JP5216434B2 - Semiconductor gas detector - Google Patents
Semiconductor gas detector Download PDFInfo
- Publication number
- JP5216434B2 JP5216434B2 JP2008162940A JP2008162940A JP5216434B2 JP 5216434 B2 JP5216434 B2 JP 5216434B2 JP 2008162940 A JP2008162940 A JP 2008162940A JP 2008162940 A JP2008162940 A JP 2008162940A JP 5216434 B2 JP5216434 B2 JP 5216434B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- value
- semiconductor
- span
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims description 72
- 238000001514 detection method Methods 0.000 claims description 65
- 238000011088 calibration curve Methods 0.000 claims description 27
- 238000007689 inspection Methods 0.000 claims description 7
- 238000005259 measurement Methods 0.000 claims description 7
- 238000004364 calculation method Methods 0.000 claims description 5
- 239000007789 gas Substances 0.000 description 148
- 229910044991 metal oxide Inorganic materials 0.000 description 17
- 150000004706 metal oxides Chemical class 0.000 description 17
- 238000012360 testing method Methods 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 10
- 239000001257 hydrogen Substances 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 7
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000012937 correction Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 3
- 229910001887 tin oxide Inorganic materials 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 229910006404 SnO 2 Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000002341 toxic gas Substances 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Description
本発明は、半導体式ガスセンサを備えた半導体式ガス検知装置に関する。 The present invention relates to a semiconductor type gas detection apparatus provided with a semiconductor type gas sensor.
現在、例えば可燃性ガスや毒性ガスを検知するガスセンサの一つとして、金属酸化物半導体の表面でのガス吸着による金属酸化物半導体の抵抗値の変化を検出することにより検知対象ガスについてガス濃度を検知する半導体式ガスセンサが知られている(例えば特許文献1参照)。
この半導体式ガスセンサのある種のものは、例えば酸化スズ(SnO2 )を主体とした焼結体よりなる金属酸化物半導体がヒータコイルと電気的に分離され、かつ熱伝導関係を形成するよう配置されて構成されている。
このような半導体式ガスセンサにおいては、金属酸化物半導体の表面温度が例えば250〜600℃程度に維持されるようヒータコイルによって加熱されることにより金属酸化物半導体の表面上に大気中の酸素が吸着されて金属酸化物半導体の抵抗値が一定の値に維持された状態において、検知対象ガスが金属酸化物半導体の表面に接触されることにより、当該検知対象ガスによって金属酸化物半導体の表面の酸素が奪われることに起因して金属酸化物半導体の抵抗値が低下する、この抵抗値の変化を検出することにより検知対象ガスのガス濃度が検知される。
Currently, for example, as one of gas sensors for detecting flammable gas and toxic gas, the gas concentration of the detection target gas is detected by detecting the change in resistance value of the metal oxide semiconductor due to gas adsorption on the surface of the metal oxide semiconductor A semiconductor gas sensor for detection is known (see, for example, Patent Document 1).
Some semiconductor gas sensors are arranged such that a metal oxide semiconductor made of a sintered body mainly composed of tin oxide (SnO 2 ) is electrically separated from the heater coil and forms a heat conduction relationship. Has been configured.
In such a semiconductor gas sensor, oxygen in the atmosphere is adsorbed on the surface of the metal oxide semiconductor by being heated by a heater coil so that the surface temperature of the metal oxide semiconductor is maintained at about 250 to 600 ° C., for example. In the state where the resistance value of the metal oxide semiconductor is maintained at a constant value, the detection target gas is brought into contact with the surface of the metal oxide semiconductor, so that the oxygen on the surface of the metal oxide semiconductor is detected by the detection target gas. The gas concentration of the detection target gas is detected by detecting a change in the resistance value of the metal oxide semiconductor, which decreases due to the deprivation of the metal oxide semiconductor.
