JPH0829268A - Structure of thermistor for electronic clinical thermometer and its manufacture - Google Patents
Structure of thermistor for electronic clinical thermometer and its manufactureInfo
- Publication number
- JPH0829268A JPH0829268A JP18682394A JP18682394A JPH0829268A JP H0829268 A JPH0829268 A JP H0829268A JP 18682394 A JP18682394 A JP 18682394A JP 18682394 A JP18682394 A JP 18682394A JP H0829268 A JPH0829268 A JP H0829268A
- Authority
- JP
- Japan
- Prior art keywords
- insulating member
- thermistor
- insulating
- tip
- lead wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は電子体温計用サーミスタ
の構造およびその製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermistor structure for an electronic thermometer and a method for manufacturing the thermistor.
【0002】[0002]
【従来の技術】体温を測定するには、水銀温度計が用い
られているのは周知であるが、近年温度センサを用いた
電子体温計が急速に普及してきている。この電子体温計
の感温素子には、サーミスタが用いられているのが一般
的である。2. Description of the Related Art It is well known that a mercury thermometer is used to measure a body temperature, but in recent years, an electronic thermometer using a temperature sensor has rapidly become popular. A thermistor is generally used for the temperature sensitive element of the electronic thermometer.
【0003】以下に従来の電子体温計用サーミスタを図
面を用いて説明する。図3は従来の電子体温計用サーミ
スタの構造を示す側断面図である。電極12,12´を
両面に有する素子材料部11にリード線被覆141,1
41´を有するリード線14,14´を半田13,13
´で電気機械的に結合し、絶縁部材151で覆った構造
となっている。ここで、素子材料部11は素子角部11
aを有し、絶縁部材151は肉薄部151´と先端部1
51aを有する。また、17はサーミスタ外径である。A conventional thermistor for electronic thermometer will be described below with reference to the drawings. FIG. 3 is a side sectional view showing the structure of a conventional thermistor for an electronic thermometer. Lead wire coatings 141, 1 on the element material portion 11 having electrodes 12, 12 'on both sides
The lead wires 14 and 14 ′ having 41 ′ are soldered to the solder wires 13 and 13.
It has a structure in which it is electromechanically coupled with ‘′ and covered with an insulating member 151. Here, the element material portion 11 is the element corner portion 11
a, the insulating member 151 has a thin portion 151 ′ and a tip portion 1
51a. Further, 17 is the thermistor outer diameter.
【0004】次に、従来の電子体温計の製造工程につい
て説明する。図4は一般的なサーミスタ用の素子の製造
工程図であり、(A)は円板状の素子の切断直後の状態
を表わした上面図、(B)は素子の斜視図である。素子
材料310は、マンガン、コバルト、鉄、等の材料を混
合し、高温で焼成されたインゴットから切り出し、狙い
の素子の抵抗値から規定される厚みにラップ加工され円
板状にする。そして、パラジウム、銀等の部材を円板状
の素子材料310の両面に印刷、焼成して電極部材32
0,320´を形成し、さらにこの電極320,320
´の形成された円板状の素子材料310を切断用基板8
にワックス等により接着する。これを図4(A)の如く
ダイシングソー等によりY方向の切断線6とX方向の切
断線7により所定の抵抗値となる寸法に切り出し、図4
(B)のような素子30を形成する。この素子30の寸
法は電子体温計用においては約0.7mmW×0.7m
mL×0.25mmTで、抵抗値は約135kΩであ
り、電極12,12´と素子角部11aを有する。Next, the manufacturing process of the conventional electronic thermometer will be described. 4A and 4B are manufacturing process diagrams of a general thermistor element. FIG. 4A is a top view showing a state immediately after cutting a disc-shaped element, and FIG. 4B is a perspective view of the element. The element material 310 is made by mixing materials such as manganese, cobalt, iron, etc., cut out from an ingot fired at high temperature, and lapped into a disk shape to a thickness defined by the resistance value of the intended element. Then, a member such as palladium or silver is printed on both sides of the disk-shaped element material 310 and baked to form the electrode member 32.
0,320 ', and the electrodes 320,320
The disk-shaped element material 310 with the ‘
Glue with wax or the like. As shown in FIG. 4 (A), this is cut with a dicing saw or the like along a cutting line 6 in the Y direction and a cutting line 7 in the X direction into a size having a predetermined resistance value.
