JPH08296000A - Ferritic stainless steel excellent in workability and corrosion resistance and its production - Google Patents
Ferritic stainless steel excellent in workability and corrosion resistance and its productionInfo
- Publication number
- JPH08296000A JPH08296000A JP9890395A JP9890395A JPH08296000A JP H08296000 A JPH08296000 A JP H08296000A JP 9890395 A JP9890395 A JP 9890395A JP 9890395 A JP9890395 A JP 9890395A JP H08296000 A JPH08296000 A JP H08296000A
- Authority
- JP
- Japan
- Prior art keywords
- less
- stainless steel
- ferritic stainless
- corrosion resistance
- slab
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、連続鋳造スラブの置き
割れが起きることなく容易に製造が可能で、加工性およ
び耐食性のいずれにも優れるフェライト系ステンレス鋼
およびその製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferritic stainless steel which can be easily manufactured without causing cracks in a continuously cast slab and has excellent workability and corrosion resistance, and a method for manufacturing the same.
【0002】[0002]
【従来の技術】AISI409やSUS430などに代
表されるフェライト系ステンレス鋼は、表面処理鋼板に
比べて、高温における耐力、耐酸化性および耐食性に優
れることから、例えば、自動車マフラー用材料のような
高温環境における溶接構造用部材や建築外装パネルのよ
うな高耐食構造部材として使用されている。自動車用マ
フラーの場合、当該ステンレス鋼の冷延焼鈍板を成形加
工した後、MIG溶接あるいはTIG溶接を施し完成す
る。2. Description of the Related Art Ferritic stainless steels represented by AISI409 and SUS430 are superior to surface-treated steel sheets in resistance to high temperatures, oxidation resistance and corrosion resistance. It is used as a high corrosion resistant structural member such as welded structural members and building exterior panels in the environment. In the case of a muffler for automobiles, the cold rolled annealed plate of the stainless steel is formed, and then MIG welding or TIG welding is performed to complete the process.
【0003】その溶接熱影響部は、粒界にCr炭化物を
析出しやすいことから、粒界腐食が生ずる懸念がある。
また、溶接熱影響部は、溶接の際に高温にさらされるこ
とから、結晶粒の粗大化を起こし、その後の加工あるい
は変形によって割れが発生することがある。この溶接熱
影響部における粒界腐食や粗粒化を抑制することを目的
として、溶接施工用のフェライト系ステンレス鋼は、通
常Tiが添加されている(例えば、特開昭49−130
817号公報参照)。その添加量は、Ti/(C+N)
≧5なる条件式で規定されている(例えば、特開昭52
−107220号公報参照)。In the weld heat affected zone, since Cr carbides are likely to precipitate at grain boundaries, there is a risk of intergranular corrosion.
In addition, since the weld heat affected zone is exposed to a high temperature during welding, crystal grains may be coarsened, and cracks may occur due to subsequent processing or deformation. In order to suppress intergranular corrosion and coarsening in the heat-affected zone of the welding, Ti is usually added to the ferritic stainless steel for welding (for example, JP-A-49-130).
No. 817). The addition amount is Ti / (C + N)
It is defined by a conditional expression of ≧ 5 (for example, Japanese Patent Laid-Open No.
-107220 gazette).
【0004】また、フェライト系ステンレス鋼は、成形
加工後、リジングと称する圧延方向に平行なしわ状の欠
陥が生ずるため、美観を損ねる欠点を有している。この
ため、自動車のモール材のように外観が要求される用途
には、熱延後900℃以上の焼鈍を施し、引き続き冷間
圧延、再結晶焼鈍を施していた(特開昭54−7911
7号公報)。しかし、この従来技術では熱延板に900
℃以上の熱処理を施す専用の設備を要するとともに、そ
の熱処理工程において多大なエネルギーを消費し多くの
労働力を必要としていた。Further, ferritic stainless steel has a drawback that after forming, a wrinkle-like defect called ridging which is parallel to the rolling direction is generated, which impairs the appearance. For this reason, in applications where appearance is required, such as automobile molding materials, after hot rolling, annealing was performed at 900 ° C or higher, followed by cold rolling and recrystallization annealing (Japanese Patent Laid-Open No. 54-7911).
7 publication). However, in this conventional technique, 900
In addition to requiring a dedicated facility for heat treatment at a temperature of ℃ or more, a large amount of energy is consumed in the heat treatment process and a large amount of labor is required.
【0005】また、Tiを添加し耐粒界腐食性を改善し
た従来のフェライト系ステンレス鋼は、鋳造鋼塊に粗大
な析出物が凝固組織のマクロ粒界に析出し、この析出物
を起点とするスラブの置き割れが起きていた。この置き
割れを回避するため、連続鋳造後の鋳片を室温まで冷却
することなく200℃以上の温片のまま分塊圧延または
熱間圧延(ホットチャージ熱延)するか、あるいは連続
鋳造後の鋳片に保熱カバーをかぶせ、徐冷することによ
って残留応力の低減を図っていた。分塊圧延を実施する
ためには、分塊圧延専用の熱間圧延設備を要するととも
に、製造工程の付加に伴う消費エネルギーおよび労働力
の増大が余儀なくされている。ホットチャージ熱延を実
施する場合も、専用の連続鋳造機から熱延加熱炉前まで
熱間搬送設備を要するとともに、鋳造と熱間圧延のタイ
ミングをマッチングさせるために多大な労力を費やして
いるのが現状である。また、連続鋳造後の鋳片に保熱カ
バーをかぶせる場合も、多数の保熱カバーを要するとと
もに、その装着作業に多大な労力を要していた。Further, in the conventional ferritic stainless steel in which Ti has been added to improve intergranular corrosion resistance, coarse precipitates are precipitated in the cast steel ingot at macro grain boundaries of the solidification structure, and these precipitates are used as the starting points. There was a crack in the slab. In order to avoid this cracking, the slab after continuous casting is slab-rolled or hot-rolled (hot-charge hot-rolled) without being cooled to room temperature as it is at a temperature of 200 ° C. or higher, or after continuous casting. The slab was covered with a heat-retaining cover and gradually cooled to reduce residual stress. In order to carry out slabbing, hot rolling equipment exclusively for slabbing is required, and energy consumption and labor force are inevitably increased due to the addition of manufacturing processes. Even when carrying out hot charge hot rolling, it requires a hot transfer facility from the dedicated continuous casting machine to the front of the hot rolling heating furnace, and a great deal of labor is spent to match the timing of casting and hot rolling. Is the current situation. Further, in the case of covering a slab after continuous casting with a heat-retaining cover, a large number of heat-retaining covers are required, and a great deal of labor is required for the mounting work.
