[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0829385A - Oxygen concentration detection meter - Google Patents

Oxygen concentration detection meter

Info

Publication number
JPH0829385A
JPH0829385A JP6186590A JP18659094A JPH0829385A JP H0829385 A JPH0829385 A JP H0829385A JP 6186590 A JP6186590 A JP 6186590A JP 18659094 A JP18659094 A JP 18659094A JP H0829385 A JPH0829385 A JP H0829385A
Authority
JP
Japan
Prior art keywords
oxygen concentration
gas
temperature
detected
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6186590A
Other languages
Japanese (ja)
Inventor
Katsuyoshi Ina
克芳 伊奈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP6186590A priority Critical patent/JPH0829385A/en
Publication of JPH0829385A publication Critical patent/JPH0829385A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To accurately detect oxygen concentration by introducing a plurality of standard gases containing known oxygen concentrations, calibrating reference gas detector part temperature and detector part temperature for gas to be detected, and detecting concentration of a gas to be detected. CONSTITUTION:The detector part is previously heated to about 600-800 deg.C, then a standard gas is introduced to the oxygen concentration detection meter, and an electromotive force E is read. After this operation is executed to at least two or more types of standard gases, reference gas detector part temperature T1 and detector part temperature T2 for gas to be detected are calculated (calibrated). The electromotive force E obtained by introducing the gas to be detected, oxygen concentrations P1 of the reference gas and calibreted temperatures T1, T2 are substituted into a formula E=(R)/(4F)[T1 ln (P1)-T2 ln (P2)] (where R is gas constant, and F is Faraday constant), and oxygen concentration P2 of the gas to be detected is calculated. Thus, since the standard gases are previously introduced thereby to accurately estimate the temperatures T1, T2, the oxygen concentration P2 can be accurately detected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、測定精度に優れた酸素
濃度検出計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxygen concentration detector excellent in measurement accuracy.

【0002】[0002]

【従来の技術】ジルコニアに代表される酸素イオン固体
電解質の両面に白金等の電極を設置し、片側の電極が基
準ガス、他の電極が被検ガスに接触する構造を有する酸
素濃度検出素子はガス分析計として数多く用いられてい
る。その測定原理は、両電極に接する酸素分圧が異なる
と所謂濃淡電池を形成して下記式(3)に示すNern
st式に従って両電極間の化学ポテンシャルの差が起電
力となって発生することによる。 E=(RT)/(4F)ln(P1 /P2 )・・・・・(3) ここで、Eは起電力、Rは気体定数、Tは絶対温度、F
はファラデー定数、P1 は基準ガスの酸素濃度、P2 は
被検ガスの酸素濃度を表わす。
2. Description of the Related Art An oxygen concentration detecting element having a structure in which electrodes such as platinum are provided on both surfaces of an oxygen ion solid electrolyte typified by zirconia, and one electrode contacts a reference gas and the other electrode contacts a test gas It is widely used as a gas analyzer. The measurement principle is that if the oxygen partial pressures in contact with both electrodes are different, a so-called concentration cell is formed and Nern shown in the following formula (3) is used.
This is because the difference in chemical potential between both electrodes is generated as an electromotive force according to the st formula. E = (RT) / (4F) ln (P1 / P2) (3) where E is electromotive force, R is gas constant, T is absolute temperature, F
Is the Faraday constant, P1 is the oxygen concentration of the reference gas, and P2 is the oxygen concentration of the test gas.

【0003】一般に大気(酸素濃度は20.6%と一
定)が基準ガスとして用いられ、一方の電極に接し、被
検ガスを他方の電極上に導入し、被検ガスの酸素濃度を
検知する。現在、この手法を用いた酸素濃度検出計は、
簡易タイプとして幅広く使用されている。
In general, the atmosphere (oxygen concentration is constant at 20.6%) is used as a reference gas, which is in contact with one electrode and introduces the test gas onto the other electrode to detect the oxygen concentration of the test gas. . Currently, the oxygen concentration detector using this method is
Widely used as a simple type.

【0004】上記の酸素濃度検出計の酸素イオン固体電
解質は、高温に加熱されて始めてセンサ素子として使用
可能な酸素イオン導電率に達する。最も代表的なジルコ
ニアを用いる場合、酸素濃度検出計のジルコニアセンサ
素子の検出部を電気炉で600〜800℃に加熱した状
態で測定が行われている。
The oxygen ion solid electrolyte of the above oxygen concentration detector reaches the oxygen ion conductivity which can be used as a sensor element, only when it is heated to a high temperature. When the most typical zirconia is used, the measurement is performed in a state where the detection part of the zirconia sensor element of the oxygen concentration detector is heated to 600 to 800 ° C. in an electric furnace.

【0005】しかしながら従来の酸素濃度検出計では、
被検ガスを導入する際、被検ガスの温度が素子検出部の
温度より低いため、素子検出部が冷却され、正確に被検
ガスの酸素濃度をできない。これは上記冷却効果によっ
て式(3)中の絶対温度Tが実際は設定値より低く、し
かも、検出部の基準ガス側と被検ガス側で温度が異なっ
ていることに起因する。
However, in the conventional oxygen concentration detector,
When the test gas is introduced, since the temperature of the test gas is lower than the temperature of the element detection unit, the element detection unit is cooled and the oxygen concentration of the test gas cannot be accurately measured. This is because the absolute temperature T in the equation (3) is actually lower than the set value due to the above cooling effect, and the temperature is different between the reference gas side and the test gas side of the detection unit.