このような半導体式ガスセンサを備えた半導体式ガス検知装置におけるガス濃度算出方法について具体的に説明すると、半導体式ガスセンサにより得られる検出出力値Rsの、エアー(ゼロガス)導入時における検出出力値Raに対する検出出力比Rs/Raと、ガス濃度値との関係を示す標準検量線を予め設定しておき、当該標準検量線に基づいて、半導体式ガスセンサによって実際に得られる検出出力値に応じた参照ガス濃度値を算出し、参照ガス濃度値を当該半導体式ガスセンサについての補正係数を用いて感度補正することにより、半導体式ガスセンサの個性によるバラツキ等が補償された補正ガス濃度値を取得する。ここに、補正係数は、感度補正を行うに際して参照ガス濃度値に加算されるものであって、検知対象ガスの濃度が既知の検査ガスを用いたスパン校正時において得られる検出出力値(実測値)を、当該検査ガスの濃度に相当する出力値に一致させる大きさに設定される。 The gas concentration calculation method in the semiconductor type gas detection apparatus having such a semiconductor type gas sensor will be specifically described. The detection output value Rs obtained by the semiconductor type gas sensor is detected with respect to the detection output value Ra when air (zero gas) is introduced. A standard calibration curve indicating the relationship between the detection output ratio Rs / Ra and the gas concentration value is set in advance, and a reference gas corresponding to the detection output value actually obtained by the semiconductor gas sensor based on the standard calibration curve. A concentration value is calculated, and sensitivity correction is performed on the reference gas concentration value using a correction coefficient for the semiconductor gas sensor, thereby obtaining a corrected gas concentration value in which variations due to individuality of the semiconductor gas sensor are compensated. Here, the correction coefficient is added to the reference gas concentration value when performing sensitivity correction, and is a detection output value (actually measured value) obtained during span calibration using a test gas whose concentration of the detection target gas is known. ) Is set to a size that matches the output value corresponding to the concentration of the inspection gas.
しかしながら、ゼロガスによる検出出力値Raは、例えば圧力、湿度、組成などの条件や微量に含まれる雑ガスなどによる影響を大きく受けて大きな変動を有するものであるので、当該検出出力値Raを用いてガス濃度を算出する上記方法においては、正確なガス感度を得ること、換言すれば、高い指示精度を得ることができない、という問題がある。 However, the detection output value Ra by zero gas is greatly influenced by, for example, conditions such as pressure, humidity, composition, and miscellaneous gas contained in a minute amount, and has a large fluctuation. Therefore, the detection output value Ra is used. In the above method for calculating the gas concentration, there is a problem that accurate gas sensitivity is obtained, in other words, high indication accuracy cannot be obtained.
また、上記のようなガス濃度算出方法においては、検知対象ガスの種類に応じた複数の標準検量線の設定が必要であると共に、同一ガスを検知する場合であっても、目的に応じて設定されるフルスケール値の大きさに応じた複数の標準検量線の設定が必要であるという問題がある。 In addition, in the gas concentration calculation method as described above, it is necessary to set a plurality of standard calibration curves according to the type of gas to be detected, and even if the same gas is detected, it is set according to the purpose. There is a problem that it is necessary to set a plurality of standard calibration curves according to the size of the full scale value to be performed.
本発明は、以上のような事情に基づいてなされたものであって、検知対象ガスの濃度を、標準検量線を用いることなく、精確に、かつ、高い信頼性をもって得ることができ、従って、所期のガス検知を確実に行うことのできる半導体式ガス検知装置を提供することを目的とする。 The present invention has been made based on the above circumstances, and the concentration of the detection target gas can be obtained accurately and with high reliability without using a standard calibration curve. An object of the present invention is to provide a semiconductor type gas detection device capable of reliably performing desired gas detection.
