[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2004307901A - HIGHLY WORKABLE Mo-CONTAINING FERRITIC STAINLESS STEEL SHEET HAVING EXCELLENT PRODUCIBILITY AND ITS PRODUCTION METHOD - Google Patents

HIGHLY WORKABLE Mo-CONTAINING FERRITIC STAINLESS STEEL SHEET HAVING EXCELLENT PRODUCIBILITY AND ITS PRODUCTION METHOD Download PDF

Info

Publication number
JP2004307901A
JP2004307901A JP2003100609A JP2003100609A JP2004307901A JP 2004307901 A JP2004307901 A JP 2004307901A JP 2003100609 A JP2003100609 A JP 2003100609A JP 2003100609 A JP2003100609 A JP 2003100609A JP 2004307901 A JP2004307901 A JP 2004307901A
Authority
JP
Japan
Prior art keywords
less
stainless steel
ferritic stainless
steel sheet
workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003100609A
Other languages
Japanese (ja)
Other versions
JP4049697B2 (en
Inventor
Yoshiharu Inoue
宜治 井上
Masao Kikuchi
正夫 菊池
Shinichi Teraoka
慎一 寺岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003100609A priority Critical patent/JP4049697B2/en
Publication of JP2004307901A publication Critical patent/JP2004307901A/en
Application granted granted Critical
Publication of JP4049697B2 publication Critical patent/JP4049697B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly workable Mo-containing ferritic stainless steel sheet which has excellent producibility, and to provide its production method. <P>SOLUTION: The highly workable Mo-containing ferritic stainless steel sheet excellent in producibility has a composition comprising suitable amounts of C, N, C+N, Si, Mn, P, S, Cr, Cu, Ni, Mo, Al and Ti, and satisfying 100×P+Mo≤3.5, and Si+Mn+Ni+Cu≤0.5, and the balance Fe with inevitable impurities. The steel sheet has a crystal grain size number of 7 to 10, and satisfies the following inequalities (1) and (2): äEl(L)+2El(D)+El(C)}/4≥25% (1), and (rL+2rD+rC)/4≥1.5 (2); wherein, El(L), El(D) and El(C) denote the fracture elongation in the directions of 0°, 45° and 90° to the rolling direction; and rL, rD and rC are the Lankford values in the directions of 0°, 45° and 90° to the rolling direction. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、エキゾーストパイプ、マフラー等の自動車排気系部材及びフューエルパイプ等の自動車燃料系部材に用いられる高加工性フェライト系ステンレス鋼に関するものである。
【0002】
【従来の技術】
近年、地球環境への負荷を低減するために、自動車の燃費向上が図られるようになり、排気ガスの高温化に伴い、排気系材料として優れた耐食性、耐酸化性を有し、比較的安価であるフェライト系ステンレス鋼が適用されてきた。更に、自動車排気系部材の軽量化のために複雑な形状に加工することが必要になり、加工性の向上が要求されている。
【0003】
フェライト系ステンレス鋼の加工性は、通常、最終焼鈍の温度の上昇とともに向上する。これは、最終焼鈍により再結晶及び粒成長が十分に進行するためである。しかし、最終焼鈍を高温で行うと、酸化スケールが強固になり、酸洗性が劣化することがある。
【0004】
特に、耐食性、高温特性を向上させるためにMoを添加したフェライト系ステンレス鋼は再結晶温度が高く、加工性を向上させるために高温で最終焼鈍を行うと、酸洗性が劣化して製造コストが増大する。
【0005】
このような問題に対して、高純化、特に、C、Nの低減によって加工性を向上させたフェライト系ステンレス鋼が、特許文献1に開示されている。
【0006】
さらに、最終焼鈍を750〜850℃で行っても良加工性が得られるフェライト系ステンレス鋼の製造方法として、C、Nを低減し、Tiを添加して、かつ、熱間圧延(熱延という)後、750℃以上で巻取る方法が特許文献2に開示されている。
【0007】
しかし、この方法では、C、N量を極めて低減しなければならないため、精錬時のコストが著しく上昇するだけでなく、熱延後、巻取り温度が高いために操業が安定しないという問題があった。
【0008】
特許文献3には、C、Nを低減し、Nb、Ti、Zrの1種又は2種以上を含有する、ランクフォード値(r値という)及び伸びに優れたフェライト系ステンレス鋼が開示されており、特許文献4には、更に、SiとPの量を制限したフェライト系ステンレス鋼が開示されている。
【0009】
しかし、これらはMoを選択的に含有するものであり、また最終焼鈍を800〜900℃で行った場合のr値と伸びは開示されていない。
【0010】
また、非特許文献1には、C、Nを低減した17Cr−Tiを含むフェライト系ステンレス鋼において、熱延の巻取り温度を高くすると、微細なFeTiPが析出して再結晶が遅延し、これを回避するためには、P量の低減が有効であることが報告されている。
【0011】
しかし、これはC+Nが100ppm以下であり、17Cr−Tiを含むフェライト系ステンレス鋼の結果であり、Mo、Si、Mn、Cu及びNiの効果は不明であった。
【0012】
【特許文献1】
特公平5−36492号公報
【特許文献2】
特開平8−296000号公報
【特許文献3】
特開2002−180206号公報
【特許文献4】
特開2002−302741号公報
【非特許文献1】
木村(K.Kimura)、他3名、「Ti添加高純度フェライト系ステンレス鋼の熱間圧延における加熱及び巻取り温度の影響(INFLUENC ES of HEATING and COILING TEMPERATURES on RECRYSTALLIZATION du ring HOT−ROLLING PROCESS in Ti ADDED HIGH−PURITY FERRITIC STA INLESS STEEL)」、1999年ステンレス鋼国際会議予稿集 科学及び市場(Proceedings of International Congress on Stainless Ste el ‘99 SINENCE AND MARKET)、イタリア(ITALY)、イタリア金属学会(ASSOSIAZIONE ITALLIANA METALLURGIA)、1999、第2巻、p.77
【0013】
【発明が解決しようとする課題】
本発明は、自動車排気系部材及び自動車燃料系部材に用いられる、製造性に優れた高加工性Mo含有フェライト系ステンレス鋼板及びその製造方法を提供するものである。なお、本発明において、製造性に優れるとは、800〜900℃の範囲で最終焼鈍を行っても、加工性が良好であり、最終焼鈍後の脱スケールが容易であることをいう。
【0014】
【課題を解決するための手段】
本発明者は、Mo含有フェライト系ステンレス鋼に含まれる各元素が再結晶特性及び加工性に与える影響について検討し、Cr、Mo以外の固溶元素Si、Mn、Ni、Cuをできるだけ低減し、MoとPを特定範囲に制限することにより、焼鈍温度を高めることなく高加工性が得られることを見出し、更に成分、製造方法を詳細に検討し、本発明を完成させた。
【0015】
本発明の要旨は以下のとおりである。
【0016】
(1)質量%で、
C :0.003〜0.01%、 N :0.005〜0.02%、
C+N:0.02%以下、 Si:0.2%以下、
Mn:0.2%以下、 P :0.005超〜0.02%、
S :0.01%以下、 Cr:16〜20%、
Cu:0.3%以下、 Ni:0.3%以下、
Mo:1.0〜2.0%、 Al:0.001〜0.1%以下、
Ti:10×(C+N)〜0.3%以下
を含有し、
100×P+Mo≦3.5%、 Si+Mn+Ni+Cu≦0.5%
を満足し、残部Fe及び不可避的不純物からなり、結晶粒度番号が7〜10番であり、下記式(1)及び(2)を満足することを特徴とする製造性に優れた高加工性Mo含有フェライト系ステンレス鋼板。
{El(L)+2El(D)+El(C)}/4≧25% ・・・ (1)
(rL+2rD+rC)/4≧1.5 ・・・ (2)
ここで、El(L)、El(D)、El(C)は、圧延方向に対して、0°、45°、90°の方向の破断伸び[%]、rL、rD、rCは、圧延方向に対して、0°、45°、90°の方向のランクフォード値[−]である。
【0017】
(2) 質量%で、
Nb: 0.2%以下、 V : 0.2%以下
の1種又は2種を含有することを特徴とする前記(1)記載の製造性に優れた高加工性Mo含有フェライト系ステンレス鋼板。
【0018】
(3) 質量%で、
B: 0.0003%〜0.005%
を含有することを特徴とする前記(1)又は(2)記載の製造性に優れた高加工性Mo含有フェライト系ステンレス鋼板。
【0019】
(4) 質量%で、Si+Mn+Ni+Cu+100×B≦0.5%を満足することを特徴とする前記(3)記載の製造性に優れた高加工性Mo含有フェライト系ステンレス鋼板。
【0020】
(5) 板厚が1.5mm以下であることを特徴とする前記(1)〜(4)の何れかに記載の製造性に優れた高加工性Mo含有フェライト系ステンレス鋼板。
【0021】
(6) 前記(1)〜(4)の何れかに記載の鋼を溶解、鋳造し、鋳塊又は鋳片を、熱間圧延、冷間圧延し、800〜900℃で、30〜180s保持する最終焼鈍を行うことを特徴とする前記(1)〜(5)の何れかに記載の製造性に優れた高加工性Mo含有フェライト系ステンレス鋼板の製造方法。
【0022】
(7) 熱間圧延開始温度を1200〜1300℃とし、熱間圧延終了温度を、850〜950℃として前記熱間圧延を行った後、水冷し、600℃以下で巻取ることを特徴とする前記(6)記載の製造性に優れた高加工性Mo含有フェライト系ステンレス鋼板の製造方法。
【0023】
(8) 前記鋳塊又は鋳片を1200〜1300℃に加熱して熱間圧延することを特徴とする前記(6)又は(7)記載の製造性に優れた高加工性Mo含有フェライト系ステンレス鋼板の製造方法。
【0024】
【発明の実施の形態】
本発明者は、800〜900℃の範囲で最終焼鈍を行っても、加工性が良好なMo含有フェライト系ステンレス鋼を開発するために、再結晶挙動に及ぼす成分元素の影響を詳細に調査した。その結果、Si、Mn、Cu及びNiの添加量を減少させると再結晶温度が低下することがわかった。