An element 30 as shown in (B) is formed. The size of this element 30 is about 0.7 mmW × 0.7 m for an electronic thermometer.
mL × 0.25 mmT, the resistance value is about 135 kΩ, and the electrodes 12, 12 ′ and the element corner portion 11a are included.
【0005】また、図5は従来の電子体温計用サーミス
タ構造の製造方法を示す工程図である。素子30の電極
12,12´に、リード線14,14´を半田13,1
3´で接続した後、半田フラックスを洗浄して素子部1
10を形成する。この素子部110を熔融絶縁部材槽1
6に入れられたエポキシ系の樹脂からなる熔融絶縁部材
15にリード線14,14´と反対側の素子部110の
先端部から約2mmの深さ(リード線14,14´とリ
ード線被覆141,141´との素子11側の境目が絶
縁部材151で完全に覆われる深さ)に挿入し、約20
秒間保持して熔融絶縁部材15を素子部110の全体に
なじませた後、引き上げてディッピング工程を終わる。
引き続き約120℃の乾燥炉に約40分投入して熔融絶
縁部材15を硬化させ、図3に示すようなサーミスタ9
を得る。また、絶縁部材151のサーミスタ外径17は
後述する理由により1.4mm以下に仕上げられる。FIG. 5 is a process diagram showing a conventional method for manufacturing a thermistor structure for an electronic thermometer. The lead wires 14 and 14 ′ are soldered to the electrodes 12 and 12 ′ of the element 30 with solder 13 and 1 ′.
After connecting with 3 ', solder flux is washed and the element part 1
Form 10. This element part 110 is connected to the melt insulation member tank 1
In the molten insulating member 15 made of epoxy resin, which is placed in FIG. 6, a depth of about 2 mm (lead wires 14, 14 ′ and lead wire coating 141 is provided from the tip of the element portion 110 opposite to the lead wires 14, 14 ′. , 141 'on the element 11 side is inserted at a depth such that the insulating member 151 completely covers the boundary.
The molten insulating member 15 is held for a second to conform to the entire element portion 110, and then pulled up to complete the dipping process.
Then, the molten insulating member 15 is cured by placing it in a drying oven at about 120 ° C. for about 40 minutes, and the thermistor 9 as shown in FIG.
Get. The thermistor outer diameter 17 of the insulating member 151 is finished to 1.4 mm or less for the reason described later.
【0006】ここで、図6は肉薄部151aを分かり易
くするための図3に示す先端部151´近傍の拡大図で
ある。電子体温計で体温を測定する時、測定時間を短く
するために、サーミスタ9の先端部151´の絶縁部材
151の厚さを極力薄くし、熱時定数が小さくなるよう
にすると共に絶縁性が保てるように製造されるのである
が、熔融絶縁部材15の先端部151´への付着量のば
らつきにより熔融絶縁部材15の硬化後に、先端部15
1aに絶縁部材15の肉薄部151aがしばしば発生す
る。Here, FIG. 6 is an enlarged view of the vicinity of the tip portion 151 'shown in FIG. 3 for facilitating understanding of the thin portion 151a. When measuring the body temperature with an electronic thermometer, in order to shorten the measurement time, the thickness of the insulating member 151 at the tip portion 151 ′ of the thermistor 9 is made as thin as possible to reduce the thermal time constant and maintain the insulating property. Although it is manufactured as described above, the tip portion 15 is cured after the melt insulating member 15 is cured due to the variation in the amount of adhesion to the tip portion 151 ′ of the melt insulating member 15.
A thin portion 151a of the insulating member 15 often occurs at 1a.
【0007】肉薄部151aとは、素子角部11aから
絶縁部材151の先端部151´までの絶縁部材151
の肉厚が比較的薄い部分であるが、実際には絶縁部材1
51の肉厚が薄いばかりではなく素子角部11aが絶縁
部材151の外部に露出する場合もある。The thin portion 151a is the insulating member 151 from the element corner portion 11a to the tip portion 151 'of the insulating member 151.
Is a relatively thin portion, but actually the insulating member 1
Not only is the wall thickness of 51 small, but the element corner portion 11a may be exposed to the outside of the insulating member 151.
