JPH08253818A - Production of ferritic stainless steel strip reduced in inplane anisotropy and excellent in balance between strength and elongation - Google Patents
Production of ferritic stainless steel strip reduced in inplane anisotropy and excellent in balance between strength and elongationInfo
- Publication number
- JPH08253818A JPH08253818A JP5469495A JP5469495A JPH08253818A JP H08253818 A JPH08253818 A JP H08253818A JP 5469495 A JP5469495 A JP 5469495A JP 5469495 A JP5469495 A JP 5469495A JP H08253818 A JPH08253818 A JP H08253818A
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- stainless steel
- ferritic stainless
- hot
- finish
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、面内異方性が小さく、
なおかつ強度−伸びバランスが優れたフェライト系ステ
ンレス鋼帯の製造方法に関するものである。The present invention has a small in-plane anisotropy,
The present invention also relates to a method for producing a ferritic stainless steel strip having an excellent strength-elongation balance.
【0002】[0002]
【従来の技術】フェライト系ステンレス鋼帯は、通常、
連続鋳造鋳片を加熱した後、熱間圧延(粗圧延および仕
上げ圧延)一熱延板焼鈍一冷間圧延一仕上げ焼鈍の各工
程を経て製造される。このようにして製造されたフェラ
イト系ステンレス鋼帯は、一般に、耐応力腐食割れ性に
優れるとともに安価であることから各種厨房器具、自動
車部品などの分野で幅広く使用されている。しかし、オ
ーステナイト系ステンレス鋼に比べるとプレス加工性
(強度と伸び)の点ではやや劣り、しかもプレス加工の
際にリジングとよばれるしわが発生するという欠点を有
していた。したがって、フェライト系ステンレス鋼は、
その強度と伸び(引張強さTS×伸びElで表し、「強
度−伸びバランス」と略記する。以下、同じ)とリジン
グが改善されれば、従来は適用が困難であったような加
工の厳しい箇所であっても、オーステナイト系ステンレ
ス鋼に代替して使用されるようになる。2. Description of the Related Art Ferritic stainless steel strips are usually
After the continuously cast slab is heated, it is manufactured through the steps of hot rolling (rough rolling and finish rolling), hot-rolled sheet annealing, cold rolling and finish annealing. The ferritic stainless steel strip produced in this manner is generally used widely in various fields such as kitchen appliances and automobile parts because it is excellent in stress corrosion cracking resistance and inexpensive. However, it has a drawback in that it is slightly inferior in press workability (strength and elongation) as compared with austenitic stainless steel, and has wrinkles called ridging during press work. Therefore, ferritic stainless steel is
If its strength and elongation (represented by tensile strength TS × elongation El, abbreviated as “strength-elongation balance”; the same applies below) and ridging are improved, it is difficult to perform the processing which was difficult to apply in the past. Even in places, it will be used instead of austenitic stainless steel.
【0003】ところで、フェライト系ステンレス鋼のプ
レス加工性を改善するために、これまでにも数多くの試
みがなされている。例えば、特開昭53−48018号
公報や特公平2−7391号公報には、極低C,N鋼に
NbやTiを添加することにより、r値を向上させる技術が
提案されている。しかし、この技術では、r値は向上す
るするものの、r値の面内異方性(Δr)が大きく、し
かも強度−伸びバランスに劣るという問題点があった。
また、特開昭62−10217号公報にはフェライト系
ステンレス鋼片の熱間圧延工程において、歪み速度15
0 1/sec以上かつ歪み速度と摩擦係数の関係を規制する
ことにより、耐リジング性を改善する技術が提案されて
いる。しかし、この技術も、耐リジング性を改善するも
のの、r値の面内異方性の点で不十分なであるうえ、強
度−伸びバランスを向上させる技術ではない。By the way, many attempts have been made so far in order to improve the press workability of ferritic stainless steel. For example, Japanese Unexamined Patent Publication No. 53-48018 and Japanese Examined Patent Publication No. 2-7391 describe ultra-low C and N steels.
A technique for improving the r value by adding Nb or Ti has been proposed. However, this technique has a problem that although the r value is improved, the in-plane anisotropy (Δr) of the r value is large and the strength-elongation balance is poor.
Further, Japanese Patent Laid-Open No. 62-10217 discloses a strain rate of 15 in a hot rolling process of a ferritic stainless steel piece.
A technique has been proposed for improving the ridging resistance by regulating the relationship between the strain rate and the friction coefficient of 0 1 / sec or more. However, this technique also improves ridging resistance, but is insufficient in terms of in-plane anisotropy of r value, and is not a technique for improving strength-elongation balance.
【0004】[0004]
【発明が解決しようとする課題】このように、上記既知
技術は、プレス性の向上の面でr値あるいは耐リジング
性を向上させることができるものの、その反面r値の面
内異方性を大きくするという共通した問題点を有してい
た。その上、これらいずれの既知技術においても、強度
−伸びバランスに着目し、その特性を改善しようとする
試みは全く行われていなかった。As described above, the above-mentioned known technique can improve the r value or the ridging resistance in terms of the improvement of pressability, but on the other hand, the in-plane anisotropy of the r value is They had a common problem of making them larger. Moreover, in any of these known techniques, no attention has been paid to the strength-elongation balance to improve the characteristics.
【0005】そこで、本発明の主たる目的は、r値や耐
リジング性を改善しても上記既知技術が抱えている上述
した問題を惹起することのないフェライト系ステンレス
鋼帯の製造技術を確立することにある。この発明の他の
目的は、r値および耐リジング性が優れ、しかもr値の
面内異方性が小さく、強度−伸びバランスに優れるフェ
ライト系ステンレス鋼帯を製造する方法を提供すること
にある。この発明のより具体的な目的は、r値の面内異
方性(Δr)が0.3 以下、強度−伸びバランス(TS×
El)が18000以上の特性を有するフェライト系ス
テンレス鋼帯を製造する方法を提供することにある。Therefore, a main object of the present invention is to establish a technique for producing a ferritic stainless steel strip which does not cause the above-mentioned problems of the above-mentioned known technique even if the r value and the ridging resistance are improved. Especially. Another object of the present invention is to provide a method for producing a ferritic stainless steel strip having excellent r-value and ridging resistance, small in-plane anisotropy of r-value, and excellent strength-elongation balance. . A more specific object of the present invention is that the in-plane anisotropy (Δr) of the r value is 0.3 or less, the strength-elongation balance (TS ×
An object of the present invention is to provide a method for producing a ferritic stainless steel strip having El) of 18,000 or more.
【0006】[0006]
【課題を解決するための手段】さて、上掲の目的の実現
に向けて鋭意研究した結果、発明者らは、フェライト系
ステンレス鋼の化学組成と熱間圧延条件とくにその粗圧
延条件さらに熱延板焼鈍条件を適切に制御すれば、r
値、耐リジング性の改善に加えて、面内異方性および強
度−伸びバランスを向上させることが可能となることが
できることを見いだし、本発明を完成するに到った。Means for Solving the Problems Now, as a result of earnest research toward realization of the above-mentioned object, the inventors have found that the chemical composition of ferritic stainless steel and hot rolling conditions, especially its rough rolling conditions, and hot rolling. If the plate annealing conditions are properly controlled, r
In addition to the improvement of the value and ridging resistance, it was found that the in-plane anisotropy and the strength-elongation balance can be improved, and the present invention has been completed.
【0007】本発明は、上記の知見を具体化した下記の
構成を要旨とするものである。 (1) フェライト系ステンレス鋼素材に、粗圧延および仕
上げ圧延よりなる熱間圧延を施し、その後熱延板焼鈍、
酸洗を経て、冷間圧延、さらに仕上げ焼鈍を行ってステ
ンレス鋼帯を製造する方法において、前記フェライト系
ステンレス鋼の化学組成から算出される下記(1) 式で表
されるγpを20〜80とし、前記粗圧延工程のうちの
少なくとも1パスの圧延を、圧延温度970〜1150
℃、摩擦係数0.3以下かつ圧下率40〜75%の条件
で行い、さらに前記熱延板焼鈍工程において750〜9
50℃で1hr以上の保持を行い、かつその降温過程に
おいて600〜750℃で1hr以上の保持を行うこと
を特徴とする面内異方性が小さく強度−伸びバランスに
優れるフェライト系ステンレス鋼帯の製造方法。 記 γp=288(Cwt%)+350(Nwt%)+22(Niwt%)+7.5(Mn wt%)―18.75(Crwt%)―54(Siwt%)+338.5……(1) The gist of the present invention is the following configuration embodying the above findings. (1) The ferritic stainless steel material is subjected to hot rolling consisting of rough rolling and finish rolling, and then hot rolled sheet annealing,
In the method for producing a stainless steel strip by performing pickling, cold rolling and finish annealing, γp represented by the following formula (1) calculated from the chemical composition of the ferritic stainless steel is 20 to 80. At least one pass of the rough rolling step is performed at a rolling temperature of 970 to 1150.
℃, the friction coefficient is 0.3 or less and the rolling reduction is 40 to 75%, and further 750 to 9 in the hot rolled sheet annealing step.
A ferritic stainless steel strip with small in-plane anisotropy and excellent in strength-elongation balance characterized by holding for 1 hr or more at 50 ° C. and holding for 1 hr or more at 600 to 750 ° C. in the temperature lowering process. Production method. Note γp = 288 (Cwt%) + 350 (Nwt%) + 22 (Niwt%) + 7.5 (Mn wt%)-18.75 (Crwt%)-54 (Siwt%) + 338.5 ... (1)
【0008】(2) フェライト系ステンレス鋼素材に、粗
圧延および仕上げ圧延よりなる熱間圧延を施し、その後
熱延板焼鈍、酸洗を経て、冷間圧延、さらに仕上げ焼鈍
を行ってステンレス鋼帯を製造する方法において、前記
フェライト系ステンレス鋼の化学組成から算出される下
記(1) 式で表されるγpを20〜80とし、前記粗圧延
工程のうちの少なくとも1パスの圧延を、圧延温度97
0〜1150℃、摩擦係数0.3以下かつ圧下率40〜
75%の条件で行い、また前記仕上げ圧延工程のうちの
少なくとも1パスの圧延を、圧延温度600〜950
℃、圧下率20〜45%の条件で行い、さらに前記熱延
板焼鈍工程において750〜950℃で1hr以上の保
持を行い、かつその降温過程において600〜750℃
で1hr以上の保持を行うことを特徴とする面内異方性
が小さく強度−伸びバランスに優れるフェライト系ステ
ンレス鋼帯の製造方法。 記 γp=288(Cwt%)+350(Nwt%)+22(Niwt%)+7.5(Mn wt%)―18.75(Crwt%)―54(Siwt%)+338.5……(1) (2) A ferritic stainless steel material is hot-rolled by rough rolling and finish rolling, then hot-rolled sheet is annealed, pickled, cold-rolled and then finish annealed to obtain a stainless steel strip. In the method for producing the above, γp represented by the following formula (1) calculated from the chemical composition of the ferritic stainless steel is set to 20 to 80, and at least one pass of the rough rolling step is performed at a rolling temperature. 97
0 to 1150 ° C, friction coefficient of 0.3 or less and rolling reduction of 40 to
It is carried out under the condition of 75%, and at least one pass of the finish rolling step is performed at a rolling temperature of 600 to 950.
C., a reduction rate of 20 to 45%, further holding at 750 to 950.degree. C. for 1 hr or more in the hot rolled sheet annealing step, and 600 to 750.degree. C. in the temperature decreasing process.
The method for producing a ferritic stainless steel strip having a small in-plane anisotropy and an excellent strength-elongation balance, which is characterized by holding for 1 hr or more. Note γp = 288 (Cwt%) + 350 (Nwt%) + 22 (Niwt%) + 7.5 (Mn wt%)-18.75 (Crwt%)-54 (Siwt%) + 338.5 ... (1)
【0009】上記各発明において、粗圧延の温度範囲は
900〜1300℃、仕上げ圧延の温度範囲は550〜
1000℃とすることが望ましい。また、上記各発明に
おいて、γpが20〜80を満たすフェライト系ステン
レス鋼の成分組成の好適範囲は、次のとおりである。
C:0.1 wt%以下、より好ましくは0.0010〜0.080wt %
、Si:1.5 wt%以下、より好ましくは0.10〜0.80wt
%、Mn:1.5 wt%以下、より好ましくは0.10〜1.50wt
%、Cr:11〜20wt%、より好ましくは14〜19wt%、Ni:
2.0wt %以下、より好ましくは0.01〜1.0 wt%、P:0.
08wt%以下、より好ましくは0.010 〜0.080wt % 、
S:0.0100wt%以下、より好ましくは0.0010〜0.0080wt
%、N:0.1 wt%以下、より好ましくは0.002 〜0.08wt
%、さらに必要に応じて、Nb:0.050 〜0.30wt%、Ti:
0.050 〜0.30wt%、Al:0.010 〜0.20wt%、V:0.050
〜0.30wt%、Zr:0.050 〜0.30wt%、Mo:0.50 〜2.5
wt%、Cu:0.50 〜2.5 wt%から選ばれる1種又は2種
以上を含有し、残部はFeおよび不可避的不純物よりなる
組成の鋼。In each of the above inventions, the temperature range for rough rolling is 900 to 1300 ° C., and the temperature range for finish rolling is 550 to 550.
It is desirable that the 1000 ℃. In addition, in each of the above inventions, the preferable range of the composition of the ferritic stainless steel satisfying γp of 20 to 80 is as follows.
C: 0.1 wt% or less, more preferably 0.0010 to 0.080 wt%
, Si: 1.5 wt% or less, more preferably 0.10 to 0.80 wt
%, Mn: 1.5 wt% or less, more preferably 0.10 to 1.50 wt
%, Cr: 11 to 20 wt%, more preferably 14 to 19 wt%, Ni:
2.0 wt% or less, more preferably 0.01 to 1.0 wt%, P: 0.
08wt% or less, more preferably 0.010 to 0.080wt%,
S: 0.0100 wt% or less, more preferably 0.0010 to 0.0080 wt
%, N: 0.1 wt% or less, more preferably 0.002 to 0.08 wt
%, And if necessary, Nb: 0.050 to 0.30 wt%, Ti:
0.050 to 0.30wt%, Al: 0.010 to 0.20wt%, V: 0.050
~ 0.30wt%, Zr: 0.050 ~ 0.30wt%, Mo: 0.50 ~ 2.5
wt%, Cu: 0.50 to 2.5 wt% Steel containing one or more selected from the group consisting of Fe and inevitable impurities.
【0010】[0010]
【作用】まず、本発明に相当する契機となった実験研究
の成果について説明する。高周波真空溶解炉にてγpが
異なるフェライト系ステンレス鋼(C:0.010〜
0.080―wt%、Si:0.20〜0.60wt%、M
n:0.20〜0.70wt%、P:0.032wt%、
S:0.0029wt%、Cr:16.3wt%、Ni:
0.09〜0.30wt%、N:0.012〜0.060
wt%、A1:0.01wt%)を溶製し、200mm厚の
ブロック片とした。これらを1230℃に加熱し、4パ
スの粗圧延、5〜7パスの仕上げ圧延からなる熱間圧延
を行い、4.0mm厚の熱延鋼板とした。ここで、粗圧延
における最終パスR4 (圧延温度:1030〜1080
℃)の圧下率およびロールと圧延材間の摩擦係数(μ)
を、また仕上げ圧延(圧延温度:800〜870℃)に
おける最終パスF5 又はF7の圧下率の値(18%、3
0%)を変化させた。また、熱延板焼鈍は850℃で4
時間保持後、降温過程(冷却速度:20℃/hr)にお
いて700℃で2時間保持したのち上記冷却速度で50
0℃まで冷却した。ただし、一部のものについては保持
を行わず850℃から500℃まで上記冷却速度で冷却
した。以上の方法で得た熱延鋼板を、酸洗−冷間圧延−
仕上げ焼鈍の工程を経て0.7mm厚の冷延焼鈍板とし
た。この冷延焼鈍板から試験片を採取し、機械的性質
(引張強さ、伸び)およびr値の面内異方性(Δr)を
測定した。なお、Δrは、Δr=(rL -2rD + rC )
/2から求めた。ただし、rL 、rD およびrC は、そ
れぞれ圧延方向、圧延方向に対して45°の方向、圧延
方向に対して90°の方向のr値を表す。以上の方法で
求めた強度−伸びバランスおよびΔrに及ぼす熱延条件
および熱延板焼鈍条件の影響をそれぞれ図1および図2
に示す。First, the results of the experimental research that triggered the present invention will be described. Ferrite stainless steel with different γp in the high frequency vacuum melting furnace (C: 0.010 to
0.080-wt%, Si: 0.20-0.60 wt%, M
n: 0.20 to 0.70 wt%, P: 0.032 wt%,
S: 0.0029 wt%, Cr: 16.3 wt%, Ni:
0.09-0.30 wt%, N: 0.012-0.060
wt%, A1: 0.01 wt%) was melted to form a block piece having a thickness of 200 mm. These were heated to 1230 ° C. and subjected to hot rolling consisting of 4 passes of rough rolling and 5 to 7 passes of finish rolling to obtain 4.0 mm thick hot rolled steel sheets. Here, the final pass R4 in the rough rolling (rolling temperature: 1030 to 1080
(° C) rolling coefficient and friction coefficient between roll and rolled material (μ)
And the value of the reduction ratio of the final pass F5 or F7 in the finish rolling (rolling temperature: 800 to 870 ° C.) (18%, 3
0%) was changed. In addition, hot-rolled sheet annealing was performed at 850 ° C for 4
After the temperature was maintained, the temperature was lowered at 700 ° C. for 2 hours in the cooling process (cooling rate: 20 ° C./hr), and then 50% at the above cooling rate.
Cooled to 0 ° C. However, some of them were not held and cooled from 850 ° C to 500 ° C at the above cooling rate. The hot rolled steel sheet obtained by the above method is pickled-cold rolled-
A 0.7 mm-thick cold-rolled annealed plate was obtained through the process of finish annealing. A test piece was sampled from this cold-rolled annealed plate, and mechanical properties (tensile strength, elongation) and in-plane anisotropy (Δr) of r value were measured. In addition, Δr is Δr = (r L −2r D + r C ).
Calculated from / 2. However, r L , r D, and r C represent r values in the rolling direction, the direction of 45 ° with respect to the rolling direction, and the direction of 90 ° with respect to the rolling direction, respectively. 1 and 2 show the influence of hot rolling conditions and hot rolled sheet annealing conditions on the strength-elongation balance and Δr obtained by the above method, respectively.
Shown in
【0011】図1より、γpが20〜80の範囲で、粗
圧延を潤滑一大圧下で圧延した場合には、強度一伸びバ
ランスが大きくなり、かつその効果は仕上げ圧延最終パ
スの圧下率が高いほど顕著である。なお、TS×Elが
18000以上あればプレス成形性は大きく向上すると
言われている。また、図2よりγpが20〜80の範囲
で、粗圧延を潤滑−大圧下および仕上げ圧延を大圧下で
圧延し、さらに熱延板焼鈍の降温過程で700℃の保持
を組み合わせた場合には、面内異方性が非常に小さくな
るが、大圧下圧延を行わない場合や700℃保持を省略
した場合には、面内異方性は0.3を超えてしまうこと
がわかる。From FIG. 1, when γp is in the range of 20 to 80, when the rough rolling is rolled under one large rolling lubrication, the strength-elongation balance becomes large, and the effect is that the rolling reduction in the final rolling final pass is large. The higher the value, the more prominent. It is said that if TS × El is 18,000 or more, the press formability is greatly improved. Further, from FIG. 2, when γp is in the range of 20 to 80, when rough rolling is performed under lubrication-large reduction and finish rolling is performed under large pressure, and further, 700 ° C. is maintained during the temperature reduction process of hot-rolled sheet annealing, Although the in-plane anisotropy becomes very small, it can be seen that the in-plane anisotropy exceeds 0.3 when large reduction rolling is not performed or 700 ° C. holding is omitted.
【0012】次に、本発明において、フェライト系ステ
ンレス鋼帯の製造条件を上記要旨構成のとおりに限定し
た理由について説明する。 (1) γp:20〜80 前記(1) 式で示されるγpが、20未満では伸びの増分
よりも強度低下分の方が大きく、一方70を超えると強
度は大きくなるが伸びが著しく低下する。このためいず
れの場合とも強度一伸びバランスが悪く、プレス成形性
が劣化する。したがって、γpの範囲は20〜80とし
た。なお、好ましい範囲は40〜70である。Next, in the present invention, the reason why the manufacturing conditions of the ferritic stainless steel strip are limited to the above-mentioned constitution will be explained. (1) γp: 20 to 80 If γp represented by the above formula (1) is less than 20, the strength decrease is greater than the increment of elongation, while if it exceeds 70, the strength is increased but the elongation is significantly reduced. . Therefore, in either case, the balance between strength and elongation is poor, and press formability deteriorates. Therefore, the range of γp is set to 20-80. The preferable range is 40 to 70.
【0013】(2) 粗圧延の圧延温度:970〜1150
℃ 粗圧延の圧延温度が970℃未満では、フェライト系ス
テンレス鋼の再結晶が進みにくく加工性が劣り、面内異
方性も改善されないばかりか、大圧下圧延時におけるロ
ール寿命が著しく短くなる。一方1150℃を超えると
フェライト粒が圧延方向に延びた組織になり、面内異方
性が大きくなる。したがって、粗圧延の圧延温度は97
0〜1150℃にする必要がある。なお、好ましい温度
範囲は1000〜1100℃である。(2) Rolling temperature of rough rolling: 970 to 1150
C. If the rolling temperature of the rough rolling is less than 970.degree. C., recrystallization of the ferritic stainless steel is less likely to proceed, the workability is inferior, the in-plane anisotropy is not improved, and the roll life during the large reduction rolling is significantly shortened. On the other hand, when the temperature exceeds 1150 ° C., the ferrite grains have a structure extending in the rolling direction and the in-plane anisotropy increases. Therefore, the rolling temperature of rough rolling is 97
It is necessary to adjust the temperature to 0 to 1150 ° C. The preferable temperature range is 1000 to 1100 ° C.
【0014】(3) 粗圧延の圧下率:40〜75% 粗圧延の圧下率が40%未満では、板厚の中心部に未再
結晶組織が多量に残存するために加工性が劣り、面内異
方性も改善されない。しかし、75%を超えての圧延は
焼き付きを引き起こしたり、噛み込み不良をも引き起こ
す危険性がある。したがって、粗圧延の圧下率は40〜
75%にする必要がある。なお、好ましい圧下率の範囲
は45〜60%である。(3) Rolling reduction of rough rolling: 40 to 75% If the rolling reduction of rough rolling is less than 40%, a large amount of unrecrystallized structure remains in the central portion of the plate thickness, resulting in poor workability. The internal anisotropy is not improved either. However, rolling over 75% may cause seizure or defective biting. Therefore, the reduction ratio of rough rolling is 40 to
Must be 75%. The preferable range of the rolling reduction is 45 to 60%.
【0015】(4) 粗圧延の摩擦係数:0.30以下 粗圧延の摩擦係数が0.30を超えると、鋼板表層部の
強剪断歪み領域では再結晶が起こるが、板厚中心部では
大部分が未再結晶組織として残るので、加工性が劣り、
面内異方性も改善されない。しかも、鋼板とロールとの
焼きつきにより鋼板の表面性状が著しく劣化する。した
がって、粗圧延の摩擦係数は0.30以下、好ましくは
0.2以下とする必要がある。なお、摩擦係数を低下さ
せるための潤滑方法は例えば低融点ガラス系潤滑剤を水
と混合して鋼板またはロールに吹き付ける等任意の方法
でよい。(4) Coefficient of Coefficient of Rough Rolling: 0.30 or Less When the coefficient of friction of rough rolling exceeds 0.30, recrystallization occurs in the high shear strain region of the surface layer of the steel sheet, but large at the center of the thickness. Since the part remains as an unrecrystallized structure, the workability is poor,
The in-plane anisotropy is not improved either. Moreover, the seizure between the steel sheet and the roll significantly deteriorates the surface properties of the steel sheet. Therefore, the coefficient of friction of rough rolling needs to be 0.30 or less, preferably 0.2 or less. The lubrication method for reducing the friction coefficient may be any method such as mixing a low melting glass lubricant with water and spraying it on a steel plate or roll .
【0016】(5)熱延板焼鈍 750〜950℃の温度にlhr以上保持して熱延板焼
鈍するのは、鋼板の再結晶をはかることおよび熱延板中
に残存する変態相をフェライト相と炭化物に分解するこ
とを目的とする。焼鈍条件が750℃に満たないか、l
hrに満たないと再結晶温度および変態相の分解が不十
分なため、強度−伸びバランスが低下する。一方950
℃を超えると、γ相が析出するため、冷間圧延性が低下
するとともに強度−伸びバランスも低下する。また、降
温過程において600〜750℃でlh以上の保持を行
うと、r値が向上し、さらに面内異方性も小さくなる。
これは600〜750℃の保持中に鋼中のC,NがCr
炭窒化物として析出するため冷間圧延前の固溶C,Nが
低減し、r値および面内異方性(Δr)が向上したもの
と考えられる。保持条件が600℃に満たないか、lh
rに満たないとCr炭窒化物の析出量が少なく、r値が
低下する。一方750℃を超えると、Cr炭窒化物の析
出はほとんどなく、鋼中のC,Nは固溶状態となるため
r値が著しく低下する。(5) Hot-rolled sheet annealing Annealing of the hot-rolled sheet at a temperature of 750 to 950 ° C. for at least 1 hr is performed by recrystallization of the steel sheet and the transformation phase remaining in the hot-rolled sheet is ferrite phase. The purpose is to decompose into carbides. If the annealing condition is less than 750 ℃,
If it is less than hr, the recrystallization temperature and the decomposition of the transformation phase are insufficient, so that the strength-elongation balance decreases. Meanwhile 950
If the temperature exceeds ℃, the γ phase is precipitated, so that the cold rolling property is deteriorated and the strength-elongation balance is also deteriorated. When the temperature is held at 600 to 750 ° C. for 1 hour or more, the r value is improved and the in-plane anisotropy is decreased.
This is because C and N in the steel are Cr during holding at 600 to 750 ° C.
It is considered that since it precipitates as carbonitrides, the solid solution C and N before cold rolling were reduced, and the r value and the in-plane anisotropy (Δr) were improved. Holding condition is less than 600 ℃, lh
If it is less than r, the precipitation amount of Cr carbonitride is small and the r value is lowered. On the other hand, when the temperature exceeds 750 ° C., there is almost no precipitation of Cr carbonitride and C and N in the steel are in a solid solution state, so that the r value is remarkably lowered.
【0017】上記(1) の成分のフェライト系ステンレス
鋼に対して、(2) (3) および(4) の条件を満たす粗圧延
を少なくとも1パス行い、さらに(5)の熱延板焼鈍を行
うと、製品の強度一伸びバランスが優れ、面内異方性も
改善される。上記1パスは粗圧延工程のどのパスで行っ
てもよい。このような粗圧延、熱延板焼鈍に引き続い
て、さらに下記条件を満たす仕上げ圧延を施すことによ
り、面内異方性をより一層改善することが可能となる。At least one pass of the rough rolling satisfying the conditions (2), (3) and (4) is performed on the ferritic stainless steel of the above component (1), and then the hot rolled sheet annealing (5) is performed. By doing so, the strength-elongation balance of the product is excellent, and the in-plane anisotropy is also improved. The above 1 pass may be performed in any of the rough rolling steps. Subsequent to such rough rolling and hot-rolled sheet annealing, further finish rolling satisfying the following conditions makes it possible to further improve the in-plane anisotropy.
【0018】(6) 仕上げ圧延の圧延温度:600〜95
0℃ 仕上げ圧延の圧延温度が600℃未満では20%の圧下
率を確保することが困難となり、またロールの磨耗も激
しくなる。一方、圧延温度が950℃を超えると圧延歪
みの蓄積が少ないために、面内異方性の改善効果が期待
できなくなる。したがって、仕上げ圧延の圧延温度は6
00〜950℃の範囲にする必要があり、好ましくは7
50〜900℃の範囲がよい。(6) Rolling temperature for finish rolling: 600 to 95
If the rolling temperature of 0 ° C. finish rolling is less than 600 ° C., it is difficult to secure a reduction rate of 20%, and the roll wear becomes severe. On the other hand, when the rolling temperature exceeds 950 ° C, the effect of improving the in-plane anisotropy cannot be expected because the rolling strain is less accumulated. Therefore, the rolling temperature for finish rolling is 6
It should be in the range of 00 to 950 ° C, preferably 7
The range of 50 to 900 ° C is preferable.
【0019】(7) 仕上げ圧延の圧下率:20〜45% 仕上げ圧延の圧下率が20%未満では面内異方性の改善
が認められず、一方、圧下率が45%を超えると鋼板の
表面性状が劣化する。したがって、仕上げ圧延の圧下率
は20〜45%の範囲にする必要があり、好ましくは2
5〜35%の範囲がよい。(7) Rolling ratio of finish rolling: 20 to 45% If the rolling ratio of finish rolling is less than 20%, the in-plane anisotropy is not improved. On the other hand, if the rolling ratio exceeds 45%, the steel sheet Surface quality deteriorates. Therefore, the rolling reduction of finish rolling must be in the range of 20 to 45%, and preferably 2
The range of 5 to 35% is preferable.
【0020】なお、本発明においては、上述した処理条
件以外の製造条件は常法に従えばよく、例えば、スラブ
加熱1050〜1300℃、粗圧延の温度範囲は900
〜1300℃、仕上げ圧延の温度範囲は550〜105
0℃、冷延板焼鈍は750〜1000℃℃が好ましい。
また、潤滑油の種類、潤滑方法についても常法に従い適
宜に決定すればよい。In the present invention, manufacturing conditions other than the above-mentioned processing conditions may be in accordance with a conventional method. For example, slab heating is from 1050 to 1300 ° C., and a temperature range of rough rolling is 900.
~ 1300 ℃, finish rolling temperature range 550 ~ 105
0 degreeC, and 750-1000 degreeC of cold-rolled board annealing are preferable.
Also, the type of lubricating oil and the lubricating method may be appropriately determined according to a conventional method.
【0021】また、本発明はγpが20〜80を満たす
フェライト系ステンレス鋼であれば成分組成にかかわら
ず適用可能であるが、下記の成分組成とすればより有利
に適合しうる。C:0.1 wt%以下、より好ましくは0.00
10〜0.080wt % 、Si:1.5 wt%以下、より好ましくは
0.10〜0.80wt%、Mn:1.5 wt%以下、より好ましくは0.
10〜1.50wt%、Cr:11〜20wt%、より好ましくは14〜19
wt%、Ni:2.0wt %以下、より好ましくは0.01〜1.0 wt
%、P:0.08wt%以下、より好ましくは0.010 〜0.080w
t % 、S:0.0100wt%以下、より好ましくは0.0010〜
0.0080wt%、N:0.1 wt%以下、より好ましくは0.002
〜0.08wt%、さらに必要に応じて、Nb:0.050 〜0.30wt
%、Ti:0.050 〜0.30wt%、Al:0.010 〜0.20wt%、
V:0.050 〜0.30wt%、Zr:0.050 〜0.30wt%、Mo:0.
50 〜2.5 wt%、Cu:0.50 〜2.5 wt%から選ばれる1
種又は2種以上を含有し、残部はFeおよび不可避的不純
物よりなる組成の鋼。The present invention can be applied to any ferritic stainless steel satisfying γp of 20 to 80 regardless of the component composition, but the following component composition can be applied more advantageously. C: 0.1 wt% or less, more preferably 0.00
10 to 0.080 wt%, Si: 1.5 wt% or less, more preferably
0.10 to 0.80 wt%, Mn: 1.5 wt% or less, more preferably 0.
10 to 1.50 wt%, Cr: 11 to 20 wt%, more preferably 14 to 19
wt%, Ni: 2.0 wt% or less, more preferably 0.01 to 1.0 wt
%, P: 0.08 wt% or less, more preferably 0.010 to 0.080 w
t%, S: 0.0100 wt% or less, more preferably 0.0010 to
0.0080 wt%, N: 0.1 wt% or less, more preferably 0.002
~ 0.08wt%, if necessary, Nb: 0.050 ~ 0.30wt
%, Ti: 0.050 to 0.30 wt%, Al: 0.010 to 0.20 wt%,
V: 0.050 to 0.30 wt%, Zr: 0.050 to 0.30 wt%, Mo: 0.
50-2.5 wt%, Cu: 0.50-2.5 wt% 1
A steel containing one or more kinds, and the balance being Fe and inevitable impurities.
【0022】[0022]
【実施例】実施例1 表1に示す化学組成の鋼A〜Fを、溶製し、スラブとし
た後、1200℃に加熱後、粗4スタンド、仕上げ7ス
タンドからなる熱間圧延機にて板厚4.0mmの熱延板
とした。この際、粗圧延4スタンド目の温度、圧下率、
摩擦係数を変化させた。摩擦係数の調整は潤滑剤(低融
点のガラス系潤滑剤)の濃度を変えることによって行っ
た。なお粗圧延の他のスタンドの圧下率はいずれも4ス
タンド目の圧下率よりは小さくした。また、熱延板焼鈍
は850℃で4時間保持後、降温過程(冷却速度:20
℃/hr)において700℃で2時間保持を行ったの
ち、上記冷却速度で500℃まで冷却した。ただし、一
部のものはこの保持を行わず850℃から500℃まで
20℃/hrの冷却速度で冷却した。この熱延板を通常
の方法に従って、酸洗一冷延一仕上げ焼鈍(850℃×
60秒)により板厚0.7mmの冷延鋼板とした。 Example 1 Steels A to F having the chemical compositions shown in Table 1 were melted into slabs, heated to 1200 ° C., and then hot-rolled with 4 rough stands and 7 finish stands. A hot rolled plate having a plate thickness of 4.0 mm was used. At this time, the temperature of the fourth stand of the rough rolling, the reduction ratio,
The friction coefficient was changed. The friction coefficient was adjusted by changing the concentration of the lubricant (low melting glass lubricant). The rolling reductions of the other stands for rough rolling were all made smaller than the rolling reduction of the fourth stand. Further, the hot-rolled sheet annealing was held at 850 ° C. for 4 hours and then cooled (cooling rate: 20
C./hr) at 700.degree. C. for 2 hours, and then cooled to 500.degree. C. at the above cooling rate. However, some of them were not held and cooled from 850 ° C to 500 ° C at a cooling rate of 20 ° C / hr. This hot-rolled sheet was pickled, cold-rolled and finish-annealed (850 ° C x
By 60 seconds), a cold rolled steel sheet having a sheet thickness of 0.7 mm was obtained.
【0023】[0023]
【表1】 [Table 1]
【0024】上記方法により得られた鋼板を供試材とし
て、強度一伸びバランス、r値、Δrおよびリジングの
各特性値を下記の方法により測定した。なお、従来の方
法で製造したステンレス鋼のΔrは、絶対値で0.4〜
0.8程度であるので、絶対値で0.3以下であれば良
好であるといえる。 ・強度一伸びバランス JIS13号B試験片を用い、引張強さTS(N/mm
2 )と伸びEl(%)との積を求めた。 ・r値 JIS13号B試験片を用い15%引張歪みを与えたの
ち、3点法による平均r値を求めた。 ・Δr 上記方法で求めた各方向のr値から、Δr=(rL -2r
D + rC )/2により求めた。ただし、rL 、rD およ
びrC は、それぞれ圧延方向、圧延方向に対して45°
の方向、圧延方向に対して90°の方向のr値を表す。 ・リジング 圧延方向から採取したJIS5号試験片に20%の引張
歪みを与えたのち、リジング高さを測定した。Using the steel sheet obtained by the above method as a test material, the characteristic values of strength-elongation balance, r value, Δr and ridging were measured by the following methods. The stainless steel manufactured by the conventional method has an absolute value of 0.4 to 0.4.
Since it is about 0.8, it can be said that it is good if the absolute value is 0.3 or less. -Strength / elongation balance Using JIS No. 13B test piece, tensile strength TS (N / mm
2 ) and the elongation El (%) were calculated. -R value After applying a 15% tensile strain using JIS No. 13B test piece, the average r value by the 3-point method was determined. -Δr From the r value in each direction obtained by the above method, Δr = (r L -2r
D + r C ) / 2. However, r L , r D, and r C are 45 ° with respect to the rolling direction and the rolling direction, respectively.
And the r value in the direction of 90 ° to the rolling direction. -Ridging After applying a tensile strain of 20% to the JIS No. 5 test piece taken from the rolling direction, the ridging height was measured.
【0025】上記した粗圧延条件および熱延板焼鈍条件
と得られた特性値を表2に示す。なお、本発明法で製造
した鋼板はすべて、表面性状の劣化、噛み込み不良、形
状不良のいずれをも発生せず良好であった。Table 2 shows the above-mentioned rough rolling conditions and hot-rolled sheet annealing conditions and the obtained characteristic values. In addition, all the steel sheets manufactured by the method of the present invention were good without any deterioration in surface quality, defective biting, or defective shape.
【0026】[0026]
【表2】 [Table 2]
【0027】表2から、本発明方法を適用した鋼板は、
Δrが−0.30〜0.30の範囲にあって小さく、T
S×Elが18000以上であり、しかもr値および耐
リジング性にも優れていることがわかる。From Table 2, the steel plates to which the method of the present invention is applied are:
Δr is small in the range of −0.30 to 0.30, and T
It can be seen that S × El is 18,000 or more, and the r value and ridging resistance are excellent.
【0028】実施例2 表1に示す化学組成の鋼A〜Fを、溶製し、スラブとし
た後、1230℃に加熱後、粗4スタンド、仕上げ7ス
タンドからなる熱間圧延機にて板厚4.0mmの熱延板
とした。この際、粗圧延4スタンド目の温度、圧下率、
摩擦係数を変化させた。摩擦係数の調整は潤滑剤(低融
点のガラス系潤滑剤)の濃度を変えることによって行っ
た。なお粗圧延の他のスタンドの圧下率はいずれも4ス
タンド目の圧下率よりは小さくした。さらに仕上げ圧延
の最終パスの温度および圧下率も変化させた。ただし、
仕上げ圧延の他のスタンドの圧下率はいずれも最終スタ
ンドの圧下率よりは小さくした。また、熱延板焼鈍は8
50℃で4時間保持後、降温過程(冷却速度:20℃/
hr)において700℃で2時間保持を行ったのち、上
記冷却速度で500℃まで冷却した。ただし、一部のも
のはこの保持を行わず850℃から500℃まで20℃
/hrの冷却速度で冷却した。この熱延板を通常の方法
に従って、酸洗一冷延一仕上げ焼鈍(850℃×60
秒)により板厚0.7mmの冷延鋼板とした。上記方法
により得られた鋼板を供試材として、TS×El、r
値、Δrおよびリジングの各特性値を実施例1と同様の
方法により測定した。 Example 2 Steels A to F having the chemical compositions shown in Table 1 were smelted into slabs, heated to 1230 ° C., and then rolled by a hot rolling mill consisting of coarse 4 stands and finishing 7 stands. The hot-rolled sheet had a thickness of 4.0 mm. At this time, the temperature of the fourth stand of the rough rolling, the reduction ratio,
The friction coefficient was changed. The friction coefficient was adjusted by changing the concentration of the lubricant (low melting glass lubricant). The rolling reductions of the other stands for rough rolling were all made smaller than the rolling reduction of the fourth stand. Further, the temperature and the rolling reduction in the final pass of finish rolling were also changed. However,
The rolling reductions of the other stands in finish rolling were all smaller than the rolling reduction of the final stand. The hot rolled sheet annealing is 8
After holding at 50 ° C for 4 hours, the temperature decreasing process (