本発明の半導体式ガス検知装置は、半導体式ガスセンサと、当該半導体式ガスセンサにより得られる検出出力値を当該半導体式ガスセンサに固有の検量線に対照することによりガス濃度値を得るガス濃度算出手段とを有してなり、
前記検量線は、検知対象ガスの種類に基づいて設定される測定範囲におけるフルスケール値の大きさとの関係で設定される互いに異なる2つの濃度値を第1スパン点および第2のスパン点とし、当該第1のスパン点および第2のスパン点の各々についてガス検査を行うことにより得られる各々の検出出力値を対数補間することにより得られるものであり、 前記第1のスパン点がフルスケール値の10〜50%の濃度範囲内において設定されると共に、第2のスパン点がフルスケール値の50%以上の濃度範囲内において設定され、かつ、第1のスパン点の値と第2のスパン点の値の濃度差がフルスケール値の10%以上の大きさであることを特徴とする。
The semiconductor type gas detection device of the present invention includes a semiconductor type gas sensor, and gas concentration calculation means for obtaining a gas concentration value by comparing a detection output value obtained by the semiconductor type gas sensor with a calibration curve unique to the semiconductor type gas sensor. Having
The calibration curve has two different concentration values set in relation to the magnitude of the full-scale value in the measurement range set based on the type of detection target gas as a first span point and a second span point, Each of the first span point and the second span point is obtained by logarithmically interpolating each detected output value obtained by performing a gas inspection , and the first span point is a full-scale value. And the second span point is set within a density range of 50% or more of the full scale value, and the first span point value and the second span are set. The difference in the density of the point values is 10% or more of the full scale value .
本発明の半導体式ガス検知装置によれば、フルスケール値の大きさとの関係において設定される互いに異なる2つの濃度値をスパン点とし、当該2つのスパン点についてガス検査を行うことにより得られる検出出力値を対数補間することにより得られる半導体式ガスセンサに固有の検量線が用いられて検知対象ガスのガス濃度が算出されることにより、当該検量線は、変動の大きいゼロ点における検出出力値と無関係に設定されるものであるので、高い指示精度を得ることができる。
また、半導体式ガスセンサにより得られる検出出力値は、ガス濃度に対して対数関数的に変化することから、検知対象ガスの種類およびフルスケール値の大きさに関わらず、少なくとも2つのスパン点におけるガス検査を行うだけで必要な検量線を得ることができるので、高い汎用性を得ることができる。
According to the semiconductor type gas detection device of the present invention, detection obtained by performing gas inspection on two span points having two different concentration values set in relation to the magnitude of the full scale value as span points. A calibration curve specific to the semiconductor gas sensor obtained by logarithmically interpolating the output value is used to calculate the gas concentration of the detection target gas. Since it is set independently, a high indication accuracy can be obtained.
In addition, since the detection output value obtained by the semiconductor gas sensor changes logarithmically with respect to the gas concentration, the gas at at least two span points regardless of the type of detection target gas and the magnitude of the full scale value. Since a necessary calibration curve can be obtained simply by performing inspection, high versatility can be obtained.
さらに、第1のスパン点および第2のスパン点が、フルスケール値の大きさに基づいて設定される特定の濃度範囲内において設定され、かつ、第1のスパン点の値と第2のスパン点の値との濃度差が所定の大きさとなるよう設定されることにより、高い指示精度を得ることのできる、半導体式ガスセンサに固有の検量線を確実に得ることができる。 Further, the first span point and the second span point are set within a specific density range set based on the magnitude of the full scale value, and the value of the first span point and the second span point are set. By setting the concentration difference with the point value to be a predetermined magnitude, it is possible to reliably obtain a calibration curve specific to the semiconductor type gas sensor that can obtain high indication accuracy.
図1は、本発明の半導体式ガス検知装置の構成の概略を示すブロック図、図2は、本発明の半導体式ガス検知装置を構成する半導体式ガスセンサの一例における構成の概略を内部構造の一部を露出させた状態で示す説明用斜視図である。
この半導体式ガス検知装置は、半導体式ガスセンサ11を備えたガス検知部10と、この半導体式ガスセンサ11より得られるガス検知信号に応じたガス濃度を検出する機能を有する制御処理部20と、この制御処理部20によって得られるガス濃度値を表示するガス濃度表示手段30とを備えている。
FIG. 1 is a block diagram showing an outline of the configuration of a semiconductor gas detection device of the present invention, and FIG. 2 shows an outline of the configuration of an example of a semiconductor gas sensor constituting the semiconductor gas detection device of the present invention. It is an explanatory perspective view shown in the state where the portion was exposed.