【0006】このような欠点を解決するため、被検ガス
検出部に検温素子を配置し、式(1)に準じて酸素濃度
を検出する酸素濃度測定装置が提案されている。(例え
ば特開昭53−52194) しかしながらこの提案においても電気炉の設定温度と基
準ガス検出部の温度差に比例した測定誤差は生じ、更
に、検温素子と検出部である電極では熱容量及び熱伝導
率が異なるため正確に被検ガス側の化学ポテンシャルを
見積もっているとは言えない。
In order to solve such a drawback, there has been proposed an oxygen concentration measuring device in which a temperature detecting element is arranged in the test gas detecting portion and the oxygen concentration is detected according to the equation (1). (For example, Japanese Patent Laid-Open No. 53-52194) However, in this proposal as well, a measurement error proportional to the temperature difference between the set temperature of the electric furnace and the reference gas detection unit occurs, and further, the heat capacity and the heat conduction between the temperature detection element and the electrode serving as the detection unit. Since the rates are different, it cannot be said that the chemical potential on the test gas side is accurately estimated.

【0007】[0007]

【発明が解決しようとする課題】本発明者らは、既存の
酸素濃度検出計が有する上記問題点を解決する為鋭意研
究を続けた結果、本発明を完成したものであって、その
目的とするところは、精度よく酸素濃度を検知できる酸
素濃度検出計を提供することある。
DISCLOSURE OF THE INVENTION The present inventors have completed the present invention as a result of continuing diligent research in order to solve the above-mentioned problems of the existing oxygen concentration detector. What is done is to provide an oxygen concentration detector capable of accurately detecting the oxygen concentration.

【0008】[0008]

【課題を解決する為の手段】上述の目的を達成させる為
の第1の発明は、酸素イオン固体電解質濃淡電池型酸素
濃度検出計において、少なくとも2種以上の酸素濃度が
既知である標準ガスを導入し、下記式(1)中のT1及
びT2を校正し、校正されたT1及びT2の値を用い、
式(1)から被検ガス濃度を検出することを特徴とする
酸素濃度検出計である。 E=(R)/(4F)(T1ln(P1)−T2ln(P2))・・・(1)
The first invention for achieving the above object is to provide at least two or more kinds of standard gases whose oxygen concentration is known in an oxygen ion solid electrolyte concentration cell type oxygen concentration detector. Introduced, calibrate T1 and T2 in the following formula (1), and use the calibrated values of T1 and T2,
It is an oxygen concentration detector characterized by detecting the concentration of a test gas from equation (1). E = (R) / (4F) (T1ln (P1) -T2ln (P2)) ... (1)

【0009】又、第2の発明は、酸素イオン固体電解質
濃淡電池型酸素濃度検出計において、少なくとも2種以
上の酸素濃度が既知である標準ガスを導入し、下記式
(2)中のΔT及びT2を校正し、校正されたΔT及び
T2の値を用い、式(2)から被検ガス濃度を検出する
ことを特徴とする酸素濃度検出計である。 E=(R)/(4F)(ΔTlnP1+T2ln(P1/P2))・・(2)
A second aspect of the present invention is an oxygen ion solid electrolyte concentration cell type oxygen concentration detector, in which at least two or more standard gases having known oxygen concentrations are introduced, and ΔT and An oxygen concentration detector characterized by calibrating T2 and using the calibrated values of ΔT and T2 to detect the concentration of the test gas from the equation (2). E = (R) / (4F) (ΔTlnP1 + T2ln (P1 / P2)) ・ ・ (2)

【0010】ここでEは起電力、T1は基準ガス検出部
温度、T2は被検ガス検出部温度、ΔTは基準ガス検出
部温度と被検ガス検出部温度の差(=T1−T2)、P
1は基準ガス濃度、P2は被検ガス濃度、Rは気体定
数、Fはファラデー定数。
Here, E is an electromotive force, T1 is a reference gas detection part temperature, T2 is a test gas detection part temperature, ΔT is a difference between the reference gas detection part temperature and the test gas detection part temperature (= T1-T2), P
1 is the reference gas concentration, P2 is the test gas concentration, R is the gas constant, and F is the Faraday constant.

【0011】本発明において重要な点は、Nernst
式を式(1)或いは(2)の形に補正し、且つ、測定に
際し、予め、被検ガス導入に伴う検出部の冷却効果を少
なくとも2種以上の酸素濃度が既知である標準ガスを導
入することにより見積もった点にある。更に、T1、T
2或いはΔT、T2を検温素子では見積もらず、化学ポ
テンシャルの差から校正している為、より熱力学的に正
確な値として見積もっている。以下、酸素濃度が既知で
ある標準ガスを単に標準ガスと記す。
The important point in the present invention is Nernst.
The formula is corrected to the form of the formula (1) or (2), and at the time of measurement, at least two kinds of standard gases having a known oxygen concentration are introduced for the cooling effect of the detection unit accompanying the introduction of the test gas. It is in the point estimated by doing. Furthermore, T1, T
Since 2 or ΔT and T2 are not estimated by the temperature detecting element but are calibrated from the difference in chemical potential, they are estimated as more thermodynamically accurate values. Hereinafter, a standard gas having a known oxygen concentration is simply referred to as a standard gas.