【0025】
さらに、不純物であるPに注目し、17Cr−1.5Mo−Tiを含有するフェライト系ステンレス鋼のP量を0.03%及び0.015%とし、伸び、r値に及ぼす焼鈍温度の影響について検討を行った。
【0026】
伸びの評価は、破断伸びの平均値EL[%]を指標として行った。EL[%]は、鋼板の板面内において、圧延方向に対して0°の方向(L方向という)、45°の方向(D方向という)、90°の方向(C方向という)の破断伸び、El(L)、El(D)、El(C)により、EL={El(L)+2El(D)+El(C)}/4として計算したものである。
【0027】
また、r値についても同様に、L方向、D方向、C方向のランクフォード値、rL、rD、rCにより、R=(rL+2rD+rC)/4として計算した平均値R[−]によって評価した。
【0028】
引張試験片は、L方向、D方向、C方向を長手とし、JIS Z 2201に準拠した13B号試験片とした。引張試験は、JIS Z 2241に準拠して行い、r値の測定は、JIS Z 2254に準拠して行った。
【0029】
焼鈍温度に対するEL、Rを、それぞれ図1及び図2に示すが、P量が0.03%のものを●、0.015%のものを○で示した。Pを0.015%に低減すると、焼鈍温度が800℃以上で、EL、Rが向上する。
【0030】
一方、P量が0.03%の場合、焼鈍温度が900℃までは、EL、Rが低く、950℃になると著しく増加して、P量が0.015%のものと同等になることがわかる。
【0031】
即ち、Pを0.03%含有する鋼は、焼鈍温度が900℃以下では、再結晶及び粒成長が抑制されて、EL、Rは向上しない。これに対し、Pの含有量を0.015%に低減した鋼は、800〜900℃で焼鈍を行えば、再結晶及び粒成長が十分に進行して、EL、Rが良好になることがわかった。
【0032】
P量の増加により再結晶及び粒成長が抑制される理由は、熱延時に生じた微細なFeTiPの析出によるものと考えられる。
【0033】
以下、本発明について詳細に説明する。
【0034】
Cは、鋼中に含まれる不可避的不純物であり、加工性、耐食性を劣化させるため、できるだけ低減することが好ましい。また、Cを炭化物として固定するTiの添加量を低減するためには、Cの含有量の上限を0.01%とすることが必要である。C量を0.003%未満にするには、精錬コストが増大するため、0.003%を下限とした。
【0035】
Nは、Cと同様に鋼中に含まれる不可避的不純物であり、0.02%超を含有すると、加工性及び溶接性が低下するため、N含有量の上限を0.02%とした。下限は低い方が好ましいが、Nを0.005%未満に低減するには精錬コストが増大するため、N含有量の下限を0.005%とした。
【0036】
さらに、C+N量が0.02%を超えると加工性が低下するため、上限を0.02%とした。C+Nの下限は、C及びNのそれぞれの下限の限定と同様に、精錬コストの観点から0.0035%とすることが好ましい。
【0037】
Siは、0.2%を超えると加工性が低下するため、上限を0.2%とした。また、Siは耐酸化性を向上させる元素であり、0.05%以上の添加が好ましい。
【0038】
Mnは、鋼中に不可避的不純物であり、0.2%超を含有すると加工性が低下するため、上限を0.2%とした。また、Mn量を0.01%未満にするには、精錬コストが増大するため、好ましい下限は0.01%である。
【0039】
Pは、不可避的不純物であり低減することが好ましい。P量の低減は、本発明において極めて重要である。P含有量の上限を0.02%とすることにより、Moを含有するフェライト系ステンレス鋼の再結晶温度が著しく低下する。これにより、最終焼鈍の温度を800〜900℃としても、十分な高加工性を得ることができる。
【0040】
Pは、精錬によって低減することが技術的に困難であり、高純度の原料を使用する必要がある。そのため、0.005%以下にするには製造コストが増大するため、0.005%超をP含有量の下限とした。なお、P量の好ましい下限は0.01%である。
【0041】
Sは、不可避的不純物であり、0.01%超を含有するとMnSが生成し、耐食性が低下するため0.01%を上限とした。S量は低いほど良いが、0.0001%未満にするには精錬のコストが増大するため、下限を0.001%とすることが好ましい。
【0042】
Crは、耐食性、耐酸化性を向上させる元素であり、十分な効果を得るには、16%以上のCrの添加が必要である。しかし、Crを20%超添加すると加工性を著しく損なうため、20%を上限とした。
【0043】
Cu及びNiは、0.3%超を含有すると加工性が低下するため、上限を0.3%とした。一方、Cu及びNiの下限については、耐食性を向上させる元素であるため、0.01%以上の添加が好ましい。
【0044】
Moは、本発明において極めて重要な元素である。Moは、耐食性及び高温特性を向上させる元素であるが、含有量が1.0%未満では効果が不十分である。一方、2.0%超のMoの添加により、再結晶温度が上昇し、加工性が低下する。そのため、1.0〜2.0%の範囲で添加することが必要である。
【0045】
Alは脱酸材として非常に有効であり、0.001%以上の添加が必要である。しかし、0.1%超の添加により、加工性が劣化することから、0.1%を上限とした。
【0046】
Tiは、C、Nを炭窒化物として固定し、加工性及び耐粒界腐食性を向上させる非常に有用な元素である。この効果を発現するには、TiをCとNの合計量の10倍以上添加することが必要である。
【0047】
しかし、本発明鋼においてはC+N量の上限を0.02%以下に制限しているため、Tiを0.3%超添加すると固溶Tiが増加して加工性を損なう。そのため、Ti量の上限を0.3%とすることが必要である。
【0048】
さらに、本発明のMo含有ステンレス鋼は、100×P+Mo≦3.5%及びSi+Mn+Ni+Cu≦0.5%を満足することが必要である。ここで、P、Mo、Si、Mn、Ni、Cuは、質量%で表した各元素の含有量である。これにより、最終焼鈍を800〜900℃で行っても、再結晶及び粒成長が十分に進行し、成形性を確保することができる。
【0049】
必要に応じて、Nb、V、Bの1種又は2種以上を添加してもよい。
【0050】
Nb、Vは、Tiと同様にC、Nを炭窒化物として固定し、加工性及び耐粒界腐食性を向上させる元素である。その効果を発現させるためには、Nbは0.01%以上、Vは0.05%以上添加することが好ましい。しかし、Nb、Vは、0.2%超添加すると鋼に固溶し、再結晶温度を上昇させ、加工性を劣化させる。したがって、Nb、Vの添加量の上限を、0.2%とすることが好ましい。
【0051】
Bは、二次加工性を向上させる元素として有用であり、0.0003%以上の添加が好ましい。しかし、多量に添加すると加工性を著しく低下させるため、0.005%を上限とする。より好ましい範囲は、0.0003〜0.0015%である。
【0052】
Bを含有する場合には、加工性を向上させるために、Si+Mn+Ni+Cu+100×B≦0.5%を満足することが好ましい。なお、Si、Mn、Ni、Cu、Bは、質量%で表した各元素の含有量である。
【0053】
また、優れた加工性を発現するためには、ミクロ組織において、十分に再結晶及び粒成長が進行した組織とする必要がある。そのため、ミクロ組織の結晶粒度番号を7〜10番とした。結晶粒度番号が7番未満であると、結晶粒が大きすぎて、加工時に肌荒れを引き起こし、10番を超えると粒成長が十分でないために加工性が劣化する。
【0054】
結晶粒度番号の測定は、L方向の板厚断面を観察面として試験片を採取し、鏡面研磨、エッチングして、JIS G 0552に準拠して行えばよい。また、D方向、C方向の板厚断面においても同様に結晶粒度番号を測定し、L方向とC方向、又はL方向、D方向、C方向の結晶粒度番号の単純平均値としてもよい。
【0055】
さらに、伸び、r値については、L方向、D方向及びC方向の測定値の面内異方性を考慮した平均値、それぞれEL[%]、R[−]を規定する。伸びの平均値ELを25%以上、r値の平均値Rを1.5以上とすることにより、加工性が良好になる。
【0056】
ELが25%未満、Rが1.5未満であると、厳しい加工条件では割れを生じ易い。EL、Rの上限は規定しないが、ELを40%超、Rを2.5超とするためには、製造コストが著しく増大する。EL、Rの好ましい上限は、35%以下、2.0以下である。
【0057】
なお、引張試験片は、L方向、D方向及びC方向を長手とし、JIS Z 2201に準拠して採取し、引張試験は、JIS Z 2241に準拠して、r値の測定は、JIS Z 2254に準拠して行えばよい。
【0058】
本発明のフェライト系ステンレス鋼は、最終焼鈍を800〜900℃で行っても加工性に優れるため、板厚が1.5mm以下の薄い鋼板の製造には極めて効果的である。これは、1.5mm以下の鋼板を連続焼鈍する場合、焼鈍温度が900℃超であると、鋼板が破断し易くなるためである。
【0059】
しかし、板厚が0.1mm未満になると、板厚が薄すぎて板破断を非常に生じ易くなる。そのため、板厚の下限を0.1mm以上とすることが好ましい。
【0060】
次に、製造方法について説明する。本発明のMo含有フェライト系ステンレス鋼の製造工程は、溶解、鋳造、熱延、冷間圧延(冷延という)及び焼鈍からなる。鋳造により、鋳塊又は鋳片とする。即ち、転炉又は電気炉等で溶製し、鋳造した鋳塊又は鋳片を熱延し、熱延板焼鈍を行うことなく冷延し、最終焼鈍後、酸洗し、本発明の鋼板を製造する。
【0061】
最終焼鈍温度は800〜900℃で行うことが必要である。これは、焼鈍温度が800℃未満では、再結晶及び粒成長が十分に進行せず、加工性が不十分であり、一方900℃超では、酸化スケールが強固になり酸洗性が劣化し、さらに、板厚が1.5mm以下の場合は、鋼板が破断し易くなるためである。
【0062】
最終焼鈍の保持時間は、30〜180sとすることが必要である。これは、保持時間が30s未満であると焼鈍後の材質が不均一になり易く、180sを超えると、通板速度が低下して生産性を損ない、スケールが強固となり酸洗性が劣化するためである。
【0063】
最終焼鈍以外の製造条件は、以下のようにすることが好ましい。
【0064】
熱延時の鋳塊または鋳片の加熱温度は1200〜1300℃であることが好ましい。熱延の開始温度が1200℃未満であると、線状疵が増加し、製品歩留まりを低下させる。また、熱延の開始温度が1300℃超では、スケールが強固になり酸洗性を損なう。
【0065】
熱延の開始温度は、熱延の開始温度が1200℃未満であると、線状疵が増加し、製品歩留まりを低下させる。また、熱延の開始温度が1300℃超では、スケールが強固になり酸洗性を損なう。従って、熱延の開始温度は、1200〜1300℃の範囲とすることが好ましい。
【0066】
熱延の終了温度は、850℃未満であると、線状疵が増えるとともに、鋼板の変形抵抗が大きくなるため、熱延ロールへの負荷が増大して寿命を低減させる。また、熱延終了温度を950℃超にするためには、熱延中に鋼板の温度低下を防止する設備が必要であり、製造コストが高くなる。従って、熱延の終了温度を、850〜950℃とすることが好ましい。
【0067】
熱延後、水冷し、600℃以下で巻取ることが好ましい。これは、水冷後の巻取り温度が600℃超では、熱延コイルの先端部と後端部で巻取り後の冷却速度に差が生じ、析出挙動等が変化するため、コイル材質を長手方向に一定にすることが困難となるためである。
【0068】
また、巻取り温度を300℃未満にするためには水冷時間を長くする必要があり、生産性が低下することがある。従って、巻取り温度の好ましい下限は、300℃である。
【0069】
冷延の条件としては、圧下率を70%以上とすることが好ましい。これは、冷延の圧下率が70%未満であると、最終焼鈍時の再結晶が遅延し、必要な加工性が得られ難くなるためである。また、圧下率が95%を超えると、加工性が劣化し、冷延ロールへの負荷が大きくなり、ロール寿命を低下させる。従って、圧下率の好ましい上限は95%である。
【0070】
なお、ここで、圧下率とは、熱延板の板厚と冷延後の冷延板の板厚の差を熱延板の板厚で除した値を百分率で表したものとしている。
【0071】
【実施例】
(実施例1)
表1に示す化学成分を有する鋼を溶製、鋳造し、鋳片を熱延して板厚3mmの鋼板とした。
【0072】
【表1】