This semiconductor type gas detection apparatus includes a
半導体式ガスセンサ11は、例えばアルミナよりなる円筒状部材12の内部にコイル状のヒータ13がそのコイル軸が当該円筒状部材12の軸方向に伸びるよう配設されると共に、円筒状部材12の軸方向における両端側部分の各々における外周面に電極14が設けられ、さらに、円筒状部材12の外周面に、例えば酸化スズ(SnO2 )を主体とした焼結体よりなる金属酸化物半導体15が設けられて、構成されている。図2において、符号16はリード線である。
In the
ヒータ13は、ガス検知動作時において、制御処理部20におけるヒータ駆動回路22によって通電されることにより、金属酸化物半導体15の表面温度が所定の温度、例えば250〜600℃に維持されるよう金属酸化物半導体15を加熱する。
The
制御処理部20は、例えば、半導体式ガスセンサ11におけるコイル13に適正な大きさに制御された電流もしくは電圧を供給するヒータ駆動回路22と、半導体式ガスセンサ11からのガス検知信号を増幅させる増幅回路23と、当該半導体式ガスセンサ11に固有の検量線(以下、「固有検量線」という。)が記録されたメモリ24と、半導体式ガス検知装置を構成する各構成部の動作制御を行うと共に半導体式ガスセンサ11による検出出力値を固有検量線に対照することによりガス濃度値を算出するガス濃度算出手段としての機能を有するマイコン21とを備えている。
The
固有検量線は、次のようにして取得されたものである。すなわち、検知対象ガスの種類に基づいて設定される測定範囲におけるフルスケール値(F.S.)の大きさとの関係において設定される互いに異なる2つの濃度値を第1のスパン点S1および第2のスパン点S2として、第1のスパン点S1および第2のスパン点S2についてガス検査を行うことにより検出出力値(センサ抵抗値)R1、R2を取得し、第1のスパン点S1および第2のスパン点S2間の濃度領域におけるデータを対数補間すること、すなわち、図3に示されているように、検出出力値を横軸、ガス濃度を縦軸に各々対数目盛でとり、第1のスパン点S1における検出出力値(R1)の値および第2のスパン点S2における検出出力値(R2)を両対数座標系において線形近似(2つの検出出力値を対数関数で近似)することにより当該半導体式ガスセンサについての固有検量線(α)が取得される。 The inherent calibration curve is obtained as follows. That is, two different concentration values set in relation to the magnitude of the full-scale value (FS) in the measurement range set based on the type of detection target gas are set to the first span point S1 and the second span value. As the span point S2, the first span point S1 and the second span point S2 are subjected to gas inspection to obtain detection output values (sensor resistance values) R1 and R2, and the first span point S1 and the second span point S2. Logarithmically interpolate the data in the concentration region between the span points S2, that is, as shown in FIG. 3, the detected output value is plotted on the horizontal axis and the gas concentration is plotted on the vertical axis on a logarithmic scale. The detected output value (R1) at the span point S1 and the detected output value (R2) at the second span point S2 are linearly approximated in a logarithmic coordinate system (two detected output values are approximated by a logarithmic function). Specific calibration curve for the semiconductor gas sensor (alpha) is acquired by the.
上記固有検量線の取得方法において、第1のスパン点S1は、フルスケール値(F.S.)の10〜50%の濃度範囲内において設定されると共に、第2のスパン点S2は、フルスケール値(F.S.)の50%以上濃度範囲内において設定され、かつ、第1のスパン点の値と第2のスパン点の値の濃度差がフルスケール値の10%以上の大きさとされることが好ましい。
また、第1のスパン点S1および第2のスパン点S2は、例えば、検知対象ガスについての警報点を挟んで設定されることが好ましい。
In the method for obtaining the inherent calibration curve, the first span point S1 is set within a concentration range of 10 to 50% of the full scale value (FS), and the second span point S2 is It is set within a density range of 50% or more of the scale value (FS), and the density difference between the value of the first span point and the value of the second span point is 10% or more of the full scale value. It is preferred that
Moreover, it is preferable that the first span point S1 and the second span point S2 are set, for example, across an alarm point for the detection target gas.