【0008】この絶縁部材151の肉薄部151aが発
生する原因としては、リード線被覆141とリード線被
覆141´の間隔が約0.3mmと狭い為に、熔融絶縁
部材15にリード線14,14´の接続された素子部1
10を挿入して約20秒間保持した後引き上げ、熔融絶
縁部材15が硬化するまでの間に、毛細管現象により熔
融絶縁部材15がリード線被覆141と141´の間に
引き上げられ、その反動により先端部151´の熔融絶
縁部材15の量が少なくなった状態で硬化され、したが
って素子角部11aから絶縁部材151の先端部151
´までの肉厚が比較的薄い肉薄部151aが発生すると
考えられる。The reason why the thin portion 151a of the insulating member 151 is generated is that the distance between the lead wire coating 141 and the lead wire coating 141 'is as narrow as about 0.3 mm. ′ Connected element part 1
10 is inserted and held for about 20 seconds and then pulled up, until the melt insulating member 15 is hardened, the melt insulating member 15 is pulled up between the lead wire coatings 141 and 141 'due to the capillary phenomenon, and the tip end thereof is recoiled. The portion 151 ′ is cured in a state in which the amount of the molten insulating member 15 is small, and therefore, from the element corner portion 11 a to the tip portion 151 of the insulating member 151.
It is considered that a thin portion 151a having a relatively thin wall thickness up to ′ is generated.
【0009】図7は図3に示すサーミスタ9を体温計先
端部に挿着した状態の断面図である。体温計外装52の
先端部に接合された金属性のセンサーキャップ50にゲ
ル状の素子部固定用充填材51が充填され、プローブ内
径53を通してサーミスタ9を外装部54の内部に挿入
し、センサーキャップ50の内部先端部に押し当て、そ
の後素子部固定用充填材51を乾燥固化してサーミスタ
9をセンサーキャップ50の内側先端部に固定するもの
である。この時、サーミスタ外径17はプローブ内径5
3をスムーズに通過するように前述した如く規格1.4
mm以下となっている。FIG. 7 is a sectional view showing a state in which the thermistor 9 shown in FIG. 3 is attached to the tip of the thermometer. The metallic sensor cap 50 joined to the distal end of the thermometer exterior 52 is filled with a gel-like element part fixing filler 51, and the thermistor 9 is inserted into the exterior part 54 through the probe inner diameter 53. It is pressed against the inner tip of the sensor cap 50 and then the element portion fixing filler 51 is dried and solidified to fix the thermistor 9 to the inner tip of the sensor cap 50. At this time, the thermistor outer diameter 17 is the probe inner diameter 5
As mentioned above, the standard 1.4
It is less than or equal to mm.
【0010】[0010]
【発明が解決しようとする課題】しかしながら、上記絶
縁部材の肉薄部151aが発生すると、サーミスタ単体
における500v耐圧絶縁試験において、リード線1
4,14´と絶縁部材151の先端部151´との間の
絶縁不良が増加し、歩留を悪化させる原因となる。この
絶縁不良の原因としては、素子角部11aが絶縁部材1
51の外部に露出しているものはもとより、リード線1
4,14´と絶縁部材151の先端部151´との間に
500vという高圧をかけるために素子角部11aと絶
縁部材151が薄いものもは絶縁抵抗不足により絶縁破
壊されてしまうためである。However, when the thin portion 151a of the insulating member is generated, the lead wire 1 is subjected to a 500v withstand voltage insulation test in the thermistor alone.
Insulation defects between the end portions 151 ′ of the insulating members 151 and 4 and 14 ′ are increased, which causes deterioration of the yield. The cause of this insulation failure is that the element corner portion 11a is the insulating member 1.
Not only those exposed outside 51 but also lead wire 1
This is because a high voltage of 500 V is applied between the end portions 151 ′ of the insulating members 151 and 4, 14 ′, and the element corners 11 a and the insulating members 151 having a small thickness are also broken down due to insufficient insulation resistance.
【0011】また、サーミスタ単体の耐圧絶縁試験に合
格したものであっても、センサーキャップ50に組み込
まれる際、熱応答性を向上させる為に、センサーキャッ
プ50の先端部に強く押し当てて組立てられるので、絶
縁部材151の肉薄部151aが破壊または、絶縁抵抗
不足により、センサーキャップ50と素子角部11a
(電極または、抵抗体である素子)との間に、電気的シ
ョートを誘発し、素子部110を介して電気回路部(図
示せず)に静電気の増加や電気的雑音が侵入し、電気回
路のICを破壊したり、測定値が狂ったりする現象が発
生し易くなるという欠点を有している。Further, even if the thermistor has passed the withstand voltage insulation test, when it is incorporated into the sensor cap 50, it is strongly pressed against the tip of the sensor cap 50 to be assembled in order to improve the thermal response. Therefore, the thin portion 151a of the insulating member 151 is broken or the insulation resistance is insufficient, so that the sensor cap 50 and the element corner portion 11a.