【0006】このため、Ti添加量を700ppm 以下に
限定し、スラブ置き割れ感受性を低減したフェライト系
ステンレス鋼が特開平6−287718号公報に開示さ
れている。しかし、スラブの置き割れが完全に解消され
た訳ではなく、散発的には発生することがあった。ま
た、Tiを添加した高純フェライト系ステンレス鋼にB
を3〜50ppm 添加することによって、深絞り後の二次
加工性を改善したフェライト系ステンレス鋼板が特開昭
61−261460号公報に開示されている。しかし、
近年、該発明鋼よりもさらに伸び、r値を高め、限界絞
り比を向上させたフェライト系ステンレス鋼の出現が望
まれていた。Therefore, a ferritic stainless steel in which the amount of Ti added is limited to 700 ppm or less and the susceptibility to slab placement cracking is reduced is disclosed in JP-A-6-287718. However, the cracks in the slab were not completely resolved, and sometimes they occurred sporadically. In addition, B is added to high-purity ferritic stainless steel containing Ti.
JP-A-61-261460 discloses a ferritic stainless steel sheet in which the secondary workability after deep drawing is improved by adding 3 to 50 ppm. But,
In recent years, it has been desired to develop a ferritic stainless steel having a higher elongation, a higher r-value, and a higher critical drawing ratio than the invention steels.
【0007】[0007]
【発明が解決しようとする課題】このような現状にかん
がみ本発明は、連続鋳片の置き割れ感受性を低減し、連
続鋳造後、大気中に放冷しても置き割れが起きないTi
添加フェライト系ステンレス鋼およびその製造方法を提
供するものである。さらに、熱延板の焼鈍を施すことな
く、熱延−冷延−焼鈍プロセスによってリジングの少な
いフェライト系ステンレス鋼の製造を可能とし、従来の
フェライト系ステンレス鋼に比べて、さらに加工性、深
絞り加工後の二次加工性および耐粒界腐食性を改善した
フェライト系ステンレス鋼を提供する。In view of the present situation, the present invention reduces the susceptibility of continuous cast slab to cracking, and prevents Ti from cracking even if left to cool in the atmosphere after continuous casting.
Provided is an additive ferritic stainless steel and a method for producing the same. Furthermore, it enables the production of ferritic stainless steel with less ridging by the hot rolling-cold rolling-annealing process without annealing the hot-rolled sheet, further improving workability and deep drawing compared with conventional ferritic stainless steel. A ferritic stainless steel having improved secondary workability and intergranular corrosion resistance after working.
【0008】[0008]
【課題を解決するための手段】本発明者らは、加工性の
低下や粒界腐食を引き起こす主要因であるCおよびNを
極力低減することによって、スラブ置き割れの主要因で
あるTiの添加量を低減でき、このことによって熱延後
の再結晶温度も低下することに着目して、耐スラブ置き
割れ感受性およびリジング、加工性、耐粒界腐食などに
及ぼすC,N,Tiの影響を実験室的に詳細に検討した
結果、本発明をなし遂げた。The inventors of the present invention added Ti, which is the main factor of slab placement cracking, by reducing C and N, which are the main factors causing deterioration of workability and intergranular corrosion, as much as possible. The effect of C, N, and Ti on the slab placement cracking susceptibility and ridging, workability, intergranular corrosion resistance, etc. can be reduced by focusing on the fact that the recrystallization temperature after hot rolling can be reduced. As a result of detailed examination in the laboratory, the present invention has been accomplished.
【0009】Ti添加フェライト系ステンレス鋼は、連
続鋳造後の冷却過程で置き割れが起こる。置き割れは、
鋳片の延性が急激に低下し脆性破壊を起こす100℃以
下で生ずる。Ti添加フェライト系ステンレス鋼連続鋳
造鋳片の高温延性挙動に及ぼす鋼中の固溶Ti量の影響
を図1に示す。本発明者らは図から明らかなように固溶
Ti量を0.12%以下とすることによって、フェライ
ト系ステンレス鋼鋳片の室温〜100℃の温度範囲にお
ける延性を飛躍的に向上し得ることを見出した。その結
果、スラブ置き割れ感受性が大幅に低減し、連続鋳造
後、スラブを大気中に放冷しても置き割れが起こらない
ことが判明した。In the Ti-added ferritic stainless steel, cracking occurs during the cooling process after continuous casting. Cracks
It occurs at 100 ° C or lower where the ductility of the slab suddenly decreases and brittle fracture occurs. FIG. 1 shows the effect of the amount of solid solution Ti in the steel on the high temperature ductility behavior of the Ti-added ferritic stainless steel continuous cast slab. As is clear from the figure, the inventors of the present invention can dramatically improve the ductility of the ferritic stainless steel slab in the temperature range of room temperature to 100 ° C. by setting the amount of solid solution Ti to 0.12% or less. Found. As a result, it was found that the susceptibility to slab cracking was significantly reduced, and even after continuous casting, the slab did not crack when placed in the atmosphere.
【0010】一方、従来の工業的な大量溶製技術では、
フェライト系ステンレス鋼に含有する(C+N)量は、
ほぼ100ppm が下限であった。このため、C+N≦1
00ppm における機械的性質および耐粒界腐食性につい
て十分な検討がなされていなかった。本発明者らは、フ
ェライト系ステンレス鋼のC+N量を100ppm 以下と
することによって、延性およびr値が大幅に向上するこ
とを見出した。図2は、(a)強度、(b)伸び、
(c)r値(ランクフォード値)に及ぼすC+N量の影
響を示している。C+N量を100ppm 以下とすること
によって、降伏点が低下し伸びが向上するとともに、r
値も飛躍的に向上することが明らかとなった。溶接熱影
響部の耐粒界腐食性に及ぼすC+N量の影響を図3に示
す。このような極低C,N領域においてもTiを5・
(C+N)以上添加することによって粒界腐食が起こら
ないことが判明した。On the other hand, in the conventional industrial mass production technology,
The amount of (C + N) contained in ferritic stainless steel is
The lower limit was about 100 ppm. Therefore, C + N ≦ 1
The mechanical properties and intergranular corrosion resistance at 00 ppm have not been sufficiently examined. The present inventors have found that the ductility and r value are significantly improved by setting the C + N amount of ferritic stainless steel to 100 ppm or less. FIG. 2 shows (a) strength, (b) elongation,
(C) The influence of the amount of C + N on the r value (Rankford value) is shown. By setting the amount of C + N to 100 ppm or less, the yield point is lowered and the elongation is improved, and r
It became clear that the value also improved dramatically. The effect of the amount of C + N on the intergranular corrosion resistance of the heat affected zone is shown in FIG. Even in such an extremely low C and N region, the Ti content is 5
It was found that intergranular corrosion does not occur by adding more than (C + N).