以上において、上記の半導体式ガス検知装置における検知対象ガスとしては、例えばLPG、都市ガス、メタン、水素、一酸化炭素、硫化水素、フロンガス、アンモニア、その他の可燃性ガス、アルコール、半導体材料ガス、毒性ガスなどを例示することができる。 In the above, as the detection target gas in the semiconductor gas detection device described above, for example, LPG, city gas, methane, hydrogen, carbon monoxide, hydrogen sulfide, freon gas, ammonia, other combustible gases, alcohol, semiconductor material gas, Toxic gases can be exemplified.
上記の半導体式ガス検知装置においては、ヒータ駆動回路22によって適正な大きさに制御された電流もしくは電圧が半導体式ガスセンサ11におけるヒータ13に供給されて金属酸化物半導体15の表面温度が所定の温度状態に維持されるよう加熱された状態において、被検ガスがガス検知部10における半導体式ガスセンサ11に供給されると、金属酸化物半導体15の抵抗値(検出出力値)に応じた検出信号が増幅回路23を介してマイコン21に入力されることにより、当該検出信号に応じたガス濃度が固有検量線に基づいて算出され、その結果がガス濃度表示手段30に表示される。
In the semiconductor gas detection device described above, the current or voltage controlled to an appropriate magnitude by the
而して、上記の半導体式ガス検知装置によれば、フルスケール値(F.S.)の大きさとの関係において設定される互いに異なる2つの濃度値をスパン点S1,S2とし、当該2つのスパン点S1,S2におけるガス検査を行うことにより得られる検出出力値R1,R2を対数補間することにより得られる固有検量線が用いられて検知対象ガスのガス濃度が算出されることにより、当該固有検量線は、変動の大きいゼロ点における検出出力値と無関係に設定されるものであるので、高い指示精度を得ることができる。
また、半導体式ガスセンサ11により得られる検出出力値は、ガス濃度に対して対数関数的に変化することから、検知対象ガスの種類およびフルスケール値の大きさに関わらず、少なくとも2つのスパン点S1,S2におけるガス検査を行うだけで必要な検量線を得ることができるので、高い汎用性を得ることができる。
Thus, according to the above-described semiconductor gas detection device, two different concentration values set in relation to the magnitude of the full scale value (FS) are set as the span points S1 and S2, and the two The specific concentration curve obtained by logarithmically interpolating the detection output values R1 and R2 obtained by performing the gas inspection at the span points S1 and S2 is used to calculate the gas concentration of the detection target gas. Since the calibration curve is set regardless of the detected output value at the zero point where the fluctuation is large, high indication accuracy can be obtained.
Further, since the detection output value obtained by the
さらに、第1のスパン点S1および第2のスパン点S2が、フルスケール値(F.S.)の大きさに基づいて設定される特定の濃度範囲内において設定され、かつ、第1のスパン点S1の値と第2のスパン点S2の値との濃度差が所定の大きさとなるよう設定されることにより、高い指示精度を得ることのできる固有検量線を確実に得ることができる。 Further, the first span point S1 and the second span point S2 are set within a specific density range set based on the magnitude of the full scale value (FS), and the first span point is set. By setting the density difference between the value of the point S1 and the value of the second span point S2 to be a predetermined magnitude, it is possible to reliably obtain a specific calibration curve capable of obtaining high indication accuracy.
以下、本発明の効果を確認するために行った実験例について説明する。 Hereinafter, experimental examples performed for confirming the effects of the present invention will be described.