An electrical short circuit is induced between the electrical circuit and the (element which is an electrode or a resistor), and static electricity increases or electrical noise enters the electrical circuit section (not shown) through the element section 110, and the electrical circuit However, there is a drawback in that the phenomenon that IC's are destroyed and the measured values are apt to occur easily occurs.
【0012】また、リード線被覆141と141´の絶
縁部材151への表面張力の影響により、絶縁部材15
1の先端部151´の肉厚が薄くなるという現象を避け
るためにディッピングの挿入深さを調節することが考え
られる。この挿入深さを1.2mm程度と浅くして、極
力素子部110のみを熔融絶縁部材15が覆った時点で
挿入を停止し、リード線被覆141と141´に熔融絶
縁部材15の表面張力の影響が及ぶ前に引き上げ、硬化
させることにより絶縁部材151の先端部151´の肉
厚はある程度厚くなる。Further, due to the influence of the surface tension of the lead wire coatings 141 and 141 'on the insulating member 151, the insulating member 15
It is conceivable to adjust the insertion depth of the dipping in order to avoid the phenomenon that the thickness of the tip portion 151 'of No. 1 becomes thin. The insertion depth is reduced to about 1.2 mm, and the insertion is stopped when the melt insulating member 15 covers only the element portion 110 as much as possible, and the surface tension of the melt insulating member 15 is prevented from being applied to the lead wire coatings 141 and 141 '. By pulling up and hardening it before it is affected, the thickness of the tip portion 151 ′ of the insulating member 151 becomes thick to some extent.
【0013】しかし、リード線14,14´とリード線
被覆141,141´との電極12,12´側の境目が
絶縁部材151で完全には覆われないという問題が生じ
てしまい、その結果、リード線と絶縁部材の絶縁が不十
分なサーミスタ構造となってしまう。さらに、この問題
を防止する為には、リード線の皮剥き位置精度、サーミ
スタチップとリード線の半田付け位置精度、ディッピン
グ装置の高さ位置精度、熔融絶縁部材の粘度管理等にか
なりの設備投資を要するので、製造コストが増加すると
いう問題が生じてしまう。However, there occurs a problem that the boundary between the lead wires 14 and 14 'and the lead wire coatings 141 and 141' on the side of the electrodes 12 and 12 'is not completely covered by the insulating member 151. As a result, This results in a thermistor structure in which the insulation between the lead wire and the insulating member is insufficient. Furthermore, in order to prevent this problem, a considerable amount of capital investment is required for lead wire peeling position accuracy, thermistor chip and lead wire soldering position accuracy, dipping device height position accuracy, melt insulation member viscosity control, etc. Therefore, there is a problem that the manufacturing cost increases.
【0014】本発明の目的は、上記課題を解決しようと
するもので、サーミスタ単体における耐圧絶縁性および
電子体温計に組み込んだ際の耐静電気特性、耐雑音特性
の優れたサーミスタの構造およびその製造方法を提供す
ることにある。An object of the present invention is to solve the above problems, and a structure of a thermistor having excellent withstand voltage insulation properties of a thermistor unit and excellent electrostatic resistance characteristics and noise resistance characteristics when incorporated in an electronic thermometer, and a manufacturing method thereof. To provide.
【0015】[0015]
【課題を解決するための手段】上記目的を達成するため
の本発明の要旨は、サーミスタの先端部において、絶縁
部材が二層となる構造およびその製造方法を特徴とする
ものである。The gist of the present invention for achieving the above object is characterized by a structure in which the insulating member has two layers at the tip of the thermistor, and a manufacturing method thereof.
【0016】また、絶縁部材は、二層とも同一の絶縁部
材で製造されたことを特徴とするものである。Further, the insulating member is characterized in that the two layers are made of the same insulating member.
【0017】[0017]
【作用】すなわち、本発明におけるサーミスタの構造に
より、素子角部が絶縁性の充分な量の絶縁部材で被覆さ
れるので、サーミスタ単体の耐圧絶縁信頼性が向上する
事により、体温計へ組み込んだ際に静電気や電気的雑音
の影響を全く受けない構造となっている。In other words, the structure of the thermistor according to the present invention covers the corners of the element with a sufficient amount of an insulating member having an insulating property, so that the withstand voltage insulation reliability of the thermistor itself is improved, so that when incorporated in a thermometer. The structure is completely unaffected by static electricity and electrical noise.
【0018】[0018]
【実施例】以下図面により本発明の実施例を詳述する。
図1は本発明の電子体温計用サーミスタの側断面図であ
る。サーミスタ10の構成は、電極12,12´を両面
に有する素子材料部11にリード線被覆141,141
´を有するリード線14,14´を半田13,13´で
電気機械的に結合した素子部110が絶縁部材151で
覆われており、さらに二層目の絶縁部材152で覆われ
ているものである。素子材料部11は素子角部11aを
有し、二層目の絶縁部材152は先端部152´を有す
る。Embodiments of the present invention will be described in detail below with reference to the drawings.
FIG. 1 is a side sectional view of the thermistor for an electronic thermometer according to the present invention. The thermistor 10 has a structure in which the element material portion 11 having the electrodes 12 and 12 'on both sides is covered with lead wire coatings 141 and 141.
The element portion 110 in which the lead wires 14, 14 ′ having ′ ′ are electromechanically coupled with the solder 13, 13 ′ is covered with the insulating member 151, and further covered with the second insulating member 152. is there. The element material portion 11 has an element corner portion 11a, and the second-layer insulating member 152 has a tip portion 152 '.
【0019】図2は第2のディッピング工程を示す工程
図である。従来と同様のディッピング工程を第1のディ
ッピング工程とし、この第1のディッピング工程で製作
されたサーミスタ9を、第1のディッピングで使用した
熔融絶縁部材槽16に入っている熔融絶縁部材15に先
端部151´から約0.5mmの深さ(先端部151´
が熔融絶縁部材15で完全に隠れる深さ)に挿入し、約
10秒間保持した後、引き上げて第2のディッピング工
程を終わる。引き続き約120℃の乾燥炉に約40分投
入して熔融絶縁部材15を硬化させ、二層目の絶縁部材
152を形成して図1で示すサーミスタ10を得る。FIG. 2 is a process drawing showing the second dipping process. A dipping process similar to the conventional one is used as a first dipping process, and the thermistor 9 manufactured in the first dipping process is attached to the melt insulating member 15 contained in the melt insulating member tank 16 used in the first dipping. Depth of about 0.5 mm from the part 151 '(tip 151'
Is completely hidden by the melt insulating member 15), is held for about 10 seconds, and is then pulled up to complete the second dipping step. Then, the molten insulating member 15 is cured by placing it in a drying oven at about 120 ° C. for about 40 minutes to form a second layer insulating member 152 to obtain the thermistor 10 shown in FIG.
【0020】この第2のディッピング工程の目的は、第
1のディッピング工程で生じた素子角部11aから絶縁
部材151の先端部151´にかけての肉薄部151a
近傍の絶縁部材151の肉厚を厚くして耐圧絶縁性を高
めつつ、その量を極力少なくして熱応答性を良好な状態
に維持し、熱時定数を小さくすることであり、さらにこ
れを安価に実現しようとするものである。The purpose of this second dipping process is to reduce the thickness of the thin portion 151a from the element corner 11a generated in the first dipping process to the tip 151 'of the insulating member 151.
To increase the withstand voltage insulation by increasing the thickness of the insulating member 151 in the vicinity to maintain the thermal response in a good state by reducing the amount as much as possible, and to reduce the thermal time constant. It is intended to be realized at low cost.
【0021】ここで、第2のディッピング工程におい
て、ディッピングの挿入深さに対する絶縁部材の厚さ、
および絶縁部材全体の外径の変化について記述する。本
実施例の熔融絶縁部材であるエポキシ系樹脂の粘度が約
3000〜8000cpsにおいては、第2のディッピ
ングの挿入深さは、先端部152´の二層目の絶縁部材
152の厚さと絶縁部材151全体の外径17に影響
し、先端部152´の厚さは絶縁性、また、絶縁部材1
51全体の外径17はサーミスタ10の体温計プローブ
部挿入時の組立作業性に影響する。Here, in the second dipping step, the thickness of the insulating member with respect to the insertion depth of the dipping,
And the change in the outer diameter of the entire insulating member will be described. When the viscosity of the epoxy resin which is the melt insulating member of the present embodiment is about 3000 to 8000 cps, the insertion depth of the second dipping is the thickness of the second insulating member 152 of the tip portion 152 'and the insulating member 151. The overall outer diameter 17 is affected, and the thickness of the tip portion 152 ′ is insulating, and the insulating member 1
The outer diameter 17 of the entire 51 affects the assembling workability when the thermometer probe portion of the thermistor 10 is inserted.