Figure 2004307901
【0073】
鋳片の加熱温度は1250℃、熱延開始温度は1200℃、熱延終了温度は880℃であった。その後、板厚1mmまで冷延を行って、850℃で1分保持する焼鈍を行い、酸洗して供試鋼とした。酸洗液は、硫酸、硫酸ナトリウム、硝酸ナトリウム、NaSiFの混酸とし、正と負の電界を交互にかける交番電界酸洗法によって行った。
【0074】
これらの供試鋼を用いて、鋼板の圧延方向における中央部から試験片を採取し、粒度測定と常温引張試験を行った。粒度測定は、供試鋼の板幅方向中央部から圧延方向の断面を観察面として小片を採取し、鏡面研磨、エッチングした組織観察試験片を、光学顕微鏡により100倍に拡大して観察を行い、写真を撮影してJIS G 0552に準拠して行った。
【0075】
引張試験は、JIS Z 2201に準拠して13号B号試験片をL、D、C方向を長手として採取し、JIS Z 2241に準拠して行った。伸びは、L方向、D方向、C方向の破断伸びの面内異方性を考慮した平均値EL[%]で評価した。また引張試験と同様の試験片を用いて、r値をJIS Z 2254に準拠して測定した。r値も伸びと同様に平均値R[−]で評価した。
【0076】
表2に、粒度、EL、Rを示す。表2には、C+N、Ti/C+N、Si+Mn+Ni+Cu、100×P+Mo、Si+Mn+Ni+Cu+100×Bも示した。ここで、C、N、Ti、Si、Mn、Ni、Cu、P、Mo、Bは、質量%で表したそれぞれの元素の含有量である。なお、A〜K、P、Q鋼は、Bを含有しないため、Si+Mn+Ni+Cu+100×Bの計算をせず、表中に”−”で示した。
【0077】
【表2】
Figure 2004307901
【0078】
A〜E鋼はP量を変化させたものであり、本発明鋼であるB〜D鋼は、結晶粒度も7〜10番の範囲内にあり、ELは25%以上、Rは1.5以上を示し、優れた加工性を示している。A鋼は、P量が0.005%と極めて少ないため優れた加工性を示しているが、製鋼コストが高いため、本発明の範囲外とした。E鋼はP量が0.03%と高いため、粒成長が不十分であり、EL、Rが低く、加工性が不十分である。
【0079】
F〜I鋼はMoを変化させたものであり、本発明鋼であるG〜H鋼は、結晶粒度が7〜10番の範囲内にあり、ELが25%以上、Rは1.5以上であり、優れた加工性を示している。F鋼も優れた加工性を示しているが、Mo量が0.4%と低く、耐酸化性に劣るため、本発明の範囲外とした。I鋼はMo量が2.5%と高いため、粒成長が不十分であり、EL及びRが低く、加工性が不十分である。
【0080】
J鋼、K鋼はSi、Mn、Ni、Cuの総和量を変えたもので、本発明であるJ鋼は優れた加工性を示すが、比較例であるK鋼は、粒成長不十分で、加工性に劣る。L〜S鋼は選択元素を加えた場合の本発明鋼であり、何れも結晶粒度、ELが25%以上、Rが1.5以上であり、加工性が優れている。
【0081】
(実施例2)
表1のC、E鋼を、表3に示す条件で製造し、供試鋼とした。これらの供試鋼を用いて、粒度番号、EL[%]、R[−]を実施例1と同様にして測定した。なお、No.32については、鋼板の圧延方向の中央部だけでなく、先端部及び後端部からも試験片を採取して、粒度番号、EL、Rを同条件で測定した。
【0082】
【表3】
Figure 2004307901
【0083】
表3に、粒度番号、EL、Rを示す。なお、熱延板の線状疵の有無を、外観の目視によって評価した。最終焼鈍後には酸洗を行い、スケール残りを目視で観察した。
【0084】
鋼板の表面を目視し、全面が金属光沢を有すると判断できる場合をスケール残り無しとし、目視で金属光沢がない部分が観察できた場合や、着色による不均一な模様が観察された場合をスケール残り有りと判定した。
【0085】
No.19〜28は、最終焼鈍温度だけを変化させたものである。Pが0.015%であり、最終焼鈍を800〜900℃の範囲で行ったNo.20〜22鋼は、結晶粒度が本発明の範囲内であり、良好なEL、Rを示す。
【0086】
一方、No.19は最終焼鈍温度が低いため、再結晶が不十分であり、結晶粒度が大きく、EL、Rが低い。
【0087】
また、950℃で焼鈍したNo.23は、製造途中に板破断が発生したため、結晶粒度、EL、Rを測定することができず、表中の粒度番号、加工性に”−”と示した。No.24〜28は、P量が0.03%と高いため、焼鈍温度900℃までのEL、Rが低いが、925℃になると、著しく増加する。
【0088】
しかし、最終焼鈍を925℃で行ったNo.28は、酸洗後にスケール残りが発生した。
【0089】
No.30は、焼鈍時間が好ましい範囲よりも長いため、結晶粒径が粗大化し、また酸洗後のスケール残りも生じた。No.31は熱延開始温度が、No.33は、鋳片の加熱温度、熱延開始温度、熱延終了が好ましい範囲よりも低く、熱延板に線状疵が軽微ながら発生したため、手入れが必要であった。
【0090】
No.32は、熱延の巻取り温度が本発明の範囲よりも高く、鋼板の先端部と後端部で伸びが数%以上異なり、材質が不均一であった。
【0091】
また、冷延板の板厚が好ましい範囲よりも厚く、冷延の圧下率が60%であったNo.34は、EL、Rがやや低めであった。
【0092】
【発明の効果】
本発明により、エキゾーストパイプ、マフラー等の自動車排気系部材及びフューエルパイプ等の自動車燃料系部材に用いられる製造性に優れた高加工性Mo含有フェライト系ステンレス鋼板を比較的安価に提供することができ、工業的価値は極めて高い。
【図面の簡単な説明】
【図1】ELに及ぼす焼鈍温度、P量の影響を示す図である。
【図2】Rに及ぼす焼鈍温度、P量の影響を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high workability ferritic stainless steel used for automobile exhaust system members such as exhaust pipes and mufflers and automobile fuel system members such as fuel pipes.
[0002]
[Prior art]
In recent years, in order to reduce the burden on the global environment, the fuel efficiency of automobiles has been improved, and as the exhaust gas temperature increases, it has excellent corrosion resistance and oxidation resistance as an exhaust system material and is relatively inexpensive. Ferritic stainless steel has been applied. Furthermore, in order to reduce the weight of an automobile exhaust system member, it is necessary to process it into a complicated shape, and improvement in workability is required.
[0003]
The workability of ferritic stainless steel usually improves with increasing final annealing temperature. This is because recrystallization and grain growth sufficiently proceed by the final annealing. However, when the final annealing is performed at a high temperature, the oxide scale becomes strong and the pickling property may deteriorate.
[0004]
In particular, ferritic stainless steel with Mo added to improve corrosion resistance and high-temperature properties has a high recrystallization temperature. If final annealing is performed at a high temperature to improve workability, pickling performance deteriorates and the manufacturing cost increases. Will increase.
[0005]
For such problems, Patent Document 1 discloses a ferritic stainless steel that is highly purified and, in particular, has improved workability by reducing C and N.
[0006]
Furthermore, as a manufacturing method of ferritic stainless steel that can obtain good workability even if the final annealing is performed at 750 to 850 ° C., C and N are reduced, Ti is added, and hot rolling (referred to as hot rolling) Thereafter, a method of winding at 750 ° C. or higher is disclosed in Patent Document 2.
[0007]
However, this method has a problem in that the amount of C and N has to be extremely reduced, so that not only the cost during refining is remarkably increased, but also the operation is not stable because the coiling temperature is high after hot rolling. It was.
[0008]
Patent Document 3 discloses a ferritic stainless steel that is reduced in C and N and contains one or more of Nb, Ti, and Zr and has excellent rankford value (referred to as r value) and elongation. Patent Document 4 further discloses ferritic stainless steel in which the amounts of Si and P are limited.
[0009]
However, these selectively contain Mo, and the r value and elongation when the final annealing is performed at 800 to 900 ° C. are not disclosed.
[0010]
Further, in Non-Patent Document 1, in a ferritic stainless steel containing 17Cr—Ti with reduced C and N, when the coiling temperature of hot rolling is increased, fine FeTiP is precipitated and recrystallization is delayed. In order to avoid this, it has been reported that the reduction of the P amount is effective.
[0011]
However, this is a result of ferritic stainless steel having C + N of 100 ppm or less and containing 17Cr—Ti, and the effects of Mo, Si, Mn, Cu and Ni were unknown.
[0012]
[Patent Document 1]
Japanese Patent Publication No. 5-36492 [Patent Document 2]
JP-A-8-296000 [Patent Document 3]
JP 2002-180206 A [Patent Document 4]
JP 2002-302741 A [Non-Patent Document 1]
Kimura (K. Kimura) and three others, “INFLUENCE ES of HEATING and COILING TEMPERATURES on RECRYSTALLIZATION DRUING HOT-ROLLES ROLLING ROLS ADDED HIGH-PURRITY FERRITIC STA INLESS STEEL ", Proceedings of 1999 International Conference on Stainless Steel Science and Market ANA METALLURGIA), 1999, Volume 2, p. 77
[0013]
[Problems to be solved by the invention]
The present invention provides a highly workable Mo-containing ferritic stainless steel sheet having excellent manufacturability and a method for producing the same, which are used for automobile exhaust system members and automobile fuel system members. In addition, in this invention, being excellent in manufacturability means that workability is good even if final annealing is performed in the range of 800 to 900 ° C., and descaling after the final annealing is easy.
[0014]
[Means for Solving the Problems]
The present inventor studied the influence of each element contained in the Mo-containing ferritic stainless steel on the recrystallization characteristics and workability, and reduced the solid solution elements Si, Mn, Ni, Cu other than Cr and Mo as much as possible, By limiting Mo and P to specific ranges, it was found that high workability can be obtained without increasing the annealing temperature, and further, the components and the production method were examined in detail, and the present invention was completed.
[0015]
The gist of the present invention is as follows.
[0016]
(1) In mass%,
C: 0.003-0.01%, N: 0.005-0.02%,
C + N: 0.02% or less, Si: 0.2% or less,
Mn: 0.2% or less, P: more than 0.005 to 0.02%,
S: 0.01% or less, Cr: 16-20%,
Cu: 0.3% or less, Ni: 0.3% or less,
Mo: 1.0-2.0%, Al: 0.001-0.1% or less,
Ti: 10 × (C + N) to 0.3% or less,
100 × P + Mo ≦ 3.5%, Si + Mn + Ni + Cu ≦ 0.5%
Which is composed of the remaining Fe and unavoidable impurities, has a grain size number of 7 to 10, and satisfies the following formulas (1) and (2). Contains ferritic stainless steel sheet.
{El (L) + 2El (D) + El (C)} / 4 ≧ 25% (1)
(RL + 2rD + rC) /4≧1.5 (2)
Here, El (L), El (D), and El (C) are the elongation at break [%] in the directions of 0 °, 45 °, and 90 ° with respect to the rolling direction, and rL, rD, and rC are the rolling Rankford values [−] in directions of 0 °, 45 °, and 90 ° with respect to the direction.
[0017]
(2) By mass%
The highly workable Mo-containing ferritic stainless steel sheet having excellent manufacturability according to the above (1), comprising Nb: 0.2% or less, V: 0.2% or less.
[0018]
(3) In mass%,
B: 0.0003% to 0.005%
The high workability Mo-containing ferritic stainless steel sheet having excellent manufacturability as described in (1) or (2) above.
[0019]
(4) The high workability Mo-containing ferritic stainless steel sheet having excellent manufacturability according to the above (3), characterized by satisfying Si + Mn + Ni + Cu + 100 × B ≦ 0.5% by mass%.
[0020]
(5) The high workability Mo-containing ferritic stainless steel sheet excellent in manufacturability according to any one of (1) to (4), wherein the plate thickness is 1.5 mm or less.
[0021]
(6) The steel according to any one of (1) to (4) is melted and cast, and the ingot or slab is hot-rolled and cold-rolled and held at 800 to 900 ° C. for 30 to 180 s. The method for producing a highly workable Mo-containing ferritic stainless steel sheet having excellent manufacturability according to any one of (1) to (5), wherein the final annealing is performed.
[0022]
(7) The hot rolling start temperature is set to 1200 to 1300 ° C., the hot rolling end temperature is set to 850 to 950 ° C., the hot rolling is performed, and then water cooling is performed, and winding is performed at 600 ° C. or less. The method for producing a highly workable Mo-containing ferritic stainless steel sheet having excellent manufacturability described in (6) above.
[0023]
(8) High workability Mo-containing ferritic stainless steel excellent in manufacturability according to (6) or (7), wherein the ingot or slab is heated to 1200 to 1300 ° C. and hot-rolled A method of manufacturing a steel sheet.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
In order to develop a Mo-containing ferritic stainless steel having good workability even after final annealing in the range of 800 to 900 ° C., the present inventor has investigated in detail the influence of component elements on recrystallization behavior. . As a result, it was found that the recrystallization temperature was lowered when the addition amount of Si, Mn, Cu and Ni was decreased.
[0025]
Furthermore, paying attention to the impurity P, the ferritic stainless steel containing 17Cr-1.5Mo-Ti has a P content of 0.03% and 0.015%, and the effect of the annealing temperature on the elongation and r value. Study was carried out.
[0026]
The evaluation of elongation was performed using the average value EL [%] of elongation at break as an index. EL [%] is the elongation at break in the direction of 0 ° (referred to as L direction), 45 ° (referred to as D direction), and 90 ° (referred to as C direction) relative to the rolling direction within the surface of the steel sheet. , El (L), El (D), and El (C), and EL = {El (L) + 2El (D) + El (C)} / 4.
[0027]
Similarly, the r value was evaluated by the average value R [−] calculated as R = (rL + 2rD + rC) / 4 by the Rankford values in the L direction, the D direction, and the C direction, rL, rD, and rC.
[0028]
The tensile test piece was a No. 13B test piece based on JIS Z 2201, with the L direction, D direction, and C direction as the longitudinal direction. The tensile test was performed according to JIS Z 2241, and the r value was measured according to JIS Z 2254.
[0029]
EL and R with respect to the annealing temperature are shown in FIG. 1 and FIG. 2, respectively, where the amount of P is 0.03%, and the case of 0.015% is indicated by ◯. When P is reduced to 0.015%, the annealing temperature is 800 ° C. or higher, and EL and R are improved.
[0030]
On the other hand, when the P content is 0.03%, the EL and R are low until the annealing temperature is 900 ° C., and when the P content is 950 ° C., it increases remarkably, and the P content is equivalent to that of 0.015%. Understand.
[0031]
That is, in the steel containing 0.03% of P, when the annealing temperature is 900 ° C. or less, recrystallization and grain growth are suppressed, and EL and R are not improved. On the other hand, if the steel with P content reduced to 0.015% is annealed at 800 to 900 ° C., recrystallization and grain growth are sufficiently advanced, and EL and R are improved. all right.
[0032]
The reason why recrystallization and grain growth are suppressed by the increase in the amount of P is considered to be due to the precipitation of fine FeTiP generated during hot rolling.
[0033]
Hereinafter, the present invention will be described in detail.
[0034]
C is an unavoidable impurity contained in the steel, and it is preferable to reduce it as much as possible because it deteriorates workability and corrosion resistance. Moreover, in order to reduce the addition amount of Ti which fixes C as a carbide | carbonized_material, it is necessary to make the upper limit of C content 0.01%. In order to reduce the C content to less than 0.003%, refining costs increase, so 0.003% was made the lower limit.
[0035]
N is an unavoidable impurity contained in steel like C, and if it contains more than 0.02%, the workability and weldability deteriorate, so the upper limit of N content was made 0.02%. Although the lower limit is preferable, the refining cost increases to reduce N to less than 0.005%. Therefore, the lower limit of the N content is set to 0.005%.
[0036]
Furthermore, if the amount of C + N exceeds 0.02%, the workability deteriorates, so the upper limit was made 0.02%. The lower limit of C + N is preferably 0.0035% from the viewpoint of the refining cost, as is the limitation of the lower limits of C and N.
[0037]
If Si exceeds 0.2%, the workability decreases, so the upper limit was made 0.2%. Si is an element that improves oxidation resistance, and is preferably added in an amount of 0.05% or more.
[0038]
Mn is an unavoidable impurity in the steel, and if it exceeds 0.2%, the workability decreases, so the upper limit was made 0.2%. Moreover, in order to make Mn amount less than 0.01%, since refining cost increases, a preferable lower limit is 0.01%.
[0039]
P is an inevitable impurity and is preferably reduced. Reduction of the amount of P is extremely important in the present invention. By setting the upper limit of the P content to 0.02%, the recrystallization temperature of the ferritic stainless steel containing Mo is remarkably lowered. Thereby, even if the temperature of final annealing shall be 800-900 degreeC, sufficient high workability can be obtained.
[0040]
P is technically difficult to reduce by refining, and it is necessary to use a high-purity raw material. For this reason, the production cost increases to 0.005% or less, so over 0.005% was made the lower limit of the P content. In addition, the minimum with the preferable amount of P is 0.01%.
[0041]
S is an unavoidable impurity, and if it contains more than 0.01%, MnS is generated and the corrosion resistance is lowered, so 0.01% was made the upper limit. The lower the amount of S, the better. However, the refining cost increases to less than 0.0001%, so the lower limit is preferably made 0.001%.
[0042]
Cr is an element that improves corrosion resistance and oxidation resistance. To obtain a sufficient effect, it is necessary to add 16% or more of Cr. However, if Cr is added in excess of 20%, workability is remarkably impaired, so 20% was made the upper limit.
[0043]
When Cu and Ni are contained in excess of 0.3%, the workability is lowered, so the upper limit was made 0.3%. On the other hand, about the lower limit of Cu and Ni, since it is an element which improves corrosion resistance, 0.01% or more of addition is preferable.
[0044]
Mo is an extremely important element in the present invention. Mo is an element that improves the corrosion resistance and high temperature characteristics, but if the content is less than 1.0%, the effect is insufficient. On the other hand, the addition of Mo exceeding 2.0% raises the recrystallization temperature and lowers the workability. Therefore, it is necessary to add in the range of 1.0 to 2.0%.
[0045]
Al is very effective as a deoxidizing material, and 0.001% or more must be added. However, since the workability deteriorates due to the addition of over 0.1%, the upper limit was made 0.1%.
[0046]
Ti is a very useful element that fixes C and N as carbonitrides and improves workability and intergranular corrosion resistance. In order to exhibit this effect, it is necessary to add Ti 10 times or more of the total amount of C and N.
[0047]
However, since the upper limit of the amount of C + N is limited to 0.02% or less in the steel of the present invention, adding more than 0.3% of Ti increases solute Ti and impairs workability. Therefore, it is necessary to make the upper limit of Ti amount 0.3%.
[0048]
Further, the Mo-containing stainless steel of the present invention is required to satisfy 100 × P + Mo ≦ 3.5% and Si + Mn + Ni + Cu ≦ 0.5%. Here, P, Mo, Si, Mn, Ni, and Cu are the contents of each element expressed in mass%. Thereby, even if it performs final annealing at 800-900 degreeC, recrystallization and grain growth fully advance, and a moldability can be ensured.
[0049]
One or more of Nb, V, and B may be added as necessary.
[0050]
Nb and V are elements that, like Ti, fix C and N as carbonitrides and improve workability and intergranular corrosion resistance. In order to exhibit the effect, it is preferable to add Nb 0.01% or more and V 0.05% or more. However, if Nb and V are added in excess of 0.2%, they are dissolved in the steel, increasing the recrystallization temperature and degrading workability. Therefore, the upper limit of the addition amount of Nb and V is preferably 0.2%.
[0051]
B is useful as an element for improving secondary workability, and 0.0003% or more is preferably added. However, if added in a large amount, the workability is remarkably lowered, so 0.005% is made the upper limit. A more preferable range is 0.0003 to 0.0015%.
[0052]
When B is contained, it is preferable to satisfy Si + Mn + Ni + Cu + 100 × B ≦ 0.5% in order to improve workability. Si, Mn, Ni, Cu, and B are the contents of each element expressed in mass%.
[0053]
Moreover, in order to express excellent workability, it is necessary to make the structure in which recrystallization and grain growth have sufficiently progressed in the microstructure. Therefore, the grain size number of the microstructure is set to 7-10. If the crystal grain size number is less than 7, the crystal grains are too large, causing rough skin during processing, and if it exceeds 10, the grain growth is not sufficient and the workability deteriorates.
[0054]
The crystal grain size number may be measured in accordance with JIS G 0552 by collecting a test piece using the L-direction plate thickness section as an observation surface, mirror polishing and etching. Similarly, the grain size numbers are also measured in the D-direction and C-direction plate thickness cross sections, and may be a simple average value of the L-direction and C-direction, or the L-direction, D-direction, and C-direction grain size numbers.
[0055]
Further, for the elongation and the r value, the average values in consideration of the in-plane anisotropy of the measured values in the L direction, the D direction, and the C direction, respectively EL [%] and R [−] are defined. By setting the average value EL of elongation to 25% or more and the average value R of r value to 1.5 or more, workability is improved.
[0056]
If EL is less than 25% and R is less than 1.5, cracking is likely to occur under severe processing conditions. Although the upper limits of EL and R are not specified, in order to make EL more than 40% and R more than 2.5, the manufacturing cost increases remarkably. The upper limit with preferable EL and R is 35% or less and 2.0 or less.
[0057]
The tensile test piece is taken in accordance with JIS Z 2201 with the L direction, the D direction and the C direction as the longitudinal direction. The tensile test is performed in accordance with JIS Z 2241. The r value is measured in accordance with JIS Z 2254. It may be performed in conformity with.
[0058]
Since the ferritic stainless steel of the present invention is excellent in workability even if the final annealing is performed at 800 to 900 ° C., it is extremely effective for manufacturing a thin steel plate having a plate thickness of 1.5 mm or less. This is because when a steel sheet of 1.5 mm or less is continuously annealed, if the annealing temperature exceeds 900 ° C., the steel sheet is likely to break.
[0059]
However, if the plate thickness is less than 0.1 mm, the plate thickness is too thin and the plate breakage is very likely to occur. Therefore, it is preferable that the lower limit of the plate thickness is 0.1 mm or more.
[0060]
Next, a manufacturing method will be described. The manufacturing process of the Mo-containing ferritic stainless steel of the present invention includes melting, casting, hot rolling, cold rolling (referred to as cold rolling), and annealing. An ingot or slab is obtained by casting. That is, the ingot or slab that was melted and cast in a converter or electric furnace is hot-rolled, cold-rolled without performing hot-rolled sheet annealing, pickled after final annealing, and the steel sheet of the present invention. To manufacture.
[0061]
The final annealing temperature must be 800 to 900 ° C. This is because when the annealing temperature is less than 800 ° C, recrystallization and grain growth do not proceed sufficiently, and the workability is insufficient. On the other hand, when it exceeds 900 ° C, the oxide scale becomes strong and the pickling property deteriorates. Furthermore, when the plate thickness is 1.5 mm or less, the steel plate is easily broken.
[0062]
The holding time of the final annealing needs to be 30 to 180 s. This is because if the holding time is less than 30 s, the material after annealing tends to be non-uniform, and if it exceeds 180 s, the plate passing speed is lowered to impair the productivity, the scale becomes strong, and the pickling property deteriorates. It is.
[0063]
Manufacturing conditions other than final annealing are preferably as follows.
[0064]
The heating temperature of the ingot or slab during hot rolling is preferably 1200 to 1300 ° C. If the starting temperature of hot rolling is less than 1200 ° C., linear wrinkles increase and the product yield decreases. On the other hand, if the starting temperature of hot rolling exceeds 1300 ° C., the scale becomes strong and the pickling property is impaired.
[0065]
As for the hot rolling start temperature, if the hot rolling start temperature is less than 1200 ° C., linear wrinkles increase and the product yield decreases. On the other hand, if the starting temperature of hot rolling exceeds 1300 ° C., the scale becomes strong and the pickling property is impaired. Therefore, the hot rolling start temperature is preferably in the range of 1200 to 1300 ° C.
[0066]
When the end temperature of hot rolling is less than 850 ° C., the linear wrinkles increase and the deformation resistance of the steel sheet increases, so the load on the hot rolling roll increases and the life is reduced. Moreover, in order to make hot rolling completion temperature over 950 degreeC, the installation which prevents the temperature fall of a steel plate during hot rolling is required, and a manufacturing cost becomes high. Therefore, it is preferable that the end temperature of hot rolling is 850 to 950 ° C.
[0067]
After hot rolling, it is preferably cooled with water and wound up at 600 ° C. or lower. This is because when the coiling temperature after water cooling exceeds 600 ° C., there is a difference in the cooling rate after coiling between the front end and the rear end of the hot-rolled coil, and the precipitation behavior changes. This is because it becomes difficult to keep the value constant.
[0068]
Further, in order to make the coiling temperature less than 300 ° C., it is necessary to lengthen the water cooling time, and productivity may be lowered. Therefore, a preferable lower limit of the coiling temperature is 300 ° C.
[0069]