<実験例1>
図2に示す構成に従って、酸化スズを主体とした金属酸化物半導体を備えた半導体式ガスセンサを作製すると共に、この半導体式ガスセンサについての固有検量線を、フルスケール値(F.S.)を2000ppmに設定すると共に、第1のスパン点(S1)を500ppm(F.S.の25%の大きさ)、第2のスパン点(S2)を1600ppm(F.S.の80%の大きさ,第1のスパン点の値との濃度差がフルスケール値の55%)に設定して取得した。
<Experimental example 1>
In accordance with the configuration shown in FIG. 2, a semiconductor gas sensor including a metal oxide semiconductor mainly composed of tin oxide is manufactured, and a specific calibration curve for the semiconductor gas sensor is obtained with a full scale value (FS) of 2000 ppm. And the first span point (S1) is 500 ppm (25% of FS), and the second span point (S2) is 1600 ppm (80% of FS), The density difference from the value of the first span point was set to 55% of the full scale value) and obtained.
そして、水素(H2 )ガス(温度:23℃、相対湿度:40RH%)を1リットル/分の流量で供給するガス検知テストを、H2 ガスの濃度を適宜に変更して行い、検出されるガス濃度値(実測値)の理論値に対する誤差(ppm)を調べた。結果を図4において曲線(イ)で示す。
ここに、コイルに対する電流供給量を130mAとし、金属酸化物半導体の表面温度を400℃に設定した。
Then, a gas detection test for supplying hydrogen (H 2 ) gas (temperature: 23 ° C., relative humidity: 40 RH%) at a flow rate of 1 liter / min is performed by appropriately changing the concentration of H 2 gas. The error (ppm) of the gas concentration value (measured value) to the theoretical value was examined. The result is shown by a curve (A) in FIG.
Here, the current supply amount to the coil was set to 130 mA, and the surface temperature of the metal oxide semiconductor was set to 400 ° C.
<比較実験例1>
上記実験例1において、ガス濃度を算出するための検量線として、標準検量線をゼロ調整およびスパン調整(スパン点:800ppm)したものを用いたことの他は実験例1と同様のガス検知テストを行った。結果を図4において曲線(ロ)で示す。
標準検量線は、他の同一の半導体式ガスセンサについて予め取得されたものであって、水素(H2 )ガスの濃度が0,10,20,50,100,200,500,1000,2000ppmの9種類の標準ガスを用い、各々の標準ガスについて得られる検出出力値を対数関数にて近似すること(実測値間を対数補間すること)により得られたものである。
<Comparative Experimental Example 1>
In the above Experimental Example 1, the same gas detection test as in Experimental Example 1 except that a standard calibration curve with zero adjustment and span adjustment (span point: 800 ppm) was used as the calibration curve for calculating the gas concentration. Went. The result is shown by a curve (b) in FIG.
The standard calibration curve was obtained in advance for other identical semiconductor gas sensors, and the hydrogen (H 2 ) gas concentration was 0, 10, 20, 50, 100, 200, 500, 1000, 2000 ppm. It is obtained by approximating the detection output value obtained for each standard gas with a logarithmic function (logarithmically interpolating between measured values) using various types of standard gases.
<実験例2>
実験例1において、水素(H2 )ガスに代えてメタンガス(CH4 )(温度:23℃、相対湿度:40RH%)を被検ガスとして用いたことの他は実験例1と同様のガス検知テストを行い、検出されるガス濃度値(実測値)の理論値に対する誤差(ppm)を調べた。結果を図5において曲線(イ)で示す。
<Experimental example 2>
In Experimental Example 1, the same gas detection as in Experimental Example 1 except that methane gas (CH 4 ) (temperature: 23 ° C., relative humidity: 40 RH%) was used as the test gas instead of hydrogen (H 2 ) gas. A test was performed to examine an error (ppm) of a detected gas concentration value (actual measurement value) with respect to a theoretical value. The result is shown by a curve (A) in FIG.