【0022】上記の内容を詳述すると、挿入深さが0.
4mm以下の範囲では先端部152´の絶縁部材152
の厚みは挿入深さに応じて増加するが、絶縁部材151
全体の外径17は変化しない。これは、リード線被覆1
41とリード線被覆141´の間隔による表面張力の影
響を受けないのは勿論のこと、熔融絶縁部材15が先端
部151´に接する表面積が少ないことと、その接する
部分が絶縁部材151が外径17を形成する部分よりも
先端部151´側であるため、先端部151´に付着し
た熔融絶縁部材15は重力により先端方向に引っ張られ
て付着する。このため、先端部152´の二層目の絶縁
部材152の厚さは挿入深さに応じて増加するものの絶
縁部材151全体の外径17は変化しない。More specifically, the insertion depth is 0.
In the range of 4 mm or less, the insulating member 152 of the tip portion 152 '
The thickness of the insulating member 151 increases depending on the insertion depth.
The overall outer diameter 17 does not change. This is the lead wire coating 1
41 is not affected by the surface tension due to the distance between the lead wire coating 141 'and the lead wire coating 141', and the surface area of the molten insulating member 15 in contact with the tip portion 151 'is small, and the contact portion has an outer diameter of the insulating member 151. Since it is on the tip end 151 ′ side of the portion that forms 17, the molten insulating member 15 attached to the tip end 151 ′ is pulled in the tip direction by gravity and attaches. Therefore, although the thickness of the insulating member 152 of the second layer of the tip portion 152 'increases according to the insertion depth, the outer diameter 17 of the entire insulating member 151 does not change.
【0023】しかし、この挿入深さが0.4mm以下の
範囲では先端部151´に付着した熔融絶縁部材15の
付着量が少なく、したがって、先端部152´の二層目
の絶縁部材152の厚さが薄いので、耐圧絶縁性を高め
る効果が少なく、500v耐圧絶縁試験において不良が
発生する可能性がある。However, when the insertion depth is 0.4 mm or less, the amount of the molten insulating member 15 attached to the tip portion 151 'is small, so that the thickness of the second-layer insulating member 152 at the tip portion 152' is small. Since the thickness is thin, the effect of enhancing the withstand voltage insulation property is small, and a defect may occur in the 500v withstand voltage insulation test.
【0024】次に、挿入深さが0.4〜0.7mmの範
囲においては、耐圧絶縁性が充分な二層目の絶縁部材1
52の量が確保でき、しかも上述の理由により絶縁部材
151の外径17は変化しないことを実験的に確認して
いる。Next, when the insertion depth is in the range of 0.4 to 0.7 mm, the insulating member 1 of the second layer having sufficient withstand voltage insulation property.
It has been experimentally confirmed that the amount of 52 can be secured and that the outer diameter 17 of the insulating member 151 does not change for the above reason.
【0025】さらに、挿入深さが0.7mmを越える範
囲では先端部152´の絶縁部材152の厚みは増加す
るものの絶縁部材151全体の外径17も増加し、規格
1.4mmを越えるものが発生し始める。これは、熔融
絶縁部材15が絶縁部材151と接する部分が先端部1
51´のみならず絶縁部材151全体の外径17を形成
する部分にまで及んでくるためであるが、これにより絶
縁不良は皆無となるものの外径規格不良が増加し、サー
ミスタ単体の歩留の低下原因となる。Further, in the range where the insertion depth exceeds 0.7 mm, the thickness of the insulating member 152 at the distal end portion 152 'increases, but the outer diameter 17 of the entire insulating member 151 also increases, and the diameter exceeds the standard of 1.4 mm. Begins to occur. This is because the portion where the molten insulating member 15 contacts the insulating member 151 is the tip portion 1.
This is because not only 51 ′ but also the portion forming the outer diameter 17 of the entire insulating member 151 is reached, but although this does not result in any insulation failure, the outer diameter specification failure increases and the yield of the thermistor alone increases. It causes a decrease.
【0026】上記のことより、絶縁部材151の外径が
変化せず、しかも耐圧絶縁性が充分な二層目の絶縁部材
152の量が確保できる第2のディッピング工程の挿入
深さは0.4〜0.7mmの範囲であるが、本実施例に
おいては実験的に挿入深さ0.5mmが最良であった。From the above, the insertion depth of the second dipping step is 0. 0, where the outer diameter of the insulating member 151 does not change and the amount of the insulating member 152 of the second layer having sufficient withstand voltage insulation is secured. Although it is in the range of 4 to 0.7 mm, the insertion depth of 0.5 mm was experimentally the best in this example.
【0027】[0027]
【発明の効果】したがって、本発明によれば絶縁部材の
量を、絶縁が充分取れ、しかも熱伝達速度を遅くするこ
とのない、必要最小限の量にする事により、熱時定数を
極力小さくしつつ、しかも、耐絶縁性に優れたサーミス
タ構造により、電子体温計に組み込んだ際の、耐静電気
特性、耐雑音特性の優れたサーミスタの構造が実現でき
た。According to the present invention, therefore, the thermal time constant is minimized by making the amount of the insulating member the necessary minimum amount that can sufficiently insulate and does not slow down the heat transfer rate. In addition, the thermistor structure with excellent insulation resistance has made it possible to realize a thermistor structure with excellent static resistance characteristics and noise resistance characteristics when incorporated in an electronic thermometer.
【図1】本発明の電子体温計用サーミスタ構造の側断面
図。FIG. 1 is a side sectional view of a thermistor structure for an electronic thermometer according to the present invention.
【図2】本発明の電子体温計用サーミスタ構造の第2の
ディッピングの工程図。FIG. 2 is a second dipping process diagram of the thermistor structure for an electronic thermometer according to the present invention.
【図3】従来の電子体温計用サーミスタ構造の側断面
図。FIG. 3 is a side sectional view of a conventional thermistor structure for an electronic thermometer.
【図4】一般的な電子体温計用サーミスタの素子の製造
方法を示す工程図であり、(A)は円板状の素子の切断
直後の状態を表わした上面図、(B)は素子の斜視図で
ある。4A and 4B are process diagrams showing a method for manufacturing an element of a general thermistor for an electronic thermometer, where FIG. 4A is a top view showing a state immediately after cutting a disc-shaped element, and FIG. 4B is a perspective view of the element. It is a figure.
【図5】従来の電子体温計用サーミスタ構造の製造方法
を示す工程図。FIG. 5 is a process drawing showing a method of manufacturing a conventional thermistor structure for an electronic thermometer.
【図6】従来の電子体温計用サーミスタの先端部の拡大
断面図。FIG. 6 is an enlarged cross-sectional view of a tip portion of a conventional thermistor for electronic thermometer.
【図7】従来の電子体温計用サーミスタを電子体温計に
装着した状態の断面図。FIG. 7 is a cross-sectional view of a conventional electronic thermometer thermistor mounted on the electronic thermometer.
11 素子材料部 11a 素子角部 110 素子部 12,12´ 電極 13,13´ 半田 14,14´ リード線 141,141´ リード線被覆 15 熔融絶縁部材 151 絶縁部材 151´,152´ 先端部 151a 絶縁部材の肉薄部 152 二層目の絶縁部材 16 熔融絶縁部材槽 17 サーミスタ外径 30 素子 310 素子材料 320,320´ 電極部材 50 センサーキャップ 51 素子部固定用充填材 52 体温計外装 53 プローブ内径 54 外装部 6 Y方向の切断線 7 X方向の切断線 8 切断用基板 9,10 サーミスタ 11 Element Material Part 11a Element Corner Part 110 Element Part 12, 12 'Electrode 13, 13' Solder 14, 14 'Lead Wire 141, 141' Lead Wire Covering 15 Melt Insulating Member 151 Insulating Member 151 ', 152' Tip Part 151a Insulation Thin part of member 152 Second layer insulation member 16 Melt insulation member tank 17 Thermistor outer diameter 30 Element 310 Element material 320, 320 'Electrode member 50 Sensor cap 51 Element part fixing filler 52 Thermometer exterior 53 Probe inner diameter 54 Exterior 6 Y-direction cutting line 7 X-direction cutting line 8 Cutting substrate 9, 10 Thermistor
───────────────────────────────────────────────────── フロントページの続き (72)発明者 中山 敏彦 東京都田無市本町6丁目1番12号 シチズ ン時計株式会社田無製造所内 (72)発明者 中山 真司 長野県北佐久郡御代田町大字御代田4107番 地5 シメオ精密株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Toshihiko Nakayama 6-12 Hommachi, Tanashi City, Tokyo Citizen Watch Co., Ltd. Tanashi Factory (72) Inventor Shinji Nakayama 4107 Miyota, Miyota-cho, Kitasaku-gun, Nagano Prefecture Ground 5 Within Simeo Precision Co., Ltd.