【0012】式(1)は、基準ガス検出部と被検ガス検
出部の温度が異なっている場合の化学ポテンシャルの差
を示した式である。式(2)は、式(1)を更に補正
し、ガス検出部の温度差と被検ガス検出部の温度で整理
した補正式である。
Equation (1) is an equation showing the difference in chemical potential when the temperatures of the reference gas detecting portion and the test gas detecting portion are different. The formula (2) is a correction formula in which the formula (1) is further corrected and arranged by the temperature difference of the gas detection unit and the temperature of the test gas detection unit.

【0013】本発明の酸素濃度計は、測定に先立って検
出部を600℃〜800℃で加熱する。次いで、2種以
上の標準ガスを準備し、酸素濃度検出計に導入する。次
いで、それぞれのガスに対する起電力値を検出し、その
起電力値E、標準ガスの酸素濃度P2及び基準ガスの酸
素濃度P1を式(1)或いは(2)に代入し、基準ガス
検出部温度T1及び被検ガス検出部温度T2を、或い
は、ΔT(=T1−T2)及び被検ガス検出部温度T2
を算出(校正)する。次いで、被検ガスを導入し、その
際に検出される起電力値及び前記T1、T2或いはΔ
T、T2を式(1)或いは(2)に代入し被検ガス中の
酸素濃度を測定する。
In the oxygen concentration meter of the present invention, the detecting portion is heated at 600 to 800 ° C. before the measurement. Next, two or more standard gases are prepared and introduced into the oxygen concentration detector. Next, the electromotive force value for each gas is detected, and the electromotive force value E, the oxygen concentration P2 of the standard gas, and the oxygen concentration P1 of the reference gas are substituted into the equation (1) or (2) to obtain the reference gas detection part temperature. T1 and the temperature T2 of the detected gas detection portion, or ΔT (= T1−T2) and the temperature T2 of the detected gas detection portion.
Is calculated (calibrated). Then, the test gas is introduced, and the electromotive force value detected at that time and the T1, T2 or Δ
Substituting T and T2 into the equation (1) or (2), the oxygen concentration in the test gas is measured.

【0014】導入するガスの流量はT1、T2及びΔT
に大きく影響を及ぼす為、T1、T2及びΔTを校正す
るに際し、標準ガスの流量は、被検ガスを導入する場合
と同程度の流量にするのが好ましい。更に、流量は一定
に保つように設定するのが好ましい。流量が異なってい
たり、或いは、変動が大きい場合、検出部の温度も異な
ったり、変動したりする。その場合、T1、T2及びΔ
Tは正確に見積もれない。流量変動が大きな被検ガスを
測定する場合、レギュレーターなどで被検ガスの圧力を
一定に保ったり、或いは、定流量ポンプなどを使用して
流量を一定に保つのが好ましい。又、異なった流量の被
検ガスの酸素濃度を検出する場合、それぞれの流量につ
いてのT1、T2及びΔTを校正し酸素濃度を検出する
のが好ましい。
The flow rates of the introduced gas are T1, T2 and ΔT.
Therefore, when calibrating T1, T2, and ΔT, it is preferable that the flow rate of the standard gas be the same as that when introducing the test gas. Further, it is preferable to set the flow rate so as to be kept constant. When the flow rate is different or the fluctuation is large, the temperature of the detection unit also changes or fluctuates. In that case, T1, T2 and Δ
T cannot be accurately estimated. When measuring a test gas with a large flow rate fluctuation, it is preferable to keep the pressure of the test gas constant with a regulator or the like, or to keep the flow rate constant using a constant flow pump or the like. When detecting the oxygen concentration of the test gas at different flow rates, it is preferable to calibrate T1, T2 and ΔT for each flow rate to detect the oxygen concentration.

【0015】本発明において、使用される標準ガスは2
種類以上である。標準ガスが1種類ではT1、T2及び
ΔTを校正できない。標準ガスは2種類以上であればT
1、T2及びΔTを校正できるが、より正確に決定する
ためできるだけ多くの標準ガスを用いることが好まし
い。更に、準備する標準ガスは、酸素濃度の高いものか
ら低いものまで、できるかぎり広範囲の濃度幅をもって
選定するのが好ましい。できるだけ多くのしかも高濃度
の酸素濃度から低濃度の酸素濃度までの標準ガスを準備
することによりT1、T2及びΔTは正確に校正でき
る。T1、T2及びΔTの校正法は、最小2乗法によっ
て正確に決定するのが好ましい。
In the present invention, the standard gas used is 2
More than type. With one type of standard gas, T1, T2 and ΔT cannot be calibrated. If there are two or more standard gases, T
Although 1, T2 and ΔT can be calibrated, it is preferable to use as much standard gas as possible for a more accurate determination. Further, it is preferable to select the standard gas to be prepared with a concentration range as wide as possible, from those having a high oxygen concentration to those having a low oxygen concentration. T1, T2, and ΔT can be accurately calibrated by preparing as many standard gases as possible from a high oxygen concentration to a low oxygen concentration. The calibration method of T1, T2 and ΔT is preferably accurately determined by the least square method.

【0016】本発明において基準ガスは、空気(P1=
0.206)を使用するのが好ましい。空気以外のガス
を基準ガスとする場合、素子形状及び基準ガスの維持管
理について複雑となるため好ましくない。
In the present invention, the reference gas is air (P1 =
Preference is given to using 0.206). When a gas other than air is used as the reference gas, the shape of the element and maintenance of the reference gas become complicated, which is not preferable.

【0017】第1の発明の酸素濃度計の場合の酸素濃度
測定の流れ図の一例を図1に示し、それに基づいて以下
に説明する。先ず、標準ガスを酸素濃度計に導入する。
次いで標準ガスの酸素濃度を入力し、且つ、それに対す
る起電力値を読み取る。この操作を数種の標準ガスにつ
いて実施する。これらの操作を終えた後、T1及びT2
が計算(校正)される。次いで被検ガスを導入する。得
られた起電力値E、基準ガスの酸素濃度P1、及び、校
正したT1及びT2から式(1)従って酸素濃度P2を
計算し、表示する。このシステムの酸素濃度計には、マ
イコンを搭載し演算するタイプ若しくはパーソナルコン
ピューターで演算するタイプ等が好ましい。
An example of a flow chart for measuring the oxygen concentration in the case of the oxygen concentration meter of the first invention is shown in FIG. 1 and will be described below based on it. First, the standard gas is introduced into the oxygen concentration meter.
Then, the oxygen concentration of the standard gas is input, and the electromotive force value corresponding thereto is read. This operation is carried out for several standard gases. After finishing these operations, T1 and T2
Is calculated (calibrated). Then, the test gas is introduced. From the obtained electromotive force value E, the oxygen concentration P1 of the reference gas, and the calibrated T1 and T2, the oxygen concentration P2 is calculated according to the equation (1) and displayed. The oxygen concentration meter of this system is preferably of a type in which a microcomputer is installed for calculation or a type of calculation by a personal computer.

【0018】一方、第2の発明の酸素濃度計の場合の酸
素濃度測定の流れ図の一例を図2に示し、それに基づい
て以下に説明する。酸素濃度計の電気回路中にΔT調整
用及びT2調整用の2種の可変抵抗を設置する。先ず、
基準ガスと同じ酸素濃度の標準ガスを導入する。その標
準ガスに対して基準ガスと同じ酸素濃度を示すようにΔ
T調整用可変抵抗を調整する。次いで別の標準ガスを導
入する。その標準ガスの酸素濃度を示すようにT2調整
用可変抵抗を調整する。以上の操作をもってΔT及びT
2は校正される。次いで被検ガスを導入する。得られた
起電力値E、基準ガスの酸素濃度P1、及び、調整され
たΔT及びT2から式(2)に従って酸素濃度P2を表
示する。このシステムの酸素濃度計は、オペアンプの増
幅を利用した演算回路を用いて制御する簡易タイプでも
作製できる
On the other hand, an example of a flow chart for measuring the oxygen concentration in the case of the oxygen concentration meter of the second invention is shown in FIG. 2 and will be described below based on it. Two kinds of variable resistors for ΔT adjustment and T2 adjustment are installed in the electric circuit of the oximeter. First,
A standard gas having the same oxygen concentration as the standard gas is introduced. As the reference gas shows the same oxygen concentration as the reference gas, Δ
Adjust the variable resistor for T adjustment. Then another standard gas is introduced. The T2 adjusting variable resistor is adjusted so as to indicate the oxygen concentration of the standard gas. With the above operation, ΔT and T
2 is calibrated. Then, the test gas is introduced. The oxygen concentration P2 is displayed according to the equation (2) from the obtained electromotive force value E, the oxygen concentration P1 of the reference gas, and the adjusted ΔT and T2. The oximeter of this system can also be manufactured as a simple type that is controlled by using an arithmetic circuit that uses the amplification of an operational amplifier.

【0019】本発明の酸素濃度計の素子部に検温素子は
配置しない。検温素子によって得られる温度と検出部の
化学ポテンシャルから得られる温度は、その熱容量及び
熱伝導率の差から必然的に異なる。従って、検温素子の
配置は全く利点が認められないばかりか、素子構造が複
雑となるばかりで好ましくない。
No temperature measuring element is arranged in the element portion of the oximeter of the present invention. The temperature obtained by the temperature detecting element and the temperature obtained from the chemical potential of the detecting portion necessarily differ from each other due to the difference in their heat capacity and thermal conductivity. Therefore, the arrangement of the temperature detecting element is not preferable because it has no merit and the element structure is complicated.