<比較実験例2>
比較実験例1において、水素(H2 )ガスに代えてメタンガス(CH4 )(温度:23℃、相対湿度:40RH%)を被検ガスとして用いたことの他は比較実験例1と同様のガス検知テストを行い、検出されるガス濃度値(実測値)の理論値に対する誤差(ppm)を調べた。結果を図5において曲線(ロ)で示す。
<Comparative Experiment Example 2>
In Comparative Experimental Example 1, similar to Comparative Experimental Example 1 except that methane gas (CH 4 ) (temperature: 23 ° C., relative humidity: 40 RH%) was used as the test gas instead of hydrogen (H 2 ) gas. A gas detection test was performed, and an error (ppm) of a detected gas concentration value (actual measurement value) with respect to a theoretical value was examined. The result is shown by a curve (b) in FIG.
<実験例3>
実験例1において、水素(H2 )ガスに代えてエタノール(温度:23℃、相対湿度:40RH%)を被検ガスとして用いたことの他は実験例1と同様のガス検知テストを行い、検出されるガス濃度値(実測値)の理論値に対する誤差(ppm)を調べた。結果を図6において曲線(イ)で示す。
<Experimental example 3>
In Experimental Example 1, the same gas detection test as in Experimental Example 1 was performed except that ethanol (temperature: 23 ° C., relative humidity: 40 RH%) was used as the test gas instead of hydrogen (H 2 ) gas, The error (ppm) of the detected gas concentration value (actual measurement value) with respect to the theoretical value was examined. The result is shown by a curve (A) in FIG.
<比較実験例3>
比較実験例1において、水素(H2 )ガスに代えてエタノール(温度:23℃、相対湿度:40RH%)を被検ガスとして用いたことの他は比較実験例1と同様のガス検知テストを行い、検出されるガス濃度値(実測値)の理論値に対する誤差(ppm)を調べた。結果を図6において曲線(ロ)で示す。
<Comparative Experimental Example 3>
In Comparative Experimental Example 1, the same gas detection test as in Comparative Experimental Example 1 was performed except that ethanol (temperature: 23 ° C., relative humidity: 40 RH%) was used as the test gas instead of hydrogen (H 2 ) gas. The error (ppm) of the detected gas concentration value (actual measurement value) with respect to the theoretical value was examined. The result is shown by a curve (b) in FIG.
以上の結果より明らかなように、半導体式ガスセンサについての固有検量線を用いた本発明に係るガス濃度算出方法によれば、検知対象ガスの種類に関わらず、高い指示精度が得られることが確認された。 As is clear from the above results, according to the gas concentration calculation method according to the present invention using the inherent calibration curve for the semiconductor gas sensor, it is confirmed that high indication accuracy can be obtained regardless of the type of detection target gas. It was done.
10 ガス検知部
11 半導体式ガスセンサ
12 円筒状部材
13 ヒータ
14 電極
15 金属酸化物半導体
16 リード線
20 制御処理部
21 マイコン
22 ヒータ駆動回路
23 増幅回路
24 メモリ
30 ガス濃度表示手段
DESCRIPTION OF
Claims (1)
前記検量線は、検知対象ガスの種類に基づいて設定される測定範囲におけるフルスケール値の大きさとの関係で設定される互いに異なる2つの濃度値を第1スパン点および第2のスパン点とし、当該第1のスパン点および第2のスパン点の各々についてガス検査を行うことにより得られる各々の検出出力値を対数補間することにより得られるものであり、 前記第1のスパン点がフルスケール値の10〜50%の濃度範囲内において設定されると共に、第2のスパン点がフルスケール値の50%以上の濃度範囲内において設定され、かつ、第1のスパン点の値と第2のスパン点の値の濃度差がフルスケール値の10%以上の大きさであることを特徴とする半導体式ガス検知装置。 A semiconductor gas sensor, and gas concentration calculation means for obtaining a gas concentration value by comparing a detection output value obtained by the semiconductor gas sensor with a calibration curve specific to the semiconductor gas sensor,
The calibration curve has two different concentration values set in relation to the magnitude of the full-scale value in the measurement range set based on the type of detection target gas as a first span point and a second span point, Each of the first span point and the second span point is obtained by logarithmically interpolating each detected output value obtained by performing a gas inspection , and the first span point is a full-scale value. And the second span point is set within a density range of 50% or more of the full scale value, and the first span point value and the second span are set. A semiconductor type gas detection device characterized in that the concentration difference of point values is 10% or more of the full scale value .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008162940A JP5216434B2 (en) | 2008-06-23 | 2008-06-23 | Semiconductor gas detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008162940A JP5216434B2 (en) | 2008-06-23 | 2008-06-23 | Semiconductor gas detector |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010002366A JP2010002366A (en) | 2010-01-07 |