【0011】(C+N)量が100ppm を超える従来の
フェライト系ステンレス鋼は、再結晶温度が高く、通常
の熱延捲取り温度では自己焼鈍できなかった。しかし、
(C+N)量が100ppm 以下では再結晶温度が750
℃以下まで低下し、熱延後の捲取りによって自己焼鈍が
可能であることを見出した。図4は、C+N:75ppm
のフェライト系ステンレス鋼冷延焼鈍板のリジング高さ
に及ぼす熱延条件の影響を示している。その結果、熱延
後750℃以上で捲取ると、リジング高さが大幅に低減
することが判明した。その理由として、750℃未満で
捲取ると熱延板は板厚中央部まで十分に再結晶せず、冷
延焼鈍板の製造工程において1回しか再結晶が起こら
ず、圧延方向に集合組織が強く残り、引張り変形後リジ
ングが現れると考えられる。一方、750℃以上で捲取
ると自己焼鈍によって再結晶し、その後の冷延−焼鈍に
よって再び再結晶する。すなわち、冷延焼鈍板の製造工
程において2回再結晶することになり、リジングが低減
する。The conventional ferritic stainless steel having a (C + N) content exceeding 100 ppm has a high recrystallization temperature and cannot be self-annealed at a normal hot rolling coiling temperature. But,
When the amount of (C + N) is 100 ppm or less, the recrystallization temperature is 750.
It was found that the temperature was lowered to ℃ or less, and self-annealing was possible by winding after hot rolling. Figure 4 shows C + N: 75ppm
The effect of hot rolling conditions on the ridging height of cold rolled annealed ferritic stainless steel sheets is shown. As a result, it was found that the ridging height was significantly reduced when wound at 750 ° C. or higher after hot rolling. The reason is that when rolled up at less than 750 ° C, the hot-rolled sheet does not recrystallize sufficiently up to the central portion of the sheet thickness, recrystallization occurs only once in the manufacturing process of the cold-rolled annealed sheet, and the texture in the rolling direction It is believed that it remains strong and ridging appears after tensile deformation. On the other hand, when it is wound up at 750 ° C. or higher, it is recrystallized by self-annealing, and then recrystallized again by cold rolling-annealing. That is, recrystallization is performed twice in the manufacturing process of the cold rolled annealed plate, and ridging is reduced.
【0012】以上の知見から、C,NおよびTiを適正
な範囲に限定するとともに、連続熱延工程における捲取
り温度を適正化することによって、スラブ置き割れ感受
性が低く、リジングが小さい加工性および耐粒界腐食性
に優れたフェライト系ステンレス鋼の製造が可能である
ことが明らかである。From the above findings, by limiting C, N and Ti to appropriate ranges and optimizing the winding temperature in the continuous hot rolling step, the susceptibility to slab placement cracking is low and the workability with small ridging and It is clear that it is possible to manufacture ferritic stainless steel with excellent intergranular corrosion resistance.
【0013】次に、本発明の限定範囲について述べる。 C:溶接熱影響部などの粒界にCr炭化物を析出し、耐
粒界腐食性にとって極めて有害な元素であるとともに、
含有量が高いと再結晶温度が上昇し、熱延後750℃以
上で捲取っても自己焼鈍しないことから、上限を0.0
030%とした。特に、深絞り比が2.1を超えるよう
な過酷な深絞り加工を行う場合には、0.0020%未
満とすることによって、伸びおよびr値が著しく向上す
る。Next, the limited scope of the present invention will be described. C: Cr carbide precipitates at grain boundaries such as in the heat affected zone of welding and is an extremely harmful element for intergranular corrosion resistance.
If the content is high, the recrystallization temperature rises, and even if wound at 750 ° C. or higher after hot rolling, it does not self-anneal, so the upper limit is 0.0.
It was set to 030%. In particular, in the case of performing a severe deep drawing such that the deep drawing ratio exceeds 2.1, the elongation and the r value are remarkably improved by making the content less than 0.0020%.
【0014】Si:過剰に含有すると、冷間加工性が劣
化することから、2.0%を上限とした。 Mn:脱硫・脱酸作用を有するとともに、Sの結晶粒界
への偏析による粒界脆化および熱間脆化を改善するのに
極めて有効な元素であるが、多量に添加すると、鋼板の
冷間加工性を低下させることから、2.0%を上限とし
た。Si: If contained in excess, cold workability deteriorates, so 2.0% was made the upper limit. Mn: An element that has a desulfurizing / deoxidizing effect and is extremely effective in improving grain boundary embrittlement and hot embrittlement due to segregation of S into the crystal grain boundaries. Since it lowers the inter-workability, 2.0% was made the upper limit.
【0015】Ni:低温脆性を改善し、靭性を向上させ
るのに極めて有効な元素として添加するものの、オース
テナイト生成化元素であることから、多量に添加すると
加熱中にオーステナイト相を析出し、冷却後マルテンサ
イト相に変態し、冷間加工性を著しく損ねることから、
1.0%を上限とした。 Cr:耐酸化性または耐食性を向上させるために必須の
元素であり、自動車マフラー用材料として必要な耐酸化
性を得るために9.0%以上添加する必要がある。しか
し、多量に添加すると合金コストによる製造コストの増
大を招くのみならず、σ相の生成による冷間加工性の劣
化が生ずることから、25.0%を上限とした。Ni: Although added as an extremely effective element for improving low temperature brittleness and toughness, since it is an austenite forming element, if added in a large amount, an austenite phase precipitates during heating and after cooling. Since it transforms to the martensite phase and significantly impairs cold workability,
The upper limit was 1.0%. Cr: An essential element for improving the oxidation resistance or corrosion resistance, and it is necessary to add 9.0% or more in order to obtain the oxidation resistance required as a material for an automobile muffler. However, addition of a large amount causes not only an increase in manufacturing cost due to alloy cost but also deterioration of cold workability due to formation of σ phase, so 25.0% is made the upper limit.
【0016】Al:鋼の脱酸剤として有効な元素である
ことから、0.001%以上添加する必要がある。しか
し、多量に添加すると加工性が劣化することから、0.
1%を上限とした。 N:鋼中にTiNあるいはNb(C,N)を析出し、溶
接熱影響部の結晶粒粗大化の抑制に極めて有効な元素で
あることから、0.0010%以上添加することが必要
である。しかし、多量に含有し固溶N量が増え、冷間加
工性、特に伸びやr値が著しく劣化することから、0.
0070%を上限とした。Al: Since it is an element effective as a deoxidizing agent for steel, it is necessary to add 0.001% or more. However, if added in a large amount, the workability deteriorates.
The upper limit was 1%. N: TiN or Nb (C, N) is precipitated in the steel and is an extremely effective element for suppressing the coarsening of crystal grains in the heat-affected zone of welding, so it is necessary to add 0.0010% or more. . However, since it is contained in a large amount and the amount of solid solution N increases, the cold workability, particularly elongation and r value are significantly deteriorated.
The upper limit was 0070%.
【0017】Ti:鋼中にTiNを析出し、溶接熱影響
部の結晶粒粗大化を抑制するとともに、高温においても
安定なTiCを析出し、溶接熱影響部の耐粒界腐食性を
確保するために極めて有効な元素であることから、0.
07%超でかつ5・(C+N)以上添加する必要があ
る。しかし、多量に添加すると、鋼中に固溶するTi量
が増加し、連続鋳造スラブの置き割れ感受性が高くなる
ことから、0.15%または0.12+(4×C+(2
4/7)×N)の低い方を上限とした。なお、(4×C
(24/7)×N)は、炭化物または窒化物となって析
出し、固溶していないTi量である。Ti: TiN is precipitated in the steel to suppress the coarsening of crystal grains in the heat-affected zone of welding, and TiC which is stable even at a high temperature is secured to secure intergranular corrosion resistance of the heat-affected zone of welding. Therefore, since it is an extremely effective element,
It is necessary to add more than 07% and 5 · (C + N) or more. However, if a large amount is added, the amount of Ti that forms a solid solution in the steel increases and the susceptibility to continuous cracking of the continuously cast slab increases, so 0.15% or 0.12+ (4 × C + (2
The lower one of 4/7) × N) was set as the upper limit. In addition, (4 × C
(24/7) × N) is the amount of Ti that is precipitated as a carbide or a nitride and is not in solid solution.
【0018】Mo:耐食性および耐孔食性を向上させる
のに極めて有効な元素であるが、多量に添加すると、そ
の効果が飽和しいたずらに合金コストの高騰を招くこと
から、4.0%を上限とした。 Cu:耐食性を向上させるのに極めて有効な元素である
ことから、0.1%を下限とした。しかし、多量に添加
すると、フェライト相中に固溶できず、熱間加工性が著
しく阻害されることから、1.0%を上限とした。 B:本発明において、二次加工性の改善のために、最も
重要な元素であり、その効果は、0.0003%以上で
発揮される。しかし、多量に添加すると、深絞り加工性
が劣化するとともに、鋳片の割れが発生するため、上限
を0.0050%とした。好ましくは、0.0004〜
0.0015%が良い。Mo: It is an extremely effective element for improving the corrosion resistance and the pitting corrosion resistance, but if added in a large amount, the effect is saturated and the alloy cost rises, so the upper limit is 4.0%. And Cu: Since it is an extremely effective element for improving the corrosion resistance, 0.1% was made the lower limit. However, if added in a large amount, it cannot form a solid solution in the ferrite phase and the hot workability is significantly impaired, so 1.0% was made the upper limit. B: In the present invention, it is the most important element for improving the secondary workability, and its effect is exhibited at 0.0003% or more. However, if a large amount is added, deep drawability deteriorates and cracks in the slab occur, so the upper limit was made 0.0050%. Preferably, 0.0004-
0.0015% is good.
【0019】生産性の確保と薄手材の製造を目的とし、
上記成分組成を有する鋼の鋳造スラブを粗圧延機と複数
台の熱間圧延機からなる連続式熱間圧延機で熱間圧延す
ることとする。当該鋼は、従来のフェライト系ステンレ
ス鋼に比べて、TiあるいはC,Nの含有量が極めて低
いことから、Ti炭窒化物の析出による結晶粒の粗大化
抑制効果が小さい。したがって、かかる連続熱間圧延に
際し、熱延完了後の捲取り温度の下限を750℃に限定
して、熱延板の再結晶を図る。捲取り温度を750℃未
満にすると、捲取りコイルの顕熱によっても板厚中央部
まで再結晶が起こらず、その後の冷延−焼鈍を施しても
圧延の集合組織が強く残り、大きなリジングが発生する
ことから、下限を750℃とした。For the purpose of ensuring productivity and manufacturing thin materials,
A steel casting slab having the above-described composition is hot-rolled by a continuous hot rolling mill including a rough rolling mill and a plurality of hot rolling mills. Compared with the conventional ferritic stainless steel, the steel has an extremely low content of Ti, C, or N, so that the effect of suppressing the coarsening of crystal grains due to the precipitation of Ti carbonitride is small. Therefore, in such continuous hot rolling, the lower limit of the winding temperature after the completion of hot rolling is limited to 750 ° C. to recrystallize the hot rolled sheet. When the coiling temperature is lower than 750 ° C., recrystallization does not occur up to the central part of the plate thickness even by sensible heat of the coil, and the rolling texture remains strong even after subsequent cold rolling-annealing, resulting in large ridging. Therefore, the lower limit was set to 750 ° C.
【0020】引き続き実施される、冷間圧延の圧延率を
50%未満とすると、その後の焼鈍によって板厚中央部
まで完全に再結晶するのに十分な加工歪みが鋼中に導入
されないため、下限を50%とした。しかし、90%を
超えて冷間圧延すると加工硬化が著しくなり、圧延負荷
が高くなるため、上限を90%とした。If the rolling ratio of the cold rolling to be subsequently carried out is set to less than 50%, the subsequent annealing does not introduce sufficient working strain into the steel to completely recrystallize up to the central portion of the plate thickness. Was set to 50%. However, when cold rolling exceeds 90%, work hardening becomes remarkable and rolling load becomes high, so the upper limit was made 90%.
【0021】また、焼鈍の温度範囲を750〜850℃
としたのは、750℃未満では板厚中央部まで十分に再
結晶しないことから、750℃を下限とした。しかし、
850℃を超えると結晶粒が粗大化し、成形加工後オレ
ンジピールと称する表面肌荒れが生ずることから、85
0℃を上限とした。焼鈍温度の保定時間を0.5〜5.
0min としたのは、保定時間を0.5min 未満とすると
板厚中央部まで十分再結晶しないことから、0.5min
を下限とした。しかし、保定時間が5.0minを超える
と、結晶粒が粗大化し、成形加工後オレンジピールと称
する表面肌荒れが生ずることから、5.0min を上限と
した。The annealing temperature range is 750 to 850 ° C.
The reason for this is that if the temperature is lower than 750 ° C, recrystallization is not sufficiently performed up to the center of the plate thickness, so 750 ° C was set as the lower limit. But,
If the temperature exceeds 850 ° C., the crystal grains become coarse, and after the molding process, surface roughness called orange peel occurs, so 85
The upper limit was 0 ° C. The holding time of the annealing temperature is 0.5 to 5.
The value of 0 min is set to 0.5 min, because if the holding time is less than 0.5 min, recrystallization does not occur sufficiently up to the center of the plate thickness.
Was set as the lower limit. However, if the holding time exceeds 5.0 min, the crystal grains become coarse, and after the molding process, surface roughness called orange peel occurs, so 5.0 min was made the upper limit.
【0022】[0022]
【実施例】転炉にて溶製したフェライト系ステンレス鋼
の溶鋼を二次精錬工程にて超極低C化処理した後、連続
鋳造を行った。その溶製成分を表1に示す。このスラブ
を連続鋳造した後、大気放冷して置き割れの発生有無を
調査した。さらに、このスラブを連続式熱間圧延機にて
板厚3.0mmの鋼帯に圧延した後、酸洗、冷延率80%
の冷間圧延(最終板厚0.6mm)、800〜850℃の
最終焼鈍、さらに電解酸洗を施した。この鋼帯より採取
し試料をMIG溶接して、その溶接熱影響部における粒
界腐食の発生有無を調査した。これらの結果を表1に示
す。本発明鋼であるA〜G鋼の場合、連続鋳造後のスラ
ブに置き割れは発生せず、MIG溶接後の熱影響部にも
粒界腐食は認められなかった。一方、鋼中の Free Ti
量が0.12%を超えるH,J,L,M,N鋼は、連続
鋳造後のスラブに置き割れが発生し、Ti含有量が5・
(C+N)未満であるK鋼は、MIG溶接後の溶接熱影
響部に粒界腐食が起こった。[Examples] Molten ferritic stainless steel melted in a converter was subjected to ultra-low carbon reduction treatment in a secondary refining process, and then continuously cast. The melted components are shown in Table 1. After continuously casting this slab, it was left to cool in the atmosphere and examined for occurrence of cracking. Furthermore, after rolling this slab into a steel strip with a plate thickness of 3.0 mm with a continuous hot rolling mill, pickling, cold rolling rate of 80%
Cold rolling (final plate thickness 0.6 mm), final annealing at 800 to 850 ° C., and electrolytic pickling. A sample was taken from this steel strip and MIG-welded to examine whether or not intergranular corrosion occurred in the heat-affected zone of the welding. Table 1 shows the results. In the case of the A to G steels of the present invention, no cracking occurred in the slab after continuous casting, and no intergranular corrosion was observed in the heat affected zone after MIG welding. On the other hand, Free Ti in steel
For H, J, L, M, N steels with an amount exceeding 0.12%, cracks occur in the slab after continuous casting, and the Ti content is 5
In the K steel having less than (C + N), intergranular corrosion occurred in the weld heat affected zone after MIG welding.
【0023】[0023]
【表1】 [Table 1]
【0024】次に、本発明対象鋼であるA〜G鋼、比較
鋼であるH〜K鋼、そして従来鋼であるM,N鋼を表2
に示す条件で熱延−冷延−焼鈍し、伸び、r値、リジン
グ高さを測定した。本発明対象鋼を本発明方法によって
製造したNo.1〜7の鋼は、高い伸び、r値を示し、リ
ジング高さも小さい。一方、連続鋳造後、スラブ置き割
れが発生しなかった本発明対象鋼を本発明よりも低い温
度で熱延捲取りしたNo.8〜13の鋼は、高温捲取り材
とほぼ同等の伸び、r値を示すが、リジング高さが高
い。また、連続鋳造後、スラブ置き割れが発生しなかっ
たものの本発明対象鋼よりCあるいはNが高いNo.1
4,15の鋼は、低C,N材よりも伸び、r値が低いと
ともに、リジング高さも高い。Next, the steels A to G which are the subject steels of the present invention, the steels H to K which are comparative steels, and the M and N steels which are conventional steels are shown in Table 2.
Hot rolling-cold rolling-annealing was performed under the conditions shown in, and the elongation, r value, and ridging height were measured. No. 1 produced by the method of the present invention The steels 1 to 7 show high elongation and r value, and have a small ridging height. On the other hand, after continuous casting, the steel of the present invention in which slab placement crack did not occur was hot rolled and wound at a temperature lower than that of the present invention. The steels Nos. 8 to 13 show elongation and r value almost equal to those of the high-temperature wound material, but have high ridging height. Moreover, after continuous casting, no slab-placed cracks occurred, but the C or N was higher than the steel of the present invention. 1
The No. 4 and No. 15 steels have higher elongation and higher ridging height than the low C, N steels, with a low r value.
【0025】[0025]
【表2】 [Table 2]
【0026】次に、機械的性質と二次加工性の評価結果
を表3に示す。二次加工性は、ステンレス鋼板から円板
状のブランク取りを行い、2段階の円筒絞り加工により
絞り比の異なる一次加工品を製作した。次に、その絞り
部品を20℃に保持した後、落重試験によりカップ頭部
に衝撃荷重を負荷し、カップ側壁部に脆性割れが発生し
たか否かを3個の繰り返しで評価した。表中の○印は二
次加工割れなし、●印は二次加工割れあり、×印は深絞
り加工ができなかったことを表す。表3の結果より、本
発明鋼板であるA鋼は、二次加工性において非常に優れ
ていることがわかる。また、本発明鋼板であるA鋼,G
鋼の機械的性質はそれぞれ伸びが40%、39%と優
れ、またr値も2.1、2.0と極めて優れており、深
絞り性に優れた特性を兼備している。また、Bを添加し
ていないG鋼は、目標とする絞り比2.00は達成した
が、絞り比2.15以上のよりきびしい深絞り加工によ
って、二次加工割れが発生した。Next, Table 3 shows the evaluation results of mechanical properties and secondary workability. As for the secondary workability, a disk-shaped blank was taken from a stainless steel plate, and primary processing products with different drawing ratios were manufactured by a two-step cylindrical drawing process. Next, after holding the drawn component at 20 ° C., an impact load was applied to the cup head by a drop weight test, and it was evaluated by repeating three times whether brittle cracks occurred in the cup side wall. In the table, ○ indicates no secondary processing cracks, ● indicates secondary processing cracks, and × indicates that deep drawing was not possible. From the results in Table 3, it can be seen that the steel sheet A of the present invention is extremely excellent in secondary workability. In addition, the present invention steel sheets A steel and G
The mechanical properties of steel are excellent in elongations of 40% and 39%, respectively, and r values of 2.1 and 2.0, which are extremely excellent, and have excellent deep drawability. Further, the G steel to which B was not added achieved the target drawing ratio of 2.00, but secondary work cracking occurred due to more severe deep drawing with a drawing ratio of 2.15 or more.
【0027】[0027]
【表3】 [Table 3]
【0028】以上の実施例から、本発明はフェライト系
ステンレス鋼に含まれるC,N,Tiの含有量が密接に
関連し、スラブの置き割れ感受性、溶接熱影響部の耐粒
界腐食性、加工性およびリジング特性に対して極めて効
果的に作用し、連続鋳造後、大気中で放冷してもスラブ
置き割れを生ずることなくリジングが小さく加工性およ
び耐粒界腐食性に優れたフェライト系ステンレス鋼を製
造することが可能となった。From the above examples, according to the present invention, the contents of C, N and Ti contained in the ferritic stainless steel are closely related to each other, the susceptibility of the slab to cracking, the heat-affected zone intergranular corrosion resistance, Ferrite series that is extremely effective in terms of workability and ridging characteristics, has little ridging and does not cause slab placement cracks even if left to cool in the atmosphere after continuous casting, and has excellent workability and intergranular corrosion resistance. It has become possible to manufacture stainless steel.
【0029】[0029]
【発明の効果】本発明により、連続鋳造スラブに置き割
れを起こすことなく、リジングが小さく加工性および耐
粒界腐食性に優れたフェライト系ステンレス鋼の製造が
可能となった。このことにより、連続鋳造後のスラブ保
熱カバーや連続鋳造工程と熱間圧延工程との間の熱間搬
送用設備や分塊圧延工程が不要となり、製造工程の簡略
化が可能となった。さらに、熱間圧延後の焼鈍を省略し
ても、リジングの小さいフェライト系ステンレス鋼の製
造が可能となった。これらのことにより、生産性が飛躍
的に向上し、労力の大幅な低減が可能となった。これら
の改善によってもたらされる産業上の意義は極めて多大
なものである。Industrial Applicability According to the present invention, it is possible to produce a ferritic stainless steel which is small in ridging and excellent in workability and intergranular corrosion resistance without causing cracks in the continuously cast slab. This eliminates the need for a slab heat-retaining cover after continuous casting, a facility for hot transfer between the continuous casting process and the hot rolling process, and a slabbing process, thus simplifying the manufacturing process. Furthermore, even if the annealing after hot rolling is omitted, it is possible to manufacture ferritic stainless steel with small ridging. As a result, productivity has improved dramatically, and labor has been greatly reduced. The industrial significance of these improvements is extremely great.
【図面の簡単な説明】[Brief description of drawings]
【図1】高温延性挙動に及ぼす鋼中の固溶Ti(Free
Ti)量の影響を示す図。Fig. 1: Solid solution Ti (Free in steel) on hot ductility behavior
The figure which shows the influence of Ti) amount.
【図2】(a)図は強度(TS,YS)、(b)図は伸
び、(c)図はr値に及ぼすC+N量の影響を示す図。2A is a diagram showing strength (TS, YS), FIG. 2B is elongation, and FIG. 2C is a diagram showing the influence of the amount of C + N on the r value.
【図3】溶接熱影響部の粒界腐食性に及ぼすTi量とC
+N量の関係を示す図。FIG. 3 Ti amount and C affecting intergranular corrosion resistance of heat-affected zone of welding
The figure which shows the relationship of + N amount.
【図4】リジング高さに及ぼす熱延捲取り温度の影響を
示す図。FIG. 4 is a diagram showing the effect of hot rolling winding temperature on the ridging height.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 進藤 卓嗣 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Takuji Shindo 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Co., Ltd.
Claims (6)
N)を満足し、残部がFeおよび不可避不純物からなる
ことを特徴とする連続鋳造スラブの置き割れが起こら
ず、加工性および耐食性に優れたフェライト系ステンレ
ス鋼。1. By weight%, C: 0.0030% or less, Si: 2.0% or less, Mn: 2.0% or less, Ni: 1.0% or less, Cr: 9 to 25%, Al: 0.001 to 0.1%, Ti: more than 0.07 to 0.15%, N: 0.0010 to 0.0070%, Cu: 0.1 to 1.0%, and 5 × ( C + N) ≦ Ti ≦ 0.12 + (4 × C + (24/7) ×
A ferritic stainless steel which satisfies N) and has the balance of Fe and unavoidable impurities, which does not cause a crack in the continuous cast slab and has excellent workability and corrosion resistance.
N)を満足し、残部がFeおよび不可避不純物からなる
ことを特徴とする連続鋳造スラブの置き割れが起こら
ず、加工性および耐食性に優れたフェライト系ステンレ
ス鋼。2. By weight%, C: 0.0030% or less, Si: 2.0% or less, Mn: 2.0% or less, Ni: 1.0% or less, Cr: 9 to 25%, Al: 0.001 to 0.1%, Ti: more than 0.07 to 0.15%, N: 0.0010 to 0.0070%, Mo: 4.0% or less, Cu: 0.1 to 1.0% And 5 × (C + N) ≦ Ti ≦ 0.12 + (4 × C + (24/7) ×
A ferritic stainless steel which satisfies N) and has the balance of Fe and unavoidable impurities, which does not cause a crack in the continuous cast slab and has excellent workability and corrosion resistance.
N)を満足し、残部がFeおよび不可避不純物からなる
ことを特徴とする連続鋳造スラブの置き割れが起こら
ず、加工性および耐食性に優れたフェライト系ステンレ
ス鋼。3. By weight%, C: 0.0030% or less, Si: 2.0% or less, Mn: 2.0% or less, Ni: 1.0% or less, Cr: 9 to 25%, Al: 0.001 to 0.1%, Ti: more than 0.07 to 0.15%, N: 0.0010 to 0.0070%, B: 0.0003 to 0.0050%, and 5 × ( C + N) ≦ Ti ≦ 0.12 + (4 × C + (24/7) ×
A ferritic stainless steel which satisfies N) and has the balance of Fe and unavoidable impurities, which does not cause a crack in the continuous cast slab and has excellent workability and corrosion resistance.
N)を満足し、さらに Mo:4.0%以下、 Cu:0.1〜1.0%のうちの1種あるいは2種を含
有し、残部がFeおよび不可避不純物からなることを特
徴とする連続鋳造スラブの置き割れが起こらず、加工性
および耐食性に優れたフェライト系ステンレス鋼。4. In% by weight, C: 0.0030% or less, Si: 2.0% or less, Mn: 2.0% or less, Ni: 1.0% or less, Cr: 9 to 25%, Al: 0.001 to 0.1%, Ti: more than 0.07 to 0.15%, N: 0.0010 to 0.0070%, B: 0.0003 to 0.0050%, and 5 × ( C + N) ≦ Ti ≦ 0.12 + (4 × C + (24/7) ×
N), and further contains one or two of Mo: 4.0% or less and Cu: 0.1 to 1.0%, the balance being Fe and inevitable impurities. A ferritic stainless steel with excellent workability and corrosion resistance that does not cause cracks in the continuous cast slab.
N)を満足し、残部がFeおよび不可避不純物からなる
鋼の連続鋳造スラブを粗圧延機と複数台の熱間圧延機か
らなる連続式熱延機で熱間圧延するに際し、仕上げ圧延
後の捲取り温度を750℃以上とし、引き続き酸洗およ
び圧延率50〜90%の冷間圧延を施し、750〜85
0℃の温度範囲に0.5〜5.0min 保定する軟化焼鈍
を施すことを特徴とする連続鋳造スラブの置き割れが起
こることなく、リジングが小さく加工性および耐食性に
優れたフェライト系ステンレス鋼の製造方法。5. By weight%, C: 0.0030% or less, Si: 2.0% or less, Mn: 2.0% or less, Ni: 1.0% or less, Cr: 9 to 25%, Al: 0.001 to 0.1%, Ti: more than 0.07 to 0.15%, N: 0.0010 to 0.0070%, and 5 × (C + N) ≦ Ti ≦ 0.12 + (4 × C + (24/7) ×
N) is satisfied, and the rest of the steel continuously cast slab consisting of Fe and unavoidable impurities is hot-rolled by a continuous hot rolling machine consisting of a rough rolling mill and a plurality of hot rolling mills. The taking temperature is 750 ° C. or higher, followed by pickling and cold rolling with a rolling rate of 50 to 90%, and then 750 to 85.
A ferritic stainless steel with small ridging and excellent workability and corrosion resistance, which is characterized by performing softening annealing for 0.5 to 5.0 min in the temperature range of 0 ° C. Production method.
を含み、かつ 5×(C+N)≦Ti≦0.12+(4×C+(24/7)×
N)を満足し、残部がFeおよび不可避不純物からなる
鋼の連続鋳造スラブを粗圧延機と複数台の熱間圧延機か
らなる連続式熱延機で熱間圧延するに際し、仕上げ圧延
後の捲取り温度を750℃以上とし、引き続き酸洗およ
び圧延率50〜90%の冷間圧延を施し、750〜85
0℃の温度範囲に0.5〜5.0min 保定する軟化焼鈍
を施すことを特徴とする連続鋳造スラブの置き割れが起
こることなく、リジングが小さく加工性および耐食性に
優れたフェライト系ステンレス鋼の製造方法。6. In wt%, C: 0.0030% or less, Si: 2.0% or less, Mn: 2.0% or less, Ni: 1.0% or less, Cr: 9 to 25%, Al: 0.001 to 0.1%, Ti: more than 0.07 to 0.15%, N: 0.0010 to 0.0070%, and further B: 0.0003 to 0.0050%, Mo: 4 0.0% or less, Cu: containing one or more of 0.1 to 1.0%, and 5 × (C + N) ≦ Ti ≦ 0.12 + (4 × C + (24/7) ×
N) is satisfied, and the rest of the steel continuously cast slab consisting of Fe and unavoidable impurities is hot-rolled by a continuous hot rolling machine consisting of a rough rolling mill and a plurality of hot rolling mills. The taking temperature is 750 ° C. or higher, followed by pickling and cold rolling with a rolling rate of 50 to 90%, and then 750 to 85.
