圧に変換する電流検出手段を設け、負荷20に流れる電
流の変動部分を吸収する可変電流源手段を設け、前記電
流検出手段により変換された電圧と、期待値電圧とを比
較して可変電流電源手段の電流を制御する比較手段を設
け、前記電源10の電流変動を安定化したことを特徴と
した電源回路を要旨としている。
In order to solve the above-mentioned problems, the invention according to claim 2 is provided with a current detecting means for detecting a current flowing through the power source 10 and converting it into a voltage so as to detect a fluctuation portion of the current flowing through the load 20. Variable current source means for absorbing is provided, and comparison means for controlling the current of the variable current power supply means by comparing the voltage converted by the current detection means with an expected value voltage is provided to stabilize the current fluctuation of the power supply 10. The gist is a power supply circuit that has been characterized.

【0010】[0010]

【発明の実施の形態】本発明の実施の形態は、下記の実
施例において説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described in the following examples.

【0011】[0011]

【実施例】本発明の実施例について、図1と、図2と、
図3を参照して説明する。図1に示すように、本発明の
ブロック構成は、電源10と、電流検出部50と、比較
部40と、可変電流源部30の構成になっている。負荷
20への電流供給部において、電源10と可変電流源部
30とを並列に接続している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described with reference to FIGS.
This will be described with reference to FIG. As shown in FIG. 1, the block configuration of the present invention includes a power supply 10, a current detection unit 50, a comparison unit 40, and a variable current source unit 30. In the current supply section for the load 20, the power supply 10 and the variable current source section 30 are connected in parallel.

【0012】そして、電流検出部50は、電源10に流
れる電流I3を検出する。ここで検出する電流I3は、
負荷20に流れる電流I1と、可変電流源部30の電流
I2の合計となる。即ち、I3=I1+I2となる。そ
して検出した電流I3は電圧Viに変換して出力する。
The current detecting section 50 detects the current I3 flowing through the power source 10. The current I3 detected here is
It is the sum of the current I1 flowing through the load 20 and the current I2 of the variable current source unit 30. That is, I3 = I1 + I2. Then, the detected current I3 is converted into the voltage Vi and output.

【0013】一方、比較部40において、前記変換した
電圧Viと期待値Vexとを比較して、可変電流源部30
の電流を制御する制御電圧Vcを発生する。ここで、期
待値Vexは負荷20に流れる電流I1が最大値となる電
圧期待値に設定する。即ち、このときの可変電流源部3
0の電流I2は0となる。
On the other hand, in the comparison section 40, the variable voltage source section 30 is compared with the converted voltage Vi and the expected value Vex.
A control voltage Vc for controlling the current is generated. Here, the expected value Vex is set to a voltage expected value that maximizes the current I1 flowing through the load 20. That is, the variable current source unit 3 at this time
The current I2 of 0 becomes 0.

【0014】さらに、可変電流源部30において、検出
電流I3が増加する場合は可変電流源部30の電流I2
を制御電圧Vcにより減少させる。反対に、検出電流I
3が減少する場合は、可変電流源部30の電流I2を制
御電圧Vcにより増加させる。そして、電源10に流れ
る電流I3が常に一定値を保つように制御している。
Further, in the variable current source unit 30, when the detected current I3 increases, the current I2 of the variable current source unit 30 increases.
Is reduced by the control voltage Vc. On the contrary, the detection current I
When 3 decreases, the current I2 of the variable current source unit 30 is increased by the control voltage Vc. The current I3 flowing through the power source 10 is controlled so as to always maintain a constant value.

【0015】上記のように、負荷20の電源供給部にお
いて電源10と可変電流源部30を並列に接続して、負
荷20の電流変動分を可変電流源部30で吸収すること
により、負荷20の電流と可変電流源部30との電流の
合計が変化しないように制御している。従って、電源1
0の負荷20に供給する電圧が安定化される。
As described above, the power source 10 and the variable current source unit 30 are connected in parallel in the power source supply unit of the load 20, and the variable current source unit 30 absorbs the current fluctuation of the load 20 to thereby load the load 20. It is controlled so that the total of the current of the variable current source 30 and the current of the variable current source 30 does not change. Therefore, power supply 1
The voltage supplied to the load 20 of 0 is stabilized.