JP5216434B2 true JP5216434B2 (en) | 2013-06-19 |
Family
ID=41584208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008162940A Active JP5216434B2 (en) | 2008-06-23 | 2008-06-23 | Semiconductor gas detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5216434B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102095812B1 (en) | 2010-01-07 | 2020-04-02 | 닛본 덴끼 가부시끼가이샤 | Radio terminal, radio base station, method of radio terminal, and method of radio base station |
CN114720536B (en) * | 2022-04-22 | 2024-07-19 | 河南省保时安电子科技有限公司 | Mining toxic and harmful gas concentration detection method based on single-point calibration fitting algorithm |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5529758A (en) * | 1978-08-23 | 1980-03-03 | Matsushita Electric Ind Co Ltd | Detector employing extremely-fine corpuscule resist film |
JP3380148B2 (en) * | 1997-11-28 | 2003-02-24 | 矢崎総業株式会社 | How to measure alcohol concentration |
JP4150803B2 (en) * | 2000-07-31 | 2008-09-17 | 理研計器株式会社 | Semiconductor gas sensor type gas concentration measuring device |
JP4575861B2 (en) * | 2005-08-22 | 2010-11-04 | エフアイエス株式会社 | Detector with temperature compensation function |
-
2008
- 2008-06-23 JP JP2008162940A patent/JP5216434B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010002366A (en) | 2010-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6370940B2 (en) | Apparatus for determining concentration of a gas | |
EP1980848B1 (en) | Electrochemical sensor with short-circuiting switch and method of zero-calibration | |
CN102597754B (en) | hydrogen chlorine level detector | |
JPH02171647A (en) | Measurement method and sensor for measuring relative density of gas or steam | |
CN110988272A (en) | Method for correcting measured values of a hydrogen sensor | |
US20070274868A1 (en) | Combustible gas pellistor | |
JP5216434B2 (en) | Semiconductor gas detector | |
JP5921845B2 (en) | Sensitivity correction method for hot-wire semiconductor gas sensor and portable gas detector | |
JP5893982B2 (en) | Gas detector | |
JP2018084478A (en) | Gas concentration detection method and solid electrolyte sensor | |
JP2013113778A (en) | Dew point sensor and method for measuring dew point | |
JP6912348B2 (en) | Gas detector | |
JP4791644B2 (en) | Gas detection output correction method and gas detection device | |
JP4528638B2 (en) | Gas detector | |
JP2013002891A (en) | Output correction method for heat conduction type gas sensor and gas detector | |
JP4497658B2 (en) | Gas detection method and apparatus | |
JP5320314B2 (en) | Gas detector | |
JP2023115685A (en) | gas detector | |
JPH049574Y2 (en) | ||
JP6775814B2 (en) | Gas concentration measuring device | |
US20230384278A1 (en) | Method, apparatus and system for monitoring sensor health and gas response for catalytic pellistor poisoning | |
JP7194633B2 (en) | How to calibrate an oxygen analyzer | |
JP2011145091A (en) | Gas detector | |
US10180408B1 (en) | Method of sensor conditioning for improving signal output stability for mixed gas measurements | |
JP3926949B2 (en) | Oxygen sensor and electromotive force compensation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110609 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120903 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120918 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121115 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130219 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130304 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5216434 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160308 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |