JPH0840726A - Apparatus for forming glass material for molding - Google Patents
Apparatus for forming glass material for moldingInfo
- Publication number
- JPH0840726A JPH0840726A JP17678794A JP17678794A JPH0840726A JP H0840726 A JPH0840726 A JP H0840726A JP 17678794 A JP17678794 A JP 17678794A JP 17678794 A JP17678794 A JP 17678794A JP H0840726 A JPH0840726 A JP H0840726A
- Authority
- JP
- Japan
- Prior art keywords
- glass
- receiving
- mold
- glass gob
- molding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B11/00—Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
- C03B11/06—Construction of plunger or mould
- C03B11/08—Construction of plunger or mould for making solid articles, e.g. lenses
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Compositions (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、精密プレス成形により
光学素子を製造する際に、ガラス素材をプレフォームす
るための形成装置に関するものであり、より詳しくは、
溶融ガラス流からプレス成形用のガラス素材(以下、ガ
ラスゴブと称する)を形成する成形用ガラス素材の形成
装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a forming apparatus for preforming a glass material when an optical element is manufactured by precision press molding.
The present invention relates to an apparatus for forming a glass material for molding, which forms a glass material for press molding (hereinafter referred to as a glass gob) from a molten glass flow.
【0002】[0002]
【従来の技術】近年、所定の表面精度を有する成形用型
内に、ある程度の形状及び表面精度に研削、研磨された
ガラス素材を収容し、加熱下でプレス成形することによ
り、レンズ、プリズムなどの高精度な光学機能面を有す
る光学素子を得る方法が開発されている。この方法は、
ガラス溶解炉に設置されたガラス流出ノズルを通して、
オリフィスから溶融ガラスを流下させ、流下した溶融ガ
ラスをシャー(切断刃)で切断して、一定量の溶融ガラ
ス塊、所謂、ガラスゴブに分離し、このガラスゴブを、
最終成形品の形状に近いキャビティを有する成形型で予
め成形し、更に、この予備成形体を研削、研磨して、光
学素子を得るものである。2. Description of the Related Art In recent years, a glass material that has been ground and polished to a certain degree of shape and surface accuracy is housed in a molding die having a predetermined surface accuracy, and press molding is performed under heating to form lenses, prisms, etc. Has been developed for obtaining an optical element having a highly accurate optical function surface. This method
Through the glass outflow nozzle installed in the glass melting furnace,
Molten glass is allowed to flow down from the orifice, and the molten glass that has flowed down is cut with a shear (cutting blade) to separate a certain amount of molten glass mass, so-called, glass gob, and this glass gob is
An optical element is obtained by preforming with a molding die having a cavity close to the shape of the final molded product, and then grinding and polishing this preformed body.
【0003】しかしながら、この方法では、溶融ガラス
を切断する際に、シャーマーク(切断痕)が発生すると
いう問題があった。一旦、シャーマークがついたガラス
ゴブは、予備成形を経ても痕が消えないので、長時間の
研削、研磨が必要となり、製造コストを上げる原因とな
っていた。However, this method has a problem that shear marks (cut marks) are generated when the molten glass is cut. The glass gob once marked with a shear mark does not lose its marks even after preforming, so that long-time grinding and polishing are required, which has been a cause of increasing the manufacturing cost.
【0004】これに対して、シャーによる切断をせず
に、所謂、シャーレスカットによりガラスゴブを得る方
法が、既に、例えば、特開平2−34525号公報など
に開示されている。この方法は、適正粘度のガラスを受
け部材で受け、所定の重量が溜ったら、型を下降させ
て、ガラス流を伸長する過程でくびれさせ、表面張力に
よりガラスが上下に分離することを利用した方法であ
る。On the other hand, a method for obtaining a glass gob by so-called shearless cutting without cutting with a shear has been already disclosed in, for example, Japanese Patent Laid-Open No. 2-354525. This method utilizes the fact that the glass having the proper viscosity is received by the receiving member, and when the predetermined weight is accumulated, the mold is lowered to cause the glass flow to be constricted in the process of stretching, and the glass is vertically separated by the surface tension. Is the way.
【0005】この際、ガラスゴブを受けるには、凹形状
の受け型が使用されており、ガラスゴブの反対面側は、
ガラスの表面張力で形成される自由表面であった。そし
て、その後に、凹形状のガラスゴブを作る(プレフォー
ムする)場合には、その自由表面を凸型部材でプレス成
形している。At this time, a concave receiving die is used to receive the glass gob, and the opposite side of the glass gob is
It was a free surface formed by the surface tension of glass. Then, when a concave glass gob is formed (preformed) after that, the free surface thereof is press-molded by a convex member.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、上記従
来例においては、次に挙げるような問題点があった。即
ち、受け型の下降時や、その後の移動時に、ガラスゴブ
が受け型の中心から移動するために、プレフォームに際
して、ガラスゴブに偏肉が発生することが、しばしば、
起こっている。特に、凹面を有するガラスゴブから凹レ
ンズを成形する場合には、ガラスゴブの偏肉によって、
形状転写性が著しく低下し、不良成形品がかなり発生し
ていた。However, the above-mentioned conventional example has the following problems. That is, when the receiving die descends, or when it moves thereafter, the glass gob moves from the center of the receiving die, so that uneven thickness often occurs in the glass gob during preforming,
is happening. Especially when molding a concave lens from a glass gob having a concave surface, due to the uneven thickness of the glass gob,
The shape transfer property was remarkably lowered, and a number of defective molded products were generated.