Claims (3)
子体温計用サーミスタにおいて、前記絶縁部材は、該サ
ーミスタの先端部において二層に被覆されたことを特徴
とする電子体温計用サーミスタの構造。1. A thermistor for an electronic thermometer, which has a lead wire and is covered with an insulating member, wherein the insulating member is covered in two layers at the tip of the thermistor. .
材であることを特徴とする請求項1記載の電子体温計用
サーミスタの構造。2. The structure of the thermistor for an electronic thermometer according to claim 1, wherein the insulating members coated in two layers are the same member.
子体温計用サーミスタにおいて、第1のディッピング工
程とその硬化工程および第2のディッピング工程とその
硬化工程を有することを特徴とする電子体温計用サーミ
スタの製造方法。3. An electronic clinical thermometer having a lead wire and covered with an insulating member, comprising: a first dipping step and a hardening step thereof; and a second dipping step and a hardening step thereof. For manufacturing a thermistor for automobiles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18682394A JPH0829268A (en) | 1994-07-18 | 1994-07-18 | Structure of thermistor for electronic clinical thermometer and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18682394A JPH0829268A (en) | 1994-07-18 | 1994-07-18 | Structure of thermistor for electronic clinical thermometer and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0829268A true JPH0829268A (en) | 1996-02-02 |
Family
ID=16195239
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18682394A Pending JPH0829268A (en) | 1994-07-18 | 1994-07-18 | Structure of thermistor for electronic clinical thermometer and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0829268A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009192424A (en) * | 2008-02-15 | 2009-08-27 | Denso Corp | Temperature sensor and temperature sensor integrated pressure sensor |
-
1994
- 1994-07-18 JP JP18682394A patent/JPH0829268A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009192424A (en) * | 2008-02-15 | 2009-08-27 | Denso Corp | Temperature sensor and temperature sensor integrated pressure sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4033331B2 (en) | Thermistor and manufacturing method thereof | |
JP3725296B2 (en) | Temperature sensor with measuring resistor | |
US6462925B2 (en) | Excess current interrupting structure | |
KR20180027639A (en) | Sensor element and process for assembling a sensor element | |
JPH03502623A (en) | Wire bonded microfuse and its manufacturing method | |
US3939557A (en) | Method of making resistance thermometer sensors | |
KR100452794B1 (en) | High temperature detector and method for the production thereof | |
JPH0829268A (en) | Structure of thermistor for electronic clinical thermometer and its manufacture | |
US20040075527A1 (en) | Ttemperature probe and a method for producing the same | |
JP2023503210A (en) | Sensor assembly and method of manufacturing sensor assembly | |
EP0384586A2 (en) | High reliability plastic package for integrated circuits | |
JPH03118432A (en) | Electronic clinical thermometer and manufacture thereof | |
JPH09297069A (en) | Temperature detecting sensor | |
JP3875848B2 (en) | Temperature sensor | |
US5958606A (en) | Substrate structure with adhesive anchoring-seams for securely attaching and boding to a thin film supported thereon | |
JPS6082824A (en) | Electronic clinical thermometer and manufacture thereof | |
JPH0989680A (en) | Printed circuit board for electronic clinical thermometer, electronic clinical thermometer using the same and manufacture thereof | |
US20040238940A1 (en) | Electronic device and pressure sensor | |
JP3152352B2 (en) | Thermistor element | |
TWI783247B (en) | temperature sensing device | |
JP2004335793A (en) | Thermometer | |
JP4763454B2 (en) | Temperature sensor | |
JP2002286555A (en) | Temperature sensor | |
US20030214033A1 (en) | Semiconductor device having pad electrode connected to wire | |
JP5263224B2 (en) | Thermistor device |