A ferritic stainless steel with small ridging and excellent workability and corrosion resistance, which is characterized by performing softening annealing for 0.5 to 5.0 min in the temperature range of 0 ° C. Production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9890395A JPH08296000A (en) | 1995-04-24 | 1995-04-24 | Ferritic stainless steel excellent in workability and corrosion resistance and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9890395A JPH08296000A (en) | 1995-04-24 | 1995-04-24 | Ferritic stainless steel excellent in workability and corrosion resistance and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08296000A true JPH08296000A (en) | 1996-11-12 |
Family
ID=14232098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9890395A Withdrawn JPH08296000A (en) | 1995-04-24 | 1995-04-24 | Ferritic stainless steel excellent in workability and corrosion resistance and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08296000A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0924313A1 (en) * | 1997-12-19 | 1999-06-23 | Armco Inc. | Non-ridging ferritic chromium alloyed steel |
KR100415666B1 (en) * | 1999-12-20 | 2004-01-31 | 주식회사 포스코 | A ferritic stainless steel having improved formability, ridging resistance and a method for manufacturing it |
JP2004307901A (en) * | 2003-04-03 | 2004-11-04 | Nippon Steel Corp | HIGHLY WORKABLE Mo-CONTAINING FERRITIC STAINLESS STEEL SHEET HAVING EXCELLENT PRODUCIBILITY AND ITS PRODUCTION METHOD |
KR100614558B1 (en) * | 1997-12-19 | 2006-10-24 | 암코 인코포레이팃드 | Chromium alloy ferritic steel, method of making the same, and chromium alloyed ferritic steel sheet |
KR100617434B1 (en) * | 1998-09-15 | 2006-10-24 | 암코 인코포레이팃드 | Chromium alloy ferritic steel, method of making the same, and chromium alloyed ferritic steel sheet |
JP2008081758A (en) * | 2006-09-26 | 2008-04-10 | Jfe Steel Kk | Ferrite-based stainless steel sheet having high spot-welding coupling hardness, and manufacturing method therefor |
WO2013035775A1 (en) * | 2011-09-06 | 2013-03-14 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel of exceptional corrosion resistance and processability |
WO2019117432A1 (en) * | 2017-12-14 | 2019-06-20 | 주식회사 포스코 | Ferrite-based stainless steel having excellent impact toughness, and method for producing same |
CN118703752A (en) * | 2024-08-30 | 2024-09-27 | 太原科技大学 | High-strength plasticity copper-containing super ferrite stainless steel and production process thereof |
-
1995
- 1995-04-24 JP JP9890395A patent/JPH08296000A/en not_active Withdrawn
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0924313A1 (en) * | 1997-12-19 | 1999-06-23 | Armco Inc. | Non-ridging ferritic chromium alloyed steel |
KR100614558B1 (en) * | 1997-12-19 | 2006-10-24 | 암코 인코포레이팃드 | Chromium alloy ferritic steel, method of making the same, and chromium alloyed ferritic steel sheet |
KR100617434B1 (en) * | 1998-09-15 | 2006-10-24 | 암코 인코포레이팃드 | Chromium alloy ferritic steel, method of making the same, and chromium alloyed ferritic steel sheet |
KR100415666B1 (en) * | 1999-12-20 | 2004-01-31 | 주식회사 포스코 | A ferritic stainless steel having improved formability, ridging resistance and a method for manufacturing it |
JP2004307901A (en) * | 2003-04-03 | 2004-11-04 | Nippon Steel Corp | HIGHLY WORKABLE Mo-CONTAINING FERRITIC STAINLESS STEEL SHEET HAVING EXCELLENT PRODUCIBILITY AND ITS PRODUCTION METHOD |
JP2008081758A (en) * | 2006-09-26 | 2008-04-10 | Jfe Steel Kk | Ferrite-based stainless steel sheet having high spot-welding coupling hardness, and manufacturing method therefor |
WO2013035775A1 (en) * | 2011-09-06 | 2013-03-14 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel of exceptional corrosion resistance and processability |
WO2019117432A1 (en) * | 2017-12-14 | 2019-06-20 | 주식회사 포스코 | Ferrite-based stainless steel having excellent impact toughness, and method for producing same |
US11718887B2 (en) | 2017-12-14 | 2023-08-08 | Posco Co., Ltd | Ferrite-based stainless steel having excellent impact toughness, and method for producing same |
CN118703752A (en) * | 2024-08-30 | 2024-09-27 | 太原科技大学 | High-strength plasticity copper-containing super ferrite stainless steel and production process thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4225976B2 (en) | Cr-containing heat-resistant steel sheet having excellent workability and method for producing the same | |
CN114761594B (en) | Ferritic stainless steel sheet | |
KR20130107371A (en) | Ferritic stainless steel sheet having excellent heat resistance and processability, and method for producing same | |
JP2019002053A (en) | Ferritic stainless steel sheet, steel tube, ferritic stainless member for exhaust system component, and manufacturing method of ferritic stainless steel sheet | |
JP5904306B2 (en) | Ferritic stainless steel hot-rolled annealed steel sheet, manufacturing method thereof, and ferritic stainless steel cold-rolled annealed steel sheet | |
JP6093210B2 (en) | Heat-resistant ferritic stainless steel sheet with excellent low-temperature toughness and method for producing the same | |
JP2006233278A (en) | Ferritic stainless steel sheet for exhaust parts with excellent workability and its manufacturing method | |
JP7268182B2 (en) | Ferritic stainless steel sheet, manufacturing method thereof, and ferritic stainless steel member | |
JPH08296000A (en) | Ferritic stainless steel excellent in workability and corrosion resistance and its production | |
JPH0617519B2 (en) | Method for producing steel plate or strip of ferritic stainless steel with good workability | |
JPH0741854A (en) | Production of ferrite single phase stainless hot rolled steel sheet excellent in toughness | |
JP6986135B2 (en) | Ferritic stainless steel sheets, their manufacturing methods, and ferritic stainless steel members | |
TWI722377B (en) | Fertilizer stainless steel | |
JPH05247540A (en) | High strength cold-rolled steel sheet for deep drawing and its manufacture | |
JP3466298B2 (en) | Manufacturing method of cold rolled steel sheet with excellent workability | |
JP4494653B2 (en) | Manufacturing method of ferritic stainless steel sheet | |
JPH0874003A (en) | Ferritic stainless steel excellent in slab season cracking resistance and intergranular corrosion resistance and its production | |
JP3265022B2 (en) | Method for producing steel and steel pipe with excellent corrosion resistance | |
JP3240843B2 (en) | Steel plate excellent in spot weldability and surface properties and method for producing the same | |
JPS63243225A (en) | Production of cold rolled steel sheet having excellent resistance to cracking by brazing | |
JPH10280035A (en) | Production of high purity ferritic stainless hot rolled steel strip excellent in workability and heat resistance | |
JP2024009497A (en) | Ferritic stainless steel plate and manufacturing method thereof | |
JPH08199244A (en) | Production of ferritic stainless steel sheet excellent in burring workability | |
JP3300639B2 (en) | Cold rolled steel sheet excellent in workability and method for producing the same | |
TW202006154A (en) | Steel plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20020702 |