【0007】このガラスゴブの偏肉を防止するための方
法として、例えば、特開昭62−270423号公報に
所載の方法が知られている。これは、溶融ガラスを受け
型上に滴下する時に、中空円錘状のガイド中を通す方式
であったが、ガイドにガラス流が接触すると、局部的な
付着が発生して、それが、受け型へのガラスの供給に悪
影響を及ぼしていた。As a method for preventing the uneven thickness of the glass gob, for example, a method described in Japanese Patent Laid-Open No. 62-270423 is known. This is a method in which molten glass is passed through a hollow conical guide when dropped onto a receiving mold, but when the glass flow comes into contact with the guide, local adhesion occurs, which causes It had a negative effect on the supply of glass to the mould.
【0008】[0008]
【発明の目的】本発明は、上記事情に基づいてなされた
もので、その目的とするところは、安定的に偏肉のない
ガラスゴブを得ることができる成形用ガラス素材の形成
装置を提供することにある。SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an apparatus for forming a glass material for molding which can stably obtain a glass gob having no uneven thickness. It is in.
【0009】また、この場合、ばりを発生させることな
く、また、稜線部の融着や割れを発生させることなく、
偏肉のないガラスゴブを得る必要がある。Further, in this case, without producing burrs and without causing fusion or cracking of the ridge portion,
It is necessary to obtain a glass gob without uneven thickness.
【0010】[0010]
【課題を解決するための手段】上記目的を達成するた
め、本発明では、オリフィスから流下させた溶融ガラス
を、受け型のキャビティに受けて、光学素子成形用のガ
ラス素材を形成する形成装置において、受け型のキャビ
ティ周辺部における型面の傾きが水平面に対し45°以
上の傾きを持ち、また、キャビティの周辺部における深
さが外径方向に向って浅くなるように、受け型の形状が
中心部と周辺部とで異っている。In order to achieve the above object, the present invention provides a forming apparatus for forming a glass material for forming an optical element by receiving a molten glass flowing down from an orifice into a receiving mold cavity. , The shape of the receiving mold is such that the mold surface in the peripheral part of the cavity of the receiving mold has an inclination of 45 ° or more with respect to the horizontal plane, and the depth in the peripheral part of the cavity becomes shallower toward the outer diameter direction. The center part and the peripheral part are different.
【0011】なお、更にいえば、受け型が一体物から形
成されているとよく、また、受け型のキャビティの中心
部と周辺部の形状が、互いに滑らかに連続していること
が望ましい。In addition, it is preferable that the receiving die is formed of an integral body, and it is desirable that the shapes of the central portion and the peripheral portion of the cavity of the receiving die be smoothly continuous with each other.
【0012】[0012]
【作用】上記構成において、キャビティ周辺部で浅くな
ることにより、受け型で受けた溶融ガラスがキャビティ
内で展延する際の抵抗となり、万一、受け型の中心から
ずれた位置に溶融ガラスが滴下しても、ガラスゴブに偏
肉が発生することが無い。また、受け型を一体物にした
ことで、中央部と周辺部とを別体で構成したものと異な
り、その継ぎ目に発生し易いガラスゴブのばりを防止す
ることができ、また、受け型のキャビティの中心部と周
辺部の形状が滑らかに連続することで、接続部が稜線を
持つ場合に発生し易い稜線部分の融着や部分的な割れ、
カケといったことを回避することができる。In the above structure, the shallowness in the peripheral portion of the cavity causes resistance when the molten glass received by the receiving mold spreads in the cavity, and should the molten glass be displaced from the center of the receiving mold. Even if dropped, uneven thickness does not occur in the glass gob. In addition, since the receiving die is integrated, unlike the one in which the central portion and the peripheral portion are configured separately, it is possible to prevent the flash of the glass gob that is likely to occur at the joint, and the cavity of the receiving die. Since the shape of the central part and the peripheral part of the is smoothly continuous, fusion or partial cracking of the ridge portion, which tends to occur when the connection part has a ridge line,
It is possible to avoid chipping.
【0013】[0013]
(実施例1)以下、本発明の第1の実施例を図1〜図4
を参照しながら具体的に説明する。図1において、符号
1は受け型であり、1Aは受け型中心部の球面(曲率半
径:R=15mm、直径:φ8mm)、1Bは受け型周
辺部の面(水平面からの傾きθの円錘面)であって、1
Cは球面1Aと面1Bの接続部を示し、滑らかに連続す
る、例えば、適当な半径のR面である。また、符号2は
ガラスゴブを示す。(Embodiment 1) Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
It will be specifically described with reference to. In FIG. 1, reference numeral 1 is a receiving mold, 1A is a spherical surface at the center of the receiving mold (curvature radius: R = 15 mm, diameter: φ8 mm), 1B is a peripheral surface of the receiving mold (a cone having an inclination θ from the horizontal plane). Surface), 1
C indicates a connecting portion between the spherical surface 1A and the surface 1B, and is a smoothly continuous R surface having an appropriate radius. Further, reference numeral 2 indicates a glass gob.
【0014】図2は本発明の形成装置により形成される
ガラスゴブの断面を示しており、図3はその平面を示し
ている。ここで、符号2Aはガラスゴブの肉厚が最大に
なる点を示し、2B、2Cは、それぞれ、2Aからの半
径が最小、最大となる外周縁上の点であり、xは2A、
2B間の、また、yは2A、2C間の長さを示す。FIG. 2 shows a cross section of a glass gob formed by the forming apparatus of the present invention, and FIG. 3 shows its plane. Here, reference numeral 2A denotes a point where the wall thickness of the glass gob is maximum, 2B and 2C are points on the outer peripheral edge where the radius from 2A is minimum and maximum, respectively, and x is 2A,
2B, and y represents the length between 2A and 2C.
【0015】図4において、符号3は、ガラスゴブから
光学素子を成形するための上型部材であり、4はそのた
めの下型部材を示す。In FIG. 4, reference numeral 3 is an upper mold member for molding an optical element from a glass gob, and 4 is a lower mold member therefor.
【0016】まず、図1に示す受け型のθを、30、3
5、40、45、50、55、60度とした各形状の受
け型を準備した。次に、ガラス溶融炉(図示せず)のオ
リフィスから、例えば、光学ガラスSK12(オハラ社
製)の、溶融ガラスの流出を開始させ、複数個の同形状
の受け型を、順次、使用して、後述のように、連続的に
複数のガラスゴブを得た。なお、この溶融ガラスの温度
は1180℃(ガラス粘度で102.1 dPa・S)であ
り、オリフィスの内径は6mmに設定した。First, the receiving type θ shown in FIG.
Receiving dies of respective shapes of 5, 40, 45, 50, 55, and 60 degrees were prepared. Next, for example, optical glass SK12 (manufactured by OHARA) is started to flow out of an orifice of a glass melting furnace (not shown), and a plurality of receiving molds having the same shape are sequentially used. As described below, a plurality of glass gobs were continuously obtained. The temperature of this molten glass was 1180 ° C. (glass viscosity: 10 2.1 dPa · S), and the inner diameter of the orifice was set to 6 mm.
【0017】その手順としては、先ず、オリフィスの直
下8mmの位置に受け型を配置し、流出する光学ガラス
を2秒間受けて、ガラス塊を形成した。この場合、受け
型1の温度を500℃に設定した。次いで、受け型を2
0mm/秒の速度で下降させ、溶融ガラスをシャーレス
カットし(ガラス流を伸長して、くびれさせ、表面張力
で切断する)、重量1.5gのガラスゴブ2を形成する
のである。かくして、同形状の受け型で連続的に100
個のガラスゴブを得た。As the procedure, first, a receiving mold was placed at a position 8 mm immediately below the orifice, and the outflowing optical glass was received for 2 seconds to form a glass lump. In this case, the temperature of the receiving mold 1 was set to 500 ° C. Then, the receiving mold 2
The glass melt is lowered at a speed of 0 mm / sec to shear-cut the molten glass (the glass flow is elongated, constricted, and cut by surface tension) to form a glass gob 2 having a weight of 1.5 g. In this way, the same type of receiving type is continuously used.
I got a glass gob.
【0018】上記方法により、角度θを30〜60度ま
での7段階に分けた用意した上述の受け型を、順次、変
更して、それら各受け型で、各々、100個のガラスゴ
ブを作成した。また、本発明との対比のために、従来例
として、受け面全体を曲率半径:R=15mmで作成し
た受け型によっても、100個のガラスゴブを作成し
た。なお、従来例で、偏肉の無い状態で形成されたガラ
スゴブは、外径:φ12mm、肉厚:6mmであった。By the above method, the prepared receiving molds having the angle θ divided into seven stages from 30 to 60 degrees were sequentially changed, and 100 glass gobs were prepared for each of the receiving molds. . Further, for comparison with the present invention, as a conventional example, 100 glass gobs were also produced by a receiving die in which the entire receiving surface was made with a radius of curvature of R = 15 mm. In the conventional example, the glass gob formed without uneven thickness had an outer diameter of 12 mm and a wall thickness of 6 mm.
【0019】次に、各ガラスゴブのx及びyを測定し、
その差y−xを計算し、度数分布表にまとめた結果を表
1に示す。Next, the x and y of each glass gob is measured,
The difference y−x is calculated, and the results summarized in the frequency distribution table are shown in Table 1.
【0020】[0020]
【表1】 表1から明らかなように、角度θが40度以下の場合に
は、偏肉が発生しやすいことが判明した。次に、図4に
示すようにガラスゴブを、成形用型に投入して、最終製
品である光学素子の成形を行なった。この場合の光学素
子は、曲率半径:R1=16.3mm、R2=16.8
mm、外径:φ15mm、有効径:φ14mm、中心肉
厚:4.5mmの両凸レンズである。[Table 1] As is apparent from Table 1, it was found that when the angle θ is 40 degrees or less, uneven thickness is likely to occur. Next, as shown in FIG. 4, a glass gob was put into a molding die to mold an optical element as a final product. In this case, the optical element has a radius of curvature: R1 = 16.3 mm, R2 = 16.8.
mm, outer diameter: φ15 mm, effective diameter: φ14 mm, central thickness: 4.5 mm.
【0021】ガラスゴブを成形型に投入する方法では、
オートハンドによって、ガラスゴブの外径部を吸着し、
下型部材4の成形面中心へ置くのである。そのため、偏
肉を持ったガラスゴブでは、片側においてガラスの転写
領域が不足し、その反対側においてガラスの容量が多す
ぎて、成形型からはみ出したりする不具合が発生してい
る。In the method of charging the glass gob into the molding die,
With the auto hand, it sucks the outer diameter of the glass gob,
It is placed at the center of the molding surface of the lower mold member 4. Therefore, in the glass gob having uneven thickness, the glass transfer area is insufficient on one side, and the volume of the glass is too large on the opposite side, causing a problem of protruding from the molding die.
【0022】表1に示すガラスゴブを成形した結果、y
−xが0.4mm以下の場合は、すべて、光学素子の両
面共に、直径:φ15mm以上の転写領域を保持してい
たが、しかし、y−xが0.4mmを越えるものは、直
径:φ15mmの転写領域の一部が欠けて、面ダレ状態
となっていた。As a result of molding the glass gobs shown in Table 1, y
When −x was 0.4 mm or less, the transfer areas of diameter: φ15 mm or more were held on both surfaces of the optical element. However, when y−x exceeds 0.4 mm, the diameter: φ15 mm was used. A part of the transfer area of No. 1 was chipped and the surface was in a sagging state.
【0023】(実施例2)図5〜図7は、本発明の第2
の実施例を示しており、図5において、符号11は受け
型あり、11Aはその受け型の中心部の球面(曲率半
径:R=30mm、直径:φ7mm)、11Bは受け型
周辺部の面(水平面からの傾き角度θの円錘面)、そし
て、11Cは、これら面11Aと11Bとを、所望のR
で滑らかに連続する接続部である。また、符号12はガ
ラスゴブを示す。(Embodiment 2) FIGS. 5 to 7 show a second embodiment of the present invention.
5, reference numeral 11 denotes a receiving mold, 11A denotes a spherical surface (curvature radius: R = 30 mm, diameter: φ7 mm) at the center of the receiving mold, and 11B denotes a peripheral surface of the receiving mold. (A conical surface having an inclination angle θ from the horizontal plane), and 11C represents these surfaces 11A and 11B as desired R
It is a smoothly continuous connection part. Reference numeral 12 indicates a glass gob.
【0024】図6は、ガラスゴブ12を上部パンチ13
(曲率半径:R=20mmの成形面を有する)でプレス
して、凹面を持つガラスゴブ14を作成する状態を示
す。また、図7は、上型部材15(曲率半径:R=1
5.5mm)と下型部材16(曲率半径:R=40m
m)との間にガラスゴブ14を投入して、光学素子をプ
レス成形する状態を示す。In FIG. 6, the glass gob 12 is attached to the upper punch 13
A state is shown in which the glass gob 14 having a concave surface is formed by pressing (having a radius of curvature: R = 20 mm of a molding surface). Further, FIG. 7 shows the upper mold member 15 (radius of curvature: R = 1.
5.5 mm) and the lower die member 16 (curvature radius: R = 40 m
m) and the glass gob 14 is inserted between them and the optical element is press-molded.
【0025】ここでは、ガラスゴブの成形のため、図5
に示すような受け型の角度θが30、35、40、4
5、50、55、60度である各形状の受け型を用意
し、また、本発明との対比のために、従来例として、受
け面全体を曲率半径:R=30mmとした受け型を準備
した。そして、ここでは、光学ガラスSK12(オハラ
社製)を原料として、ガラス溶融炉(図示せず)で溶融
し、また、オリフィスにおける溶融ガラスの温度を11
80℃(ガラス粘度:102.1 dPa・Sに相当)に、
また、オリフィスの内径を6mmに設定した。Here, since the glass gob is molded, FIG.
The receiving angle θ is 30, 35, 40, 4 as shown in
A receiving die of each shape of 5, 50, 55, and 60 degrees is prepared, and for comparison with the present invention, as a conventional example, a receiving die having an entire receiving surface with a radius of curvature of R = 30 mm is prepared. did. Then, here, optical glass SK12 (manufactured by OHARA CORPORATION) is used as a raw material and melted in a glass melting furnace (not shown), and the temperature of the molten glass at the orifice is set to 11
80 ° C (glass viscosity: equivalent to 10 2.1 dPa · S),
Further, the inner diameter of the orifice was set to 6 mm.