【0016】次に、本発明の具体的回路例について、図
2と、図3を参照して説明する。但し、図3は説明を簡
略にするため、位相関係の時間的な遅れは無視してい
る。負荷20は、等価的に電流源と見なせるので流れる
電流をI1とし、そしてI1の最大値をI1maxとす
る。
Next, a specific circuit example of the present invention will be described with reference to FIGS. 2 and 3. However, in FIG. 3, in order to simplify the explanation, the time delay of the phase relationship is ignored. Since the load 20 can be regarded as an equivalent current source, the flowing current is I1 and the maximum value of I1 is I1max.

【0017】電流検出部50の電流検出抵抗R1は、電
源10に流れる電流を検出する抵抗で、電流検出抵抗R
1による電圧降下が回路に影響を与えないように小さい
抵抗値にするのが望ましい。
The current detecting resistor R1 of the current detecting section 50 is a resistor for detecting the current flowing through the power source 10, and the current detecting resistor R1.
It is desirable to have a small resistance value so that the voltage drop due to 1 does not affect the circuit.

【0018】負荷20の電流I1と可変電流源部30の
電流I2は並列に接続しているので、電源10に流れる
電流I3は下式(1)となる。 I3=I1+I2 ・・・(1) 電源10に流れる電流I3が、常に一定となるように制
御する動作について以下説明する。
Since the current I1 of the load 20 and the current I2 of the variable current source section 30 are connected in parallel, the current I3 flowing through the power source 10 is given by the following equation (1). I3 = I1 + I2 (1) An operation for controlling the current I3 flowing through the power supply 10 to be always constant will be described below.

【0019】電流検出抵抗R1の両端の電圧Vrは下式
(2)で求められる。 Vr=I3・R1 ・・・(2) そして、バッファアンプ51、52を介して、抵抗R3
〜R6とオペアンプ53で構成される差動アンプ部に入
力して変換される。このとき、差動アンプ部の出力電圧
Viは例えば、下式(3)となる。 Vi=−Vr ・・・(3)
The voltage Vr across the current detecting resistor R1 is obtained by the following equation (2). Vr = I3 · R1 (2) Then, via the buffer amplifiers 51 and 52, the resistor R3
˜R6 and an operational amplifier 53 are input to a differential amplifier section for conversion. At this time, the output voltage Vi of the differential amplifier unit is, for example, the following expression (3). Vi = -Vr (3)

【0020】差動アンプ部の出力電圧Viは、比較部4
0の抵抗R7とコンデンサC1とオペアンプ41で構成
される積分回路の入力電圧となる。積分回路では、期待
値電圧Vex=R1・I1maxと比較し、積分回路に入
力される電圧により可変電流源部30の制御電圧Vcと
して出力する。また、Vcは下式(4)で求められる。 Vc=−(1/C1・R7)∫(Vex−Vi)dt ・・・(4)
The output voltage Vi of the differential amplifier unit is compared with the comparison unit 4
It becomes the input voltage of the integrating circuit composed of the resistor R7 of 0, the capacitor C1, and the operational amplifier 41. The integrator circuit compares with the expected value voltage Vex = R1 · I1max and outputs it as the control voltage Vc of the variable current source unit 30 according to the voltage input to the integrator circuit. Further, Vc is calculated by the following equation (4). Vc = − (1 / C1 · R7) ∫ (Vex−Vi) dt (4)

【0021】可変電流源部30の基準電圧バッファ部
は、トランジスタ33のエミッタ電圧をオペアンプ31
にフィードバックして、トランジスタ33に流れる電流
を制御して基準電圧11の電圧Vref と同じになるよう
に動作する。一方、制御電圧バッファ部は、トランジス
タ34のエミッタ電圧をオペアンプ32にフィードバッ
クして、トランジスタ34に流れる電流を制御して制御
電圧Vcの電圧と同じになるように動作する。
The reference voltage buffer section of the variable current source section 30 uses the operational amplifier 31 as the emitter voltage of the transistor 33.
Is fed back to control the current flowing through the transistor 33 and operate so as to be the same as the voltage Vref of the reference voltage 11. On the other hand, the control voltage buffer unit feeds back the emitter voltage of the transistor 34 to the operational amplifier 32, controls the current flowing through the transistor 34, and operates so as to have the same voltage as the control voltage Vc.