【0020】本発明の酸素濃度計の温度の設定は、被検
ガス検出部T2の温度低下分を勘案し、設定されるのが
好ましい。一般に電極として使用される白金の場合、そ
の最低動作温度が500℃程度であるため、T2が50
0℃以上を保つよう設定するのが好ましい。但し、本発
明の酸素濃度計では電極部の温度が熱力学的に完全な形
で校正されているため、検出電極間の温度差ΔTは、い
くら大きくても差し支えなく、正確に酸素濃度が検出で
きる。
The temperature of the oxygen concentration meter of the present invention is preferably set in consideration of the temperature decrease of the test gas detection section T2. In general, platinum used as an electrode has a minimum operating temperature of about 500 ° C, so T2 is 50
It is preferable to set the temperature to be 0 ° C or higher. However, in the oxygen concentration meter of the present invention, the temperature of the electrode portion is thermodynamically calibrated in a perfect form, so that the temperature difference ΔT between the detection electrodes may be large, and the oxygen concentration can be accurately detected. it can.

【0021】本発明の酸素濃度計の検出部の加熱は、電
気炉を用いて、P制御或いはPID制御などで検出部の
温度を一定に保つのが好ましい。但し、測定に際し、十
分時間的な余裕がある場合、定電流制御、定電圧制御、
定出力制御などで加熱することもできる。
For the heating of the detector of the oximeter according to the present invention, it is preferable to keep the temperature of the detector constant by P control or PID control using an electric furnace. However, if there is enough time for measurement, constant current control, constant voltage control,
It can also be heated by constant output control.

【0022】本発明に使用される酸素イオン固体電解質
としては、カルシウム、マグネシウム或いはイットリウ
ムの一種又はそれ以上をドープしたジルコニア、或い
は、セリア、チタニアなどが挙げられるが、その中で酸
素イオン導電率が高く、低酸素分圧下にても酸素イオン
輸率が1であるジルコニア系のセラミックスが好まし
い。
Examples of the oxygen ion solid electrolyte used in the present invention include zirconia doped with one or more of calcium, magnesium or yttrium, or ceria or titania. Among them, the oxygen ion conductivity is A zirconia-based ceramic having a high oxygen ion transport number of 1 even under a low oxygen partial pressure is preferable.

【0023】本発明の検出部に設置される電極として
は、従来の酸素濃度検出計で使用されている電極であれ
ば如何なるものを用いてもよい。例えば、白金、銀、金
等の貴金属、及び、ペロブスカイト型若しくはスピネル
型の酸化物等が挙げられる。
As the electrodes installed in the detecting portion of the present invention, any electrodes may be used as long as they are used in the conventional oxygen concentration detector. Examples thereof include noble metals such as platinum, silver and gold, and perovskite type or spinel type oxides.

【0024】[0024]

【実施例1】酸素イオン固体電解質として8モル%のイ
ットリアをドープした円筒型ジルコニア(形状:外径1
0mm、内径7mm、長さ200mm)を使用し、検出
部に電極として1000℃で焼き付けた多孔性白金を使
用した酸素濃度検出素子を電気炉内に設置し、700℃
になるよう温度コントローラー(PID制御)を用い加
熱した。検出部電極から白金リード線を設置し、素子か
ら起電力をデジタルエレクトロメーター(TR865
2、アドバンテスト製)で検出し、GP−IBインター
フェイスを介してパーソナルコンピューター(PC98
01、NEC製)でデータ処理した。コンピューター内
では、先ず標準ガスの酸素濃度を入力し、次いでデジタ
ルエレクトロメーターから起電力を読み取り、この操作
を数種の標準ガスに対し繰り返し実施し、T1及びT2
を式(1)の最小2乗法で計算し、次いでT1、T2、
基準ガスの酸素濃度P1及び被検ガスを導入した際に得
られる起電力値Eから被検ガスの酸素濃度を計算するプ
ログラムが設定され、ディスプレー上に酸素濃度が表示
される。尚、基準ガスは大気(酸素濃度20.6%)と
し、流量は300cc/minとした。
Example 1 Cylindrical zirconia doped with 8 mol% yttria as an oxygen ion solid electrolyte (shape: outer diameter 1
0 mm, inner diameter 7 mm, length 200 mm), and an oxygen concentration detection element using porous platinum baked at 1000 ° C. as an electrode in the detection part was installed in an electric furnace to 700 ° C.
It heated using the temperature controller (PID control) so that it might become. A platinum lead wire is installed from the detection part electrode, and the electromotive force from the element is measured by a digital electrometer (TR865).
2, made by Advantest, and detected through a personal computer (PC98) via the GP-IB interface.
01, manufactured by NEC). In the computer, first input the oxygen concentration of the standard gas, then read the electromotive force from the digital electrometer, repeat this operation for several standard gases, and perform T1 and T2.
Is calculated by the method of least squares in equation (1), then T1, T2,
A program for calculating the oxygen concentration of the test gas from the oxygen concentration P1 of the reference gas and the electromotive force value E obtained when the test gas is introduced is set, and the oxygen concentration is displayed on the display. The reference gas was the atmosphere (oxygen concentration 20.6%), and the flow rate was 300 cc / min.