As a cold rolling condition, the rolling reduction is preferably set to 70% or more. This is because if the rolling reduction of cold rolling is less than 70%, recrystallization at the time of final annealing is delayed, and it becomes difficult to obtain necessary workability. On the other hand, if the rolling reduction exceeds 95%, the workability deteriorates, the load on the cold-rolled roll increases, and the roll life is shortened. Therefore, the preferable upper limit of the rolling reduction is 95%.
[0070]
Here, the rolling reduction is a percentage obtained by dividing the difference between the thickness of the hot-rolled sheet and the thickness of the cold-rolled sheet after cold rolling by the thickness of the hot-rolled sheet.
[0071]
【Example】
(Example 1)
Steel having the chemical components shown in Table 1 was melted and cast, and the slab was hot rolled to obtain a steel plate having a thickness of 3 mm.
[0072]
[Table 1]
Figure 2004307901
[0073]
The heating temperature of the slab was 1250 ° C, the hot rolling start temperature was 1200 ° C, and the hot rolling end temperature was 880 ° C. Then, it cold-rolled to 1 mm in plate | board thickness, annealed by hold | maintaining at 850 degreeC for 1 minute, pickled, and was set as test steel. The pickling solution was a mixed acid of sulfuric acid, sodium sulfate, sodium nitrate, and Na 2 SiF 6 and was performed by an alternating electric field pickling method in which positive and negative electric fields were alternately applied.
[0074]
Using these test steels, specimens were taken from the center in the rolling direction of the steel sheet and subjected to particle size measurement and room temperature tensile test. For the particle size measurement, a small piece is taken from the central part in the plate width direction of the test steel with the cross section in the rolling direction as the observation surface, and the mirror-polished and etched structure observation test piece is magnified 100 times with an optical microscope and observed. The photographs were taken in accordance with JIS G 0552.
[0075]
The tensile test was carried out in accordance with JIS Z 2241 by collecting No. 13 B specimens with the L, D, and C directions as the longitudinal direction in accordance with JIS Z 2201. The elongation was evaluated by an average value EL [%] in consideration of the in-plane anisotropy of the breaking elongation in the L direction, the D direction, and the C direction. Moreover, r value was measured based on JISZ2254 using the test piece similar to a tension test. The r value was also evaluated by the average value R [−] in the same manner as the elongation.
[0076]
Table 2 shows the particle size, EL, and R. Table 2 also shows C + N, Ti / C + N, Si + Mn + Ni + Cu, 100 × P + Mo, Si + Mn + Ni + Cu + 100 × B. Here, C, N, Ti, Si, Mn, Ni, Cu, P, Mo, and B are the contents of each element expressed in mass%. In addition, since AK, P, and Q steel do not contain B, calculation of Si + Mn + Ni + Cu + 100 × B is not performed, and “−” is shown in the table.
[0077]
[Table 2]
Figure 2004307901
[0078]
A to E steels are obtained by changing the amount of P, and BD steels of the present invention steel have a crystal grain size in the range of No. 7 to 10, EL is 25% or more, and R is 1.5. As described above, excellent workability is shown. Steel A shows excellent workability because its P content is as small as 0.005%, but it is out of the scope of the present invention because of its high steelmaking cost. Since E steel has a high P content of 0.03%, grain growth is insufficient, EL and R are low, and workability is insufficient.
[0079]
The F to I steels are obtained by changing Mo, and the GH steels of the present invention steel have a crystal grain size in the range of No. 7 to 10, EL is 25% or more, and R is 1.5 or more. It shows excellent workability. F steel also shows excellent workability, but the Mo amount is as low as 0.4% and is inferior in oxidation resistance, so it was out of the scope of the present invention. Since steel I has a high Mo content of 2.5%, grain growth is insufficient, EL and R are low, and workability is insufficient.
[0080]
J steel and K steel are those in which the total amount of Si, Mn, Ni, and Cu is changed, and J steel according to the present invention exhibits excellent workability, but K steel as a comparative example has insufficient grain growth. Inferior in workability. L to S steels are steels of the present invention when selected elements are added, and all of them have a crystal grain size, EL of 25% or more, R of 1.5 or more, and excellent workability.
[0081]
(Example 2)
Steels C and E in Table 1 were produced under the conditions shown in Table 3 and used as test steels. Using these test steels, the particle size number, EL [%], and R [−] were measured in the same manner as in Example 1. In addition, No. For No. 32, test pieces were sampled not only from the central part in the rolling direction of the steel sheet but also from the front end part and the rear end part, and the particle size numbers, EL, and R were measured under the same conditions.
[0082]
[Table 3]
Figure 2004307901
[0083]
Table 3 shows the particle number, EL, and R. In addition, the presence or absence of the linear flaw of a hot-rolled sheet was evaluated by visual observation of the appearance. After the final annealing, pickling was performed, and the remaining scale was visually observed.
[0084]
When the surface of the steel sheet is visually observed and the entire surface can be judged to have a metallic luster, no scale residue is left, and when a portion with no metallic luster is visually observed or when an uneven pattern due to coloring is observed, the scale It was determined that there was a remaining.
[0085]
No. Nos. 19 to 28 are obtained by changing only the final annealing temperature. No. in which P is 0.015% and final annealing was performed in the range of 800 to 900 ° C. The 20-22 steel has a crystal grain size within the range of the present invention and exhibits good EL and R.
[0086]
On the other hand, no. Since No. 19 has a low final annealing temperature, recrystallization is insufficient, the crystal grain size is large, and EL and R are low.
[0087]
In addition, No. annealed at 950 ° C. In No. 23, since the plate breakage occurred during the production, the crystal grain size, EL, and R could not be measured, and the grain size number and workability in the table were indicated as “−”. No. In Nos. 24-28, the amount of P is as high as 0.03%, so the EL and R are low up to an annealing temperature of 900 ° C.
[0088]
However, No. 1 in which the final annealing was performed at 925 ° C. In No. 28, scale residue occurred after pickling.
[0089]
No. In No. 30, since the annealing time was longer than the preferred range, the crystal grain size was coarsened, and scale residue after pickling was also generated. No. No. 31 has a hot rolling start temperature of No. 31. In No. 33, the heating temperature of the slab, the hot rolling start temperature, and the hot rolling end were lower than the preferable ranges, and linear flaws were generated on the hot rolled plate, but care was required.
[0090]
No. In No. 32, the coiling temperature of hot rolling was higher than the range of the present invention, the elongation was different by several% at the front end portion and the rear end portion of the steel sheet, and the material was non-uniform.
[0091]
In addition, the thickness of the cold-rolled sheet was thicker than the preferred range, and the cold rolling reduction ratio was 60%. In 34, EL and R were slightly lower.
[0092]
【The invention's effect】
According to the present invention, a highly workable Mo-containing ferritic stainless steel sheet excellent in manufacturability used for automobile exhaust system members such as exhaust pipes and mufflers and automobile fuel system members such as fuel pipes can be provided at a relatively low cost. Industrial value is extremely high.
[Brief description of the drawings]
FIG. 1 is a diagram showing the effects of annealing temperature and P amount on EL.
FIG. 2 is a diagram showing the effects of annealing temperature and P amount on R.

Claims (8)

質量%で、
C :0.003〜0.01%、
N :0.005〜0.02%、
C+N:0.02%以下、
Si:0.2%以下、
Mn:0.2%以下、
P :0.005超〜0.02%、
S :0.01%以下、
Cr:16〜20%、
Cu:0.3%以下、
Ni:0.3%以下、
Mo:1.0〜2.0%、
Al:0.001〜0.1%、
Ti:10×(C+N)〜0.3%以下、
を含有し、
100×P+Mo≦3.5%、
Si+Mn+Ni+Cu≦0.5%
を満足し、残部Fe及び不可避的不純物からなり、結晶粒度番号が7〜10番であり、下記式(1)及び(2)を満足することを特徴とする製造性に優れた高加工性Mo含有フェライト系ステンレス鋼板。
{El(L)+2El(D)+El(C)}/4≧25% ・・・ (1)
(rL+2rD+rC)/4≧1.5 ・・・ (2)
ここで、
El(L)、El(D)、El(C)は、圧延方向に対して、0°、45°、90°の方向の破断伸び[%]、
rL、rD、rCは、圧延方向に対して、0°、45°、90°の方向のランクフォード値[−]
である。
% By mass
C: 0.003-0.01%,
N: 0.005 to 0.02%,
C + N: 0.02% or less,
Si: 0.2% or less,
Mn: 0.2% or less,
P: more than 0.005 to 0.02%,
S: 0.01% or less,
Cr: 16 to 20%,
Cu: 0.3% or less,
Ni: 0.3% or less,
Mo: 1.0-2.0%,
Al: 0.001 to 0.1%,
Ti: 10 × (C + N) to 0.3% or less,
Containing
100 × P + Mo ≦ 3.5%,
Si + Mn + Ni + Cu ≦ 0.5%
Which is composed of the remaining Fe and unavoidable impurities, has a grain size number of 7 to 10, and satisfies the following formulas (1) and (2). Contains ferritic stainless steel sheet.
{El (L) + 2El (D) + El (C)} / 4 ≧ 25% (1)
(RL + 2rD + rC) /4≧1.5 (2)
here,
El (L), El (D), and El (C) are elongation at break [%] in directions of 0 °, 45 °, and 90 ° with respect to the rolling direction,
rL, rD, and rC are Rankford values [−] in directions of 0 °, 45 °, and 90 ° with respect to the rolling direction.
It is.
質量%で、
Nb:0.2%以下、
V :0.2%以下
の1種又は2種を含有することを特徴とする請求項1記載の製造性に優れた高加工性Mo含有フェライト系ステンレス鋼板。
% By mass
Nb: 0.2% or less,
The high workability Mo-containing ferritic stainless steel sheet excellent in manufacturability according to claim 1, wherein V: 1 type or 2 types of 0.2% or less is contained.
質量%で、
B: 0.0003〜0.005%
を含有することを特徴とする請求項1又は2記載の製造性に優れた高加工性Mo含有フェライト系ステンレス鋼板。
% By mass
B: 0.0003 to 0.005%
The high workability Mo-containing ferritic stainless steel sheet excellent in manufacturability according to claim 1 or 2, characterized by comprising:
質量%で、Si+Mn+Ni+Cu+100×B≦0.5%を満足することを特徴とする請求項3記載の製造性に優れた高加工性Mo含有フェライト系ステンレス鋼板。The high workability Mo-containing ferritic stainless steel sheet excellent in manufacturability according to claim 3, characterized by satisfying Si + Mn + Ni + Cu + 100 × B ≦ 0.5% by mass%. 板厚が1.5mm以下であることを特徴とする請求項1〜4の何れか1項に記載の製造性に優れた高加工性Mo含有フェライト系ステンレス鋼板。The high workability Mo-containing ferritic stainless steel sheet excellent in manufacturability according to any one of claims 1 to 4, wherein the plate thickness is 1.5 mm or less. 請求項1〜4の何れか1項に記載の成分からなる鋼を溶解、鋳造し、鋳塊又は鋳片を、熱間圧延、冷間圧延し、800〜900℃で、30〜180s保持する最終焼鈍を行うことを特徴とする請求項1〜5の何れか1項に記載の製造性に優れた高加工性Mo含有フェライト系ステンレス鋼板の製造方法。The steel which consists of a component of any one of Claims 1-4 is melt | dissolved and cast, an ingot or a slab is hot-rolled and cold-rolled, and it hold | maintains at 800-900 degreeC for 30 to 180 s. The method for producing a highly workable Mo-containing ferritic stainless steel sheet having excellent manufacturability according to any one of claims 1 to 5, wherein final annealing is performed. 熱間圧延開始温度を1200〜1300℃とし、熱間圧延終了温度を、850〜950℃として前記熱間圧延を行った後、水冷し、600℃以下で巻取ることを特徴とする請求項6記載の製造性に優れた高加工性Mo含有フェライト系ステンレス鋼板の製造方法。The hot rolling start temperature is set to 1200 to 1300 ° C, the hot rolling end temperature is set to 850 to 950 ° C, the hot rolling is performed, water cooling is performed, and winding is performed at 600 ° C or less. A process for producing a highly workable Mo-containing ferritic stainless steel sheet having excellent productivity. 前記鋳塊又は鋳片を1200〜1300℃に加熱して熱間圧延することを特徴とする請求項6又は7記載の製造性に優れた高加工性Mo含有フェライト系ステンレス鋼板の製造方法。The method for producing a highly workable Mo-containing ferritic stainless steel sheet having excellent manufacturability according to claim 6 or 7, wherein the ingot or slab is heated to 1200 to 1300 ° C and hot rolled.
JP2003100609A 2003-04-03 2003-04-03 Highly workable Mo-containing ferritic stainless steel sheet with excellent manufacturability and method for producing the same Expired - Lifetime JP4049697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003100609A JP4049697B2 (en) 2003-04-03 2003-04-03 Highly workable Mo-containing ferritic stainless steel sheet with excellent manufacturability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003100609A JP4049697B2 (en) 2003-04-03 2003-04-03 Highly workable Mo-containing ferritic stainless steel sheet with excellent manufacturability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004307901A true JP2004307901A (en) 2004-11-04
JP4049697B2 JP4049697B2 (en) 2008-02-20

Family

ID=33464692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003100609A Expired - Lifetime JP4049697B2 (en) 2003-04-03 2003-04-03 Highly workable Mo-containing ferritic stainless steel sheet with excellent manufacturability and method for producing the same

Country Status (1)

Country Link
JP (1) JP4049697B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070067325A (en) * 2005-12-23 2007-06-28 주식회사 포스코 A method of manufacturing a ferritic stainless steel for improving ridging resistance
JP2009228036A (en) * 2008-03-21 2009-10-08 Nisshin Steel Co Ltd Device for recovering exhaust heat of automobile
JP2012112020A (en) * 2010-11-26 2012-06-14 Jfe Steel Corp Ferritic stainless steel sheet and ferritic stainless steel pipe for automotive exhaust system parts
JP2019173115A (en) * 2018-03-29 2019-10-10 日鉄ステンレス株式会社 Ferritic stainless steel sheet excellent in high temperature salt damage resistance and automobile exhaust system component
WO2020095437A1 (en) * 2018-11-09 2020-05-14 にってステンレス株式会社 Ferritic stainless steel sheet
JP2020143309A (en) * 2019-03-04 2020-09-10 日鉄ステンレス株式会社 Ferritic stainless steel sheet
JP2021004384A (en) * 2019-06-25 2021-01-14 日鉄ステンレス株式会社 Stainless steel
CN113025919A (en) * 2019-12-24 2021-06-25 南通耀龙金属制造有限公司 High-strength anti-bending anti-corrosion stainless steel alloy material and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102605262A (en) * 2011-01-25 2012-07-25 宝山钢铁股份有限公司 Ferritic stainless steel and method for manufacturing same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230544A (en) * 1992-02-21 1993-09-07 Nippon Yakin Kogyo Co Ltd Production of ferritic stainless steel excellent in press formability
JPH06179921A (en) * 1992-12-15 1994-06-28 Nippon Steel Corp Production of ferritic stainless steel sheet excellent in strength at high temperature and formability
JPH07310122A (en) * 1994-05-13 1995-11-28 Kawasaki Steel Corp Production of ferritic stainless steel strip having excellent bulging formability
JPH08296000A (en) * 1995-04-24 1996-11-12 Nippon Steel Corp Ferritic stainless steel excellent in workability and corrosion resistance and its production
JP2000212704A (en) * 1999-01-20 2000-08-02 Nippon Steel Corp Ferritic stainless steel excellent in workability and corrosion resistance and production of thin steel sheet thereof
JP2002180206A (en) * 2000-12-12 2002-06-26 Nippon Steel Corp Ferritic stainless steel sheet having excellent formability
JP2002302741A (en) * 2001-02-05 2002-10-18 Nippon Steel Corp Ferrite stainless steel sheet with excellent formability, and method for manufacturing it
JP2002363711A (en) * 2000-08-07 2002-12-18 Nippon Steel Corp Ferritic stainless steel sheet for fuel tank

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230544A (en) * 1992-02-21 1993-09-07 Nippon Yakin Kogyo Co Ltd Production of ferritic stainless steel excellent in press formability
JPH06179921A (en) * 1992-12-15 1994-06-28 Nippon Steel Corp Production of ferritic stainless steel sheet excellent in strength at high temperature and formability
JPH07310122A (en) * 1994-05-13 1995-11-28 Kawasaki Steel Corp Production of ferritic stainless steel strip having excellent bulging formability
JPH08296000A (en) * 1995-04-24 1996-11-12 Nippon Steel Corp Ferritic stainless steel excellent in workability and corrosion resistance and its production
JP2000212704A (en) * 1999-01-20 2000-08-02 Nippon Steel Corp Ferritic stainless steel excellent in workability and corrosion resistance and production of thin steel sheet thereof
JP2002363711A (en) * 2000-08-07 2002-12-18 Nippon Steel Corp Ferritic stainless steel sheet for fuel tank
JP2002180206A (en) * 2000-12-12 2002-06-26 Nippon Steel Corp Ferritic stainless steel sheet having excellent formability
JP2002302741A (en) * 2001-02-05 2002-10-18 Nippon Steel Corp Ferrite stainless steel sheet with excellent formability, and method for manufacturing it

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070067325A (en) * 2005-12-23 2007-06-28 주식회사 포스코 A method of manufacturing a ferritic stainless steel for improving ridging resistance
JP2009228036A (en) * 2008-03-21 2009-10-08 Nisshin Steel Co Ltd Device for recovering exhaust heat of automobile
JP2012112020A (en) * 2010-11-26 2012-06-14 Jfe Steel Corp Ferritic stainless steel sheet and ferritic stainless steel pipe for automotive exhaust system parts
JP2019173115A (en) * 2018-03-29 2019-10-10 日鉄ステンレス株式会社 Ferritic stainless steel sheet excellent in high temperature salt damage resistance and automobile exhaust system component
JP7022633B2 (en) 2018-03-29 2022-02-18 日鉄ステンレス株式会社 Ferritic stainless steel sheets with excellent high-temperature salt damage resistance and automobile exhaust system parts
WO2020095437A1 (en) * 2018-11-09 2020-05-14 にってステンレス株式会社 Ferritic stainless steel sheet
JP2020143309A (en) * 2019-03-04 2020-09-10 日鉄ステンレス株式会社 Ferritic stainless steel sheet
JP7304715B2 (en) 2019-03-04 2023-07-07 日鉄ステンレス株式会社 Ferritic stainless steel plate
JP2021004384A (en) * 2019-06-25 2021-01-14 日鉄ステンレス株式会社 Stainless steel
JP7329984B2 (en) 2019-06-25 2023-08-21 日鉄ステンレス株式会社 stainless steel
CN113025919A (en) * 2019-12-24 2021-06-25 南通耀龙金属制造有限公司 High-strength anti-bending anti-corrosion stainless steel alloy material and preparation method thereof

Also Published As

Publication number Publication date
JP4049697B2 (en) 2008-02-20

Similar Documents

Publication Publication Date Title
KR101564152B1 (en) High-purity ferritic stainless steel sheet having excellent oxidation resistance and high-temperature strength, and method for producing same
CA2866136C (en) Heat-resistant cold rolled ferritic stainless steel sheet, hot rolled ferritic stainless steel sheet for cold rolling raw material, and methods for producing same
JP6017341B2 (en) High strength cold-rolled steel sheet with excellent bendability
JP5511208B2 (en) Alloy-saving duplex stainless steel material with good corrosion resistance and its manufacturing method
JP6750761B1 (en) Hot rolled steel sheet
JP5349015B2 (en) Method for producing Ni-saving austenitic stainless hot-rolled steel sheet, slab and hot-rolled steel sheet
JP5396752B2 (en) Ferritic stainless steel with excellent toughness and method for producing the same
WO2020110843A1 (en) Hot-rolled steel sheet
WO2021033672A1 (en) Duplex stainless steel material
JPWO2018181570A1 (en) Austenitic stainless steel plate and its manufacturing method
JP4849731B2 (en) Mo-containing high Cr high Ni austenitic stainless steel sheet excellent in ductility and manufacturing method
JP4049697B2 (en) Highly workable Mo-containing ferritic stainless steel sheet with excellent manufacturability and method for producing the same
JP7564664B2 (en) Ferritic stainless steel sheet, its manufacturing method, and exhaust part
WO2014045542A1 (en) Easily worked ferrite stainless-steel sheet
JP6489254B2 (en) Material for stainless cold-rolled steel sheet and manufacturing method thereof
JP7013302B2 (en) Al-containing ferritic stainless steel and processed products with excellent secondary workability and high-temperature oxidation resistance
JP6809325B2 (en) Duplex stainless steel shaped steel and its manufacturing method
JP2005325377A (en) Method for manufacturing heat resistant ferritic stainless steel sheet having excellent workability
JP6550325B2 (en) Ferritic stainless steel hot rolled steel sheet for flange and method of manufacturing the same
JP2001192735A (en) FERRITIC Cr-CONTAINING COLD ROLLED STEEL SHEET EXCELLENT IN DUCTILITY, WORKABILITY AND RIDGING RESISTANCE AND PRODUCING METHOD THEREFOR
WO2023132339A1 (en) Fe-Cr-Ni ALLOY MATERIAL
JP2021055141A (en) Ferritic stainless steel
JPH07258801A (en) Fe-cr-ni alloy excellent in corrosion resistance and workability
WO2018198835A1 (en) Material for cold-rolled stainless steel sheet, and production method therefor
JP7251996B2 (en) Al-containing ferritic stainless steel sheet and method for producing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050216

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071127

R150 Certificate of patent or registration of utility model

Ref document number: 4049697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term