【0022】従って、可変電流源部30の電流I2は、
トランジスタ33とトランジスタ34のベース電流を無
視すると下式(5)の関係が成り立つ。 I2=(Vref −Vc)/R2 ・・・・(5)
Therefore, the current I2 of the variable current source unit 30 is
When the base currents of the transistor 33 and the transistor 34 are ignored, the relationship of the following expression (5) is established. I2 = (Vref-Vc) / R2 ... (5)

【0023】図3の(a)に示すように、負荷20の電
流I1が増加したとすると、電流検出抵抗R1の両端電
圧Vrは上昇し、バッファアンプ51、52を介して差
動アンプ53から出力された出力電圧Viは、式(3)
により図3の(b)に示すように期待値電圧Vexよりも
低下する。そして、比較部40の積分器により出力の可
変電流源部30の制御電圧Vcは、式(4)により図3
の(c)に示すように上昇する。即ち、負電位が0に近
づく。従って、式(5)から可変電流源部30の電流I
2は減少する。そのようすを図3の(d)に示す。
As shown in FIG. 3A, if the current I1 of the load 20 is increased, the voltage Vr across the current detection resistor R1 is increased, and the differential amplifier 53 passes through the buffer amplifiers 51 and 52. The output voltage Vi that is output is calculated by the equation (3).
As a result, the voltage drops below the expected value voltage Vex as shown in FIG. Then, the control voltage Vc of the variable current source unit 30, which is output by the integrator of the comparison unit 40, is calculated by the equation (4) from FIG.
As shown in (c) of FIG. That is, the negative potential approaches 0. Therefore, from the formula (5), the current I of the variable current source unit 30 is
2 decreases. This is shown in FIG. 3 (d).

【0024】また上記説明とは反対に、負荷20の電流
I1が減少する場合は、図3の(a)〜(d)に示すよ
うに動作するので、電源10に流れる電流I3は図3の
(e)に示すように電流変動が低くおさえられた電流特
性となる。
Contrary to the above description, when the current I1 of the load 20 decreases, the operation is as shown in FIGS. 3 (a) to 3 (d), so that the current I3 flowing through the power source 10 is as shown in FIG. As shown in (e), the current characteristic has low current fluctuation.

【0025】従って本発明では、電源10に必要とする
電圧は、電流検出部50における検出抵抗R7の電圧降
下分だけ高ければよい。例えば、検出抵抗を0.1オー
ムとして、電流I3の電流を1Aとすれば3.4Vとな
る。従って、従来の回路の電源10に必要な電圧4.3
Vと比較して最大消費電力は約26%低くできる。
Therefore, in the present invention, the voltage required for the power supply 10 may be high by the voltage drop of the detection resistor R7 in the current detection section 50. For example, if the detection resistance is 0.1 ohm and the current I3 is 1 A, the voltage is 3.4 V. Therefore, the voltage required for the power supply 10 of the conventional circuit is 4.3.
The maximum power consumption can be reduced by about 26% as compared with V.

【0026】[0026]

【発明の効果】本発明は、以上説明したような形態で実
施され、以下に記載されるような効果を奏する。電源1
0の電圧は、負荷20に必要な電圧に対して、従来より
も低くできるので電源10の最大消費電力は低くなる。
従って、電源10の最大消費電力に基づく各部の設計最
大値が低くできるので、負荷20に使用する各部品たと
えばファンや線材の容量が小さいものを使用できる効果
がある。そのため、電源10と装置全体を小型化するこ
とができる効果が大である。
The present invention is embodied in the form described above and has the following effects. Power supply 1
Since the voltage of 0 can be made lower than that of the conventional voltage with respect to the voltage required for the load 20, the maximum power consumption of the power supply 10 is low.
Therefore, the maximum design value of each part based on the maximum power consumption of the power source 10 can be lowered, and therefore, there is an effect that each part used for the load 20, for example, a fan or a wire having a small capacity can be used. Therefore, the power supply 10 and the entire apparatus can be downsized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電源回路のブロック図である。FIG. 1 is a block diagram of a power supply circuit of the present invention.

【図2】本発明の電源回路の実施例である。FIG. 2 is an example of a power supply circuit of the present invention.

【図3】本発明の電源回路の動作特性図である。FIG. 3 is an operating characteristic diagram of the power supply circuit of the present invention.

【図4】従来の電源回路である。FIG. 4 is a conventional power supply circuit.

【符号の説明】[Explanation of symbols]

10 電源 11 基準電圧 12、13、31、32、41 オペアンプ 14、33、34 トランジスタ 20 負荷 30 可変電流源部 40 比較部 50 電流検出部 51、52 バッファアンプ 100、200 センスライン 10 power supply 11 reference voltage 12, 13, 31, 32, 41 operational amplifier 14, 33, 34 transistor 20 load 30 variable current source section 40 comparison section 50 current detection section 51, 52 buffer amplifier 100, 200 sense line

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】負荷(20)に流れる電流の変動部分を吸
収する可変電流源手段を設け、 電源(10)の電流変動を安定化したことを特徴とした
電源回路。
1. A power supply circuit characterized in that a variable current source means for absorbing a fluctuation portion of a current flowing through a load (20) is provided to stabilize a current fluctuation of a power supply (10).
【請求項2】 電源(10)に流れる電流を検出して電
圧に変換する電流検出手段を設け、 負荷(20)に流れる電流の変動部分を吸収する可変電
流源手段を設け、 前記電流検出手段により変換された電圧と、期待値電圧
とを比較して可変電流電源手段の電流を制御する比較手
段を設け、 前記電源(10)の電流変動を安定化したことを特徴と
した電源回路。
2. A current detecting means for detecting a current flowing through a power source (10) and converting it into a voltage, and a variable current source means for absorbing a varying portion of a current flowing through a load (20), said current detecting means. A power supply circuit characterized by stabilizing the current fluctuation of the power supply (10) by providing a comparison means for controlling the current of the variable current power supply means by comparing the voltage converted by the above and the expected value voltage.
JP8093324A 1996-03-22 1996-03-22 Power circuit Withdrawn JPH09258836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8093324A JPH09258836A (en) 1996-03-22 1996-03-22 Power circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8093324A JPH09258836A (en) 1996-03-22 1996-03-22 Power circuit

Publications (1)

Publication Number Publication Date
JPH09258836A true JPH09258836A (en) 1997-10-03

Family

ID=14079111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8093324A Withdrawn JPH09258836A (en) 1996-03-22 1996-03-22 Power circuit

Country Status (1)

Country Link
JP (1) JPH09258836A (en)

Similar Documents

Publication Publication Date Title
US6177785B1 (en) Programmable voltage regulator circuit with low power consumption feature
US7772817B2 (en) Constant voltage circuit capable of quickly responding to a sudden change of load current
JP4031399B2 (en) Semiconductor integrated circuit device
US7652456B2 (en) Current direction detection circuit and switching regulator having the same
US7602162B2 (en) Voltage regulator with over-current protection
US6573693B2 (en) Current limiting device and electrical device incorporating the same
JPH0644774A (en) Integrated circuit with improved type chip-on power supply controller
TWI475347B (en) Voltage regulator circuit and method thereof
EP1508078A4 (en) Voltage regulator with dynamically boosted bias current
JPH04145509A (en) Power source voltage adjustment circuit
US9606556B2 (en) Semiconductor integrated circuit for regulator
JP3610556B1 (en) Constant voltage power supply
JPH10105258A (en) Reference voltage generating circuit
JP2002142356A (en) Power circuit and noncontact ic card
TWI514104B (en) Current source for voltage regulator and voltage regulator thereof
CN111752324B (en) Reference voltage generating circuit and semiconductor device
JPH07182055A (en) Regulated power supply circuit
US20060290547A1 (en) Voltage regulation using digital voltage control
JP2002051537A (en) Dc/dc converter circuit
JPH05114291A (en) Generating circuit of reference voltage
JPH03181868A (en) Peak detector
KR20140016535A (en) Internal voltage generator
JPH09258836A (en) Power circuit
JPH0756496B2 (en) Window comparator
US6407618B1 (en) Method and apparatus for a bias generator with output current dependent on clock frequency

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030603