【0025】酸素濃度が10ppm,1000ppm及
び20.6%の(窒素バランス)標準ガスを準備した。
酸素濃度が10ppmの標準ガスに対する起電力値は
0.202V、1000ppmの標準ガスに対する起電
力値は0.108V、20.6%の標準ガスに対する起
電力値は−0.0008Vであった。T1及びT2は最
小2乗法によってコンピューターによってそれぞれ69
7.9℃、674.6℃と計算された。
Standard gases (nitrogen balance) having oxygen concentrations of 10 ppm, 1000 ppm and 20.6% were prepared.
The electromotive force value for the standard gas having an oxygen concentration of 10 ppm was 0.202 V, the electromotive force value for the standard gas of 1000 ppm was 0.108 V, and the electromotive force value for the standard gas of 20.6% was -0.0008 V. T1 and T2 are 69 by the computer by the method of least squares.
The calculated values were 7.9 ° C and 674.6 ° C.

【0026】次いで、本発明の酸素濃度計が正しく動作
していることを確認する目的で酸素濃度が100ppm
及び1%と既知である標準ガスを被検ガスとして導入し
た。100ppmの酸素濃度に対する起電力は0.15
5Vで、酸素濃度は100.2ppmを示し、又、1%
の酸素濃度に対する起電力は0.061Vで、酸素濃度
は1.00%を示し、本発明の酸素濃度計が正常に動作
していることが確認された。
Next, for the purpose of confirming that the oxygen concentration meter of the present invention is operating correctly, the oxygen concentration is 100 ppm.
And a standard gas known to be 1% was introduced as a test gas. Electromotive force for oxygen concentration of 100ppm is 0.15
At 5V, oxygen concentration shows 100.2ppm, and 1%
The electromotive force for the oxygen concentration was 0.061 V and the oxygen concentration was 1.00%, confirming that the oxygen concentration meter of the present invention is operating normally.

【0027】[0027]

【比較例1】実施例1と同じ酸素濃度計を用い、T1及
びT2の校正せず、検出部温度Tが700℃として式
(3)の通常用いられているNernst式で酸素濃度
を計算した。酸素濃度が100ppmの標準ガスに対し
ては127ppmが表示され、又、酸素濃度が1%の標
準ガスに対しては1.12%を表示した。
[Comparative Example 1] Using the same oxygen concentration meter as in Example 1, the oxygen concentration was calculated by the commonly used Nernst equation of the equation (3) where T1 and T2 were not calibrated and the detection portion temperature T was 700 ° C. . 127 ppm was displayed for the standard gas having an oxygen concentration of 100 ppm, and 1.12% was displayed for the standard gas having an oxygen concentration of 1%.

【0028】[0028]

【実施例2】酸素イオン固体電解質として8モル%のイ
ットリアをドープしたタンマン管型のジルコニア(形
状:外径10mm、内径7mm、長さ50mm)を使用
し、検出部に電極として1000℃で焼き付けた多孔性
白金を使用した酸素濃度検出素子を電気炉内に設置し、
700℃になるよう温度コントローラー(P制御)を用
い加熱した。検出部電極から白金リード線を設置し、素
子から起電力を高入力インピーダンスのオペアンプを用
い増幅し、増幅された信号を式(2)に合わせて酸素濃
度を指示出力するアナログ回路を作製した。尚、ΔT
(=T1−T2)及びT2の校正は、先ず、基準ガスと
同じ酸素濃度の標準ガスを導入し、ΔTを可変抵抗で調
整し、次いで、別の標準ガスを導入し、T2を可変抵抗
で調整できるように製作した。尚、基準ガスは大気(酸
素濃度20.6%)とし、流量は200cc/minと
した。
Example 2 Tamman tube type zirconia (shape: outer diameter 10 mm, inner diameter 7 mm, length 50 mm) doped with 8 mol% yttria was used as an oxygen ion solid electrolyte, and baked at 1000 ° C. as an electrode on the detection part. Installed oxygen concentration detection element using porous platinum in the electric furnace,
It heated using the temperature controller (P control) so that it might become 700 degreeC. A platinum lead wire was installed from the detection part electrode, the electromotive force from the element was amplified using an operational amplifier with a high input impedance, and an analog circuit was produced to instruct and output the oxygen concentration according to the equation (2). In addition, ΔT
(= T1−T2) and T2 are calibrated by first introducing a standard gas having the same oxygen concentration as the reference gas, adjusting ΔT with a variable resistance, then introducing another standard gas, and T2 with a variable resistance. I made it so that I could adjust it. The reference gas was the atmosphere (oxygen concentration 20.6%), and the flow rate was 200 cc / min.

【0029】酸素濃度が20.6%(窒素バランス)の
標準ガスを導入した。起電力は−0.0019Vであっ
た。そしてΔT調整用可変抵抗を指示計の酸素濃度が2
0.6%を示すように調整した。次いで酸素濃度100
ppm(窒素バランス)の標準ガスを導入した。起電力
は0.148Vであった。そしてT2調整用可変抵抗で
指示計の酸素濃度が100ppmを指示するように調整
した。
A standard gas having an oxygen concentration of 20.6% (nitrogen balance) was introduced. The electromotive force was -0.0019V. Then, the variable resistor for adjusting ΔT is used to adjust the oxygen concentration of the indicator to 2
It was adjusted to show 0.6%. Then oxygen concentration 100
A standard gas of ppm (nitrogen balance) was introduced. The electromotive force was 0.148V. Then, the T2 adjusting variable resistor was adjusted so that the oxygen concentration of the indicator would indicate 100 ppm.