【0026】しかして、オリフィスの直下8mmの位置
に、先ず受け型を配置し、流出する溶融ガラスを1.5
秒間受けて、以下に述べるように、受け型上にガラス塊
を形成した。この場合、受け型11の温度は500℃に
設定してある。次いで、受け型11を20mm/秒の速
度で下降させ、溶融ガラスをシャーレスカットし、重量
1.2gのガラスゴブ12を形成した。その後、ただち
に受け型11を上部パンチ13の直下へ移動し、そのガ
ラスゴブの自由表面を上部パンチ13でプレス成形し
て、凹面を有するガラスゴブ14を得た。このような手
順で、同形状の受け型を複数個、用いて、連続的に10
0個のガラスゴブを得た。Then, the receiving mold is first placed at a position 8 mm immediately below the orifice, and the molten glass flowing out is 1.5
After receiving for a second, a glass gob was formed on the receiving mold as described below. In this case, the temperature of the receiving mold 11 is set to 500 ° C. Next, the receiving mold 11 was lowered at a speed of 20 mm / sec, and the molten glass was shearless cut to form a glass gob 12 having a weight of 1.2 g. Immediately thereafter, the receiving die 11 was moved directly below the upper punch 13, and the free surface of the glass gob was press-molded by the upper punch 13 to obtain a glass gob 14 having a concave surface. In this procedure, a plurality of receiving molds of the same shape are used, and 10
0 glass gobs were obtained.
【0027】上記方法により、角度θについて、30〜
60度までの7段階に分けて、各受け型を使用し、ま
た、従来例の型を使用して、各100個の凹面ガラスゴ
ブを作成した。なお、従来例で、偏肉の無い状態で形成
されたガラスゴブは、外径:φ10mm、肉厚:4mm
であった。According to the above method, the angle θ is 30 to
100 concave glass gobs were prepared by dividing each into seven stages up to 60 degrees, using each receiving mold, and using the mold of the conventional example. In the conventional example, the glass gob formed without uneven thickness has an outer diameter of φ10 mm and a wall thickness of 4 mm.
Met.
【0028】次に、実施例1に倣い、各ガラスゴブの肉
厚の最小となる点からの、その半径が最小、最大となる
所の距離を、それぞれ、x、yとし、これらを測定し、
その差y−xを計算し、度数分布表にまとめた。その結
果を表2に示す。Next, following Example 1, the distances from the point where the wall thickness of each glass gob is minimum to the points where the radius is minimum and maximum are x and y, respectively, and these are measured,
The difference y−x was calculated and summarized in the frequency distribution table. The results are shown in Table 2.
【0029】[0029]
【表2】 その結果、表から明らかなように、角度θが40度以下
の場合には、偏肉が発生しやすいことが判明した。次
に、図7に示すように、ガラスゴブを成形用型に投入
し、最終的に光学素子の成形を行なった。この光学素子
は、曲率半径:R1=40mm(凸)、R2=15.5
mm(凹)、外径:φ16mm、有効径:φ14mm、
中心肉厚:1.8mmの凹メニスカレンズである。[Table 2] As a result, as is clear from the table, it was found that when the angle θ is 40 degrees or less, uneven thickness is likely to occur. Next, as shown in FIG. 7, a glass gob was put into a molding die to finally mold an optical element. The radius of curvature of this optical element is R1 = 40 mm (convex), R2 = 15.5.
mm (concave), outer diameter: φ16 mm, effective diameter: φ14 mm,
Central concave thickness meniscus lens with a thickness of 1.8 mm.
【0030】しかして、偏肉を持ったガラスゴブでは、
片側でガラスの転写領域が不足し、その反対側でガラス
の容量が多すぎて、型からはみ出したりする不具合が発
生している。表2に示すように、ガラスゴブを成形した
結果、y−xが0.2以下の場合は、すべて両面共に直
径:φ16mm以上の転写領域を保持していたが、しか
し、y−xが0.2を越えるものは、直径:φ16mm
の転写領域の一部が欠けて、面ダレ状態となっていた。However, in a glass gob having an uneven thickness,
There is a shortage of the glass transfer area on one side and too much glass capacity on the other side, causing a problem such as protrusion from the mold. As shown in Table 2, as a result of molding the glass gob, when y-x was 0.2 or less, the transfer area having a diameter of φ16 mm or more was held on both surfaces, but y-x was 0. More than 2, diameter: φ16mm
A part of the transfer area of No. 1 was chipped and the surface was in a sagging state.
【0031】(実施例3)図8〜図10には第3の実施
例が示されている。図8において、符号21は受け型、
21Aはその受け型21の中心部の球面(曲率半径:R
=30mm、直径:φ20mm)、21Bは受け型21
の周辺部の面(子線:R=10mmのトーリック面で、
球面21Aとの接続部において、子線の接線の水平面か
らの傾き角度:θ)、21Cは面21Aと21Bとを滑
らかに連続するRの接続部、22はガラスゴブを示す。(Third Embodiment) FIGS. 8 to 10 show a third embodiment. In FIG. 8, reference numeral 21 is a receiving type,
21A is a spherical surface (curvature radius: R
= 30 mm, diameter: φ20 mm), 21B is a receiving mold 21
Of the peripheral part of (the toric surface of the sagittal line: R = 10 mm,
In the connection portion with the spherical surface 21A, the inclination angle of the tangent line of the sagittal line from the horizontal plane: θ), 21C is an R connection portion that smoothly connects the surfaces 21A and 21B, and 22 is a glass gob.
【0032】図9は、上部パンチ23(曲率半径:R=
20mm)で、ガラスゴブ22をプレスして、両凹のガ
ラスゴブ24を作成する状態を示す。また、図10は、
上型部材15(曲率半径:R=14.5mm)と下型部
材(曲率半径:R=25mm)との間にガラスゴブを投
入して、所要の光学素子をプレス成形する状態を示す。FIG. 9 shows the upper punch 23 (radius of curvature: R =
20 mm) to press the glass gob 22 to create a biconcave glass gob 24. In addition, FIG.
A state in which a glass gob is inserted between the upper die member 15 (radius of curvature: R = 14.5 mm) and the lower die member (radius of curvature: R = 25 mm) to press-mold a required optical element is shown.
【0033】まず、図8に示す受け型21の角度θが3
0、35、40、45、50、55、60度の各形状の
もの、および、従来例として受け面全体を曲率半径:R
=30mmで作成した受け型を準備した。また、ここで
使用するガラス材料は、光学ガラスSK12(オハラ社
製)であり、これをガラス溶融炉(図示せず)で溶融
し、オリフィスにおける溶融ガラスの温度が1180℃
(ガラス粘度で102.1dPaSに相当する温度)に成
るように調整する。この場合、オリフィスの内径は6m
mに設定した。First, the angle θ of the receiving mold 21 shown in FIG. 8 is 3
The radius of curvature of each of the shapes of 0, 35, 40, 45, 50, 55, 60 degrees, and the conventional receiving surface as a conventional example: R
A receiving mold made with a thickness of 30 mm was prepared. Further, the glass material used here is optical glass SK12 (manufactured by OHARA CORPORATION), which is melted in a glass melting furnace (not shown), and the temperature of the molten glass at the orifice is 1180 ° C.
(Temperature corresponding to glass viscosity of 10 2.1 dPaS). In this case, the inner diameter of the orifice is 6m
set to m.
【0034】しかして、オリフィスの直下8mmの位置
に受け型21を配置し、流出する溶融ガラスを5秒間受
けて、ガラス塊を形成した。この際の受け型21の温度
は予め500℃に設定してある。以後、実施例2と同様
にして、重量4gの凹面ガラスゴブ24を得た。これを
角度θが30〜60°までの7段階について異なる各型
と従来例の型とを使用して、各々100個の凹面ガラス
ゴブを作成した。ただし、結果として、従来例の型は、
溶融ガラスが受け型から滑り落ちて、ガラスゴブを形成
できなかった。ここでも、実施例2と同様に、y−xを
計算し、度数分布を表3に示す。Then, the receiving mold 21 was placed at a position 8 mm immediately below the orifice, and the molten glass flowing out was received for 5 seconds to form a glass gob. The temperature of the receiving mold 21 at this time is set to 500 ° C. in advance. Thereafter, in the same manner as in Example 2, a concave glass gob 24 having a weight of 4 g was obtained. 100 concave glass gobs were prepared by using each of the molds and the mold of the conventional example which are different for seven stages with an angle θ of 30 to 60 °. However, as a result, the conventional type is
The molten glass slipped off the mold and could not form a glass gob. Here, as in Example 2, y-x was calculated, and the frequency distribution is shown in Table 3.
【0035】[0035]
【表3】 表3から明らかなように、角度θが40°以下の場合に
偏肉が発生しやすいことが判明した。次に、図10に示
すように、ガラスゴブを成形用型に投入し、所定の光学
素子のプレス成形を行なった。この時の光学素子の設計
値は、曲率半径:R1=14.5mm、R2=25m
m、外径:φ26mm、有効径:φ24mm、中心肉厚
1.5mmの両凹レンズである。表3に示すガラスゴブ
をプレス成形した結果、y−xが0.2mm以下の場合
は、すべて両面共、直径:φ26mm以上の転写領域を
確保していた。しかし、y−xが0.2mmを超えるも
のは、直径:φ26mmの転写領域の一部が欠けて、面
ダレ状態となっていた。[Table 3] As is clear from Table 3, it was found that uneven thickness is likely to occur when the angle θ is 40 ° or less. Next, as shown in FIG. 10, a glass gob was put into a molding die and a predetermined optical element was press-molded. Design values of the optical element at this time are as follows: radius of curvature: R1 = 14.5 mm, R2 = 25 m
m, outer diameter: φ26 mm, effective diameter: φ24 mm, central concave thickness 1.5 mm. As a result of press molding the glass gobs shown in Table 3, when y-x was 0.2 mm or less, a transfer area having a diameter of φ26 mm or more was secured on both surfaces. However, in the case where y−x exceeds 0.2 mm, a part of the transfer area having a diameter of φ26 mm was chipped and the surface was in a sagging state.
【0036】[0036]
【発明の効果】本発明は、以上説明したようになり、光
学素子成形用ガラス素材として、ガラスゴブを作成する
時に、ガラスゴブの偏肉を防止することができ、光学素
子を成形した時、高い形状精度を安定に保持できる。ま
た、ばりの発生のないガラスゴブを得ることができる。
更に、ガラスゴブに稜線が無いために、融着や割れを防
止することができる。As described above, the present invention can prevent uneven thickness of a glass gob when forming a glass gob as a glass material for forming an optical element, and has a high shape when the optical element is molded. The accuracy can be kept stable. Further, it is possible to obtain a glass gob that does not cause flash.
Further, since the glass gob has no ridge, it is possible to prevent fusion and cracking.
【図1】本発明の実施例1に係る受け型にガラスゴブを
受けた状態の図である。FIG. 1 is a diagram showing a state in which a glass gob is received by a receiving mold according to a first embodiment of the present invention.
【図2】同じく、実施例1に係るガラスゴブの断面図で
ある。FIG. 2 is likewise a sectional view of the glass gob according to the first embodiment.
【図3】同じく、実施例1に係るガラスゴブの平面図で
ある。FIG. 3 is likewise a plan view of the glass gob according to the first embodiment.
【図4】実施例1に係るガラスゴブから光学素子をプレ
ス成形する状態の図である。FIG. 4 is a view showing a state in which an optical element is press-molded from the glass gob according to the first embodiment.
【図5】本発明の実施例2に係る受け型にガラスゴブを
受けた状態の図である。FIG. 5 is a diagram showing a state in which a glass gob is received by a receiving mold according to a second embodiment of the present invention.
【図6】実施例2に係るガラスゴブを上部パンチでプレ
ス成形した状態の図である。FIG. 6 is a view showing a state where the glass gob according to Example 2 is press-molded with an upper punch.
【図7】実施例2に係るガラスゴブから光学素子をプレ
ス成形する状態の図である。FIG. 7 is a view showing a state in which an optical element is press-molded from the glass gob according to Example 2.
【図8】本発明の実施例3に係る受け型にガラスゴブを
受けた状態の図である。FIG. 8 is a diagram showing a state where a glass gob is received by a receiving mold according to a third embodiment of the present invention.
【図9】実施例3に係るガラスゴブを上部パンチでプレ
ス成形した状態の図である。FIG. 9 is a view showing a state where the glass gob according to Example 3 is press-molded with an upper punch.
【図10】実施例3に係ガラスゴブから光学素子をプレ
ス成形する状態の図である。FIG. 10 is a diagram showing a state in which an optical element is press-molded from a glass gob according to a third embodiment.
1 受け型 1A 受け型中心部の球面 1B 受け型周辺部の面 1C 1Aと1Bの接続部 2 ガラスゴブ 2A 肉厚が最大になる点 2B 半径が最小になる外周の点 2C 半径が最大になる外周の点 x 2Aと2Bとの間の長さ y 2Aと2Cとの間の長さ 3 光学素子成形用上型部材 4 光学素子成形用下型部材 11 受け型 11A 受け型中心部の球面 11B 受け型周辺部の面 11C 1Aと1Bの接続部 12 ガラスゴブ 13 上部パンチ 14 凹面ガラスゴブ 15 光学素子成形用上型部材 16 光学素子成形用下型部材 21 受け型 21A 受け型中心部の球面 21B 受け型周辺部の面 21C 21Aと21Bの接続部 22 ガラスゴブ 23 上部パンチ 24 凹面ガラスゴブ 25 光学素子成形用上型部材 26 光学素子成形用下型部材 1 Receiving die 1A Receiving die center spherical surface 1B Receiving die peripheral surface 1C Connection between 1A and 1B 2 Glass gob 2A Point with maximum wall thickness 2B Peripheral point with minimum radius 2C Perimeter with maximum radius Point x Length between 2A and 2B y Length between 2A and 2C 3 Upper mold member for optical element molding 4 Lower mold member for optical element molding 11 Receiving mold 11A Spherical center of receiving mold 11B Receiving Surface of mold peripheral part 11C Connection between 1A and 1B 12 Glass gob 13 Upper punch 14 Concave glass gob 15 Upper mold member for optical element molding 16 Lower mold member for optical element molding 21 Receiving mold 21A Receiving mold central spherical surface 21B Receiving mold periphery Surface of part 21C Connection part of 21A and 21B 22 Glass gob 23 Upper punch 24 Concave glass gob 25 Upper mold member for optical element molding 26 Lower mold member for optical element molding
───────────────────────────────────────────────────── フロントページの続き (72)発明者 久保 裕之 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Hiroyuki Kubo 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc.
Claims (3)
を、受け型のキャビティに受けて、光学素子成形用のガ
ラス素材を形成する形成装置において、受け型のキャビ
ティ周辺部における型面の傾きが水平面に対し45°以
上の傾きを持ち、また、キャビティの周辺部における深
さが外径方向に向って浅くなるように、受け型の形状が
中心部と周辺部とで異っていることを特徴とする成形用
ガラス素材の形成装置。1. In a forming apparatus for forming a glass material for forming an optical element by receiving a molten glass flowing down from an orifice into a cavity of a receiving die, the inclination of the die surface around the cavity of the receiving die is horizontal. On the other hand, it has an inclination of 45 ° or more, and the shape of the receiving mold is different between the central part and the peripheral part so that the depth in the peripheral part of the cavity becomes shallower toward the outer diameter direction. Equipment for forming glass material for molding.
を特徴とする請求項1に記載の成形用ガラス素材の形成
装置。2. The apparatus for forming a glass material for molding according to claim 1, wherein the receiving die is formed as an integral body.
形状が、互いに滑らかに連続していることを特徴とする
請求項1に記載の成形用ガラス素材の形成装置。3. The apparatus for forming a glass material for molding according to claim 1, wherein the shape of the center part and the peripheral part of the cavity of the receiving mold are smoothly continuous with each other.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17678794A JPH0840726A (en) | 1994-07-28 | 1994-07-28 | Apparatus for forming glass material for molding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17678794A JPH0840726A (en) | 1994-07-28 | 1994-07-28 | Apparatus for forming glass material for molding |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0840726A true JPH0840726A (en) | 1996-02-13 |
Family
ID=16019848
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17678794A Pending JPH0840726A (en) | 1994-07-28 | 1994-07-28 | Apparatus for forming glass material for molding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0840726A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006265087A (en) * | 2004-12-13 | 2006-10-05 | Ohara Inc | Preform for optical element |
JP2008247721A (en) * | 2007-03-30 | 2008-10-16 | Fujinon Corp | Optical element molding method |
JP2011068506A (en) * | 2009-09-24 | 2011-04-07 | Ohara Inc | Method for manufacturing glass molding |
JP2012087031A (en) * | 2010-10-22 | 2012-05-10 | Konica Minolta Opto Inc | Method for manufacturing glass molded article |
CN103675957A (en) * | 2012-09-03 | 2014-03-26 | 信泰光学(深圳)有限公司 | Glass molded lens |
-
1994
- 1994-07-28 JP JP17678794A patent/JPH0840726A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006265087A (en) * | 2004-12-13 | 2006-10-05 | Ohara Inc | Preform for optical element |
US8420200B2 (en) | 2004-12-13 | 2013-04-16 | Ohara Inc. | Preform for optical element and optical element |
JP2008247721A (en) * | 2007-03-30 | 2008-10-16 | Fujinon Corp | Optical element molding method |
JP2011068506A (en) * | 2009-09-24 | 2011-04-07 | Ohara Inc | Method for manufacturing glass molding |
JP2012087031A (en) * | 2010-10-22 | 2012-05-10 | Konica Minolta Opto Inc | Method for manufacturing glass molded article |
US8997523B2 (en) | 2010-10-22 | 2015-04-07 | Konica Minolta Opto, Inc. | Method of manufacturing glass molding |
CN103675957A (en) * | 2012-09-03 | 2014-03-26 | 信泰光学(深圳)有限公司 | Glass molded lens |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101397183B (en) | Precision mould-pressing forming performing member, forming mould, optical element and production method thereof | |
JPH0214839A (en) | Molding of glass material and device therefor | |
US5822134A (en) | Optical lens and mold for molding the same | |
JPH0840726A (en) | Apparatus for forming glass material for molding | |
CN102583972B (en) | Glass prefabricated member through precision impact molding manufacture method and Optical element manufacturing method | |
JPH0471853B2 (en) | ||
JP4368368B2 (en) | Manufacturing method of glass lump, manufacturing apparatus thereof, and manufacturing method of optical element | |
TWI551553B (en) | Method for manufacturing glass preform and glass preform, method for manufacturing optical element and optical element | |
JP2002128535A (en) | Forming method of glass gob for optical element | |
JP2790793B2 (en) | Mold and method for producing glass body | |
JP2005281106A (en) | Mold press forming apparatus and method for manufacturing optical element | |
JP2001163627A (en) | Method for manufacturing glass gob and apparatus for manufacturing the same | |
JPH08337428A (en) | Glass lens forming mold | |
JP3986064B2 (en) | Method for producing glass lump and method for producing optical element | |
JP2621956B2 (en) | Optical element molding method | |
JP2000302461A (en) | Molding for glass element | |
JPH0971428A (en) | Mold for optical element | |
JPH11236224A (en) | Method for forming optical element | |
JP2007099529A (en) | Preform for precision press forming, its producing method and method for producing optical element | |
JPH11322348A (en) | Molding of optical element | |
JP2002348133A (en) | Manufacturing method for molded article of optical glass and for optical element | |
JPS63162540A (en) | Process for forming optical glass element | |
KR200151969Y1 (en) | An apparatus for optical element | |
JPH10158019A (en) | Formation of optical element, optical element, production of optical element forming material, formation of precision element and precision element | |
JPH1179762A (en) | Manufacture of glass optical element |