【0030】次いで、酸素濃度が10ppm及び100
0ppmと既知である標準ガスを被検ガスとして導入
し、本発明の酸素濃度計が正しく動作していることを確
認した。その結果、10ppmの酸素濃度に対する起電
力は0.1935Vで、酸素濃度は9.97ppmを指
示し、又、1000ppmの酸素濃度に対する起電力は
0.1030Vで、酸素濃度は1002ppmを指示
し、本発明の酸素濃度計が正常に動作していることが確
認された。
Next, the oxygen concentration is 10 ppm and 100.
A standard gas known to be 0 ppm was introduced as a test gas, and it was confirmed that the oxygen concentration meter of the present invention was operating properly. As a result, the electromotive force for the oxygen concentration of 10 ppm was 0.1935 V and the oxygen concentration was 9.97 ppm, and the electromotive force for the oxygen concentration of 1000 ppm was 0.1030 V and the oxygen concentration was 1002 ppm. It was confirmed that the oximeter of the invention is operating normally.

【0031】[0031]

【実施例3】実施例2で使用した素子を用い、データを
Z80のマイコンで式(1)に従って処理計算するデジ
タル回路を搭載した酸素濃度計を製作した。流量を20
0cc/minでT1及びT2を校正したのち、流量が
300cc/minから100cc/minまで変動す
る被検ガスを導入した場合、酸素濃度計の指示は130
ppmから160ppmまで変動した。次いで被検ガス
導入口に定流量ポンプを設置し、被検ガスの導入量を2
00cc/min±5cc/minで安定させたとこ
ろ、酸素濃度計は144ppmから145ppmを指示
した。
[Third Embodiment] Using the element used in the second embodiment, an oximeter equipped with a digital circuit for processing and calculating data according to the formula (1) by a Z80 microcomputer was manufactured. Flow rate 20
When T1 and T2 are calibrated at 0 cc / min and then a test gas whose flow rate fluctuates from 300 cc / min to 100 cc / min is introduced, the oximeter indicates 130
It varied from ppm to 160 ppm. Next, install a constant flow pump at the test gas inlet and set the test gas introduction amount to 2
When stabilized at 00 cc / min ± 5 cc / min, the oximeter indicated 144 ppm to 145 ppm.

【0032】[0032]

【比較例2】実施例2で使用した素子の被検ガス側にK
熱電対を配置し、被検ガス側の検温素子による温度測定
を試みた。尚、電気炉制御及び被検ガス流量は実施例2
と同一条件とした。その結果、検温素子により得られる
温度は673℃であった。この値をT2として、又、電
気炉制御温度をT1(=700℃)として式(1)から
酸素濃度を計算した。その結果、10ppmの酸素濃度
に対し表示される酸素濃度は14.9ppmであり、
又、1000ppmの酸素濃度に対する酸素濃度は12
50ppmであった。
[Comparative Example 2] K was added to the test gas side of the device used in Example 2.
A thermocouple was placed and an attempt was made to measure the temperature by the temperature sensing element on the side of the test gas. The electric furnace control and the flow rate of the gas to be detected are the same as those in the second embodiment.
The same conditions were used. As a result, the temperature obtained by the temperature measuring element was 673 ° C. With this value as T2 and the electric furnace control temperature as T1 (= 700 ° C.), the oxygen concentration was calculated from the equation (1). As a result, the oxygen concentration displayed for the oxygen concentration of 10 ppm is 14.9 ppm,
Also, the oxygen concentration is 12 for the oxygen concentration of 1000 ppm.
It was 50 ppm.

【0033】[0033]

【発明の効果】以上のように本発明の酸素濃度計によれ
ば、式(1)中の被検ガス検出部の温度T1及び基準ガ
ス検出部の温度T2を、若しくは、式(2)中の被検ガ
ス検出部と基準ガス検出部の温度差(=T1−T2)及
び基準ガス検出部の温度T2予め標準ガスを導入する事
により正確に見積もることができ、その結果、精度よく
酸素濃度を検知できる酸素濃度計を提供できる。
As described above, according to the oxygen concentration meter of the present invention, the temperature T1 of the test gas detection unit and the temperature T2 of the reference gas detection unit in the formula (1) or the formula (2) The temperature difference (= T1-T2) between the test gas detection unit and the reference gas detection unit and the temperature T2 of the reference gas detection unit can be accurately estimated by previously introducing the standard gas, and as a result, the oxygen concentration can be accurately measured. It is possible to provide an oximeter capable of detecting

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の発明の酸素濃度計の場合の酸素濃度測定
の流れのフローシート図。
FIG. 1 is a flow sheet diagram of the flow of oxygen concentration measurement in the case of the oximeter of the first invention.

【図2】第2の発明の酸素濃度計の場合の酸素濃度測定
の流れのフローシート図。
FIG. 2 is a flow sheet diagram of a flow of oxygen concentration measurement in the case of the oxygen concentration meter of the second invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 酸素イオン固体電解質濃淡電池型酸素濃
度検出計において、少なくとも2種以上の酸素濃度が既
知である標準ガスを導入し、下記式(1)中のT1及び
T2を校正し、校正されたT1及びT2の値を用い、式
(1)から被検ガス濃度を検出することを特徴とする酸
素濃度検出計。 E=(R)/(4F)(T1ln(P1)−T2ln(P2))・・・(1)
1. In an oxygen ion solid electrolyte concentration cell type oxygen concentration detector, at least two or more kinds of standard gas having a known oxygen concentration are introduced, and T1 and T2 in the following formula (1) are calibrated and calibrated. An oxygen concentration detector characterized in that the concentration of the test gas is detected from the formula (1) using the values of T1 and T2 thus obtained. E = (R) / (4F) (T1ln (P1) -T2ln (P2)) ... (1)
【請求項2】 酸素イオン固体電解質濃淡電池型酸素濃
度検出計において、少なくとも2種以上の酸素濃度が既
知である標準ガスを導入し、下記式(2)中のΔT及び
T2を校正し、校正されたΔT及びT2の値を用い、式
(2)から被検ガス濃度を検出することを特徴とする酸
素濃度検出計。 E=(R)/(4F)(ΔTlnP1+T2ln(P1/P2))・・(2) ここでEは起電力、T1は基準ガス検出部温度、T2は
被検ガス検出部温度、ΔTは基準ガス検出部温度と被検
ガス検出部温度の差(=T1−T2)、P1は基準ガス
濃度、P2は被検ガス濃度、Rは気体定数、Fはファラ
デー定数。
2. In an oxygen ion solid electrolyte concentration cell type oxygen concentration detector, at least two or more kinds of standard gases having known oxygen concentrations are introduced, and ΔT and T2 in the following formula (2) are calibrated and calibrated. An oxygen concentration detector characterized in that the concentration of the test gas is detected from the equation (2) by using the obtained values of ΔT and T2. E = (R) / (4F) (ΔTlnP1 + T2ln (P1 / P2)) (2) where E is the electromotive force, T1 is the reference gas detection part temperature, T2 is the test gas detection part temperature, and ΔT is the reference gas. The difference between the detection part temperature and the test gas detection part temperature (= T1-T2), P1 is the reference gas concentration, P2 is the test gas concentration, R is the gas constant, and F is the Faraday constant.
JP6186590A 1994-07-15 1994-07-15 Oxygen concentration detection meter Pending JPH0829385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6186590A JPH0829385A (en) 1994-07-15 1994-07-15 Oxygen concentration detection meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6186590A JPH0829385A (en) 1994-07-15 1994-07-15 Oxygen concentration detection meter

Publications (1)

Publication Number Publication Date
JPH0829385A true JPH0829385A (en) 1996-02-02

Family

ID=16191218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6186590A Pending JPH0829385A (en) 1994-07-15 1994-07-15 Oxygen concentration detection meter

Country Status (1)

Country Link
JP (1) JPH0829385A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016121962A (en) * 2014-12-25 2016-07-07 オリエンタルエンヂニアリング株式会社 Oxygen sensor calibration system and oxygen sensor calibration method
JP2018084478A (en) * 2016-11-24 2018-05-31 東京窯業株式会社 Gas concentration detection method and solid electrolyte sensor
WO2020028954A1 (en) * 2018-08-10 2020-02-13 Ceramic Oxide Fabricators Pty Ltd Furnace oxygen monitoring system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016121962A (en) * 2014-12-25 2016-07-07 オリエンタルエンヂニアリング株式会社 Oxygen sensor calibration system and oxygen sensor calibration method
JP2018084478A (en) * 2016-11-24 2018-05-31 東京窯業株式会社 Gas concentration detection method and solid electrolyte sensor
WO2020028954A1 (en) * 2018-08-10 2020-02-13 Ceramic Oxide Fabricators Pty Ltd Furnace oxygen monitoring system

Similar Documents

Publication Publication Date Title
JP2758458B2 (en) Measuring method and sensor for measuring relative concentration of gas or vapor
CN102597754B (en) hydrogen chlorine level detector
US8721970B2 (en) Temperature and humidity compensated single element pellistor
US11467110B2 (en) Method for operating a sensor device
US6691554B2 (en) Nanocrystalline films for gas-reactive applications
EP0314919B1 (en) Combustible gas detector having temperature stabilization capability
US5709792A (en) Method of characterizing a gas mixture by catalytic oxidation
EP0529295B1 (en) Single-element thermal conductivity detector
US20070274868A1 (en) Combustible gas pellistor
JPH03225269A (en) Method and apparatus for sensing oxygen
JPH0829385A (en) Oxygen concentration detection meter
JP3510447B2 (en) Gas concentration measurement method
US4720993A (en) Semiconducting oxygen sensors
JPH0414302B2 (en)
JP5216434B2 (en) Semiconductor gas detector
RU2138799C1 (en) Gas analyzer
JP6775814B2 (en) Gas concentration measuring device
JPH049574Y2 (en)
JP2001242114A (en) Compensation element for gas detector for fuel cell, thermal conductivity type gas detector and gas upply apparatus for fuel cell
JP3487990B2 (en) Self-calibration type oxygen analysis method and device
JP3926949B2 (en) Oxygen sensor and electromotive force compensation method thereof
JP7194633B2 (en) How to calibrate an oxygen analyzer
JP2793277B2 (en) Combustible gas detector
JPH0712771A (en) Gas detector
JP2023157201A (en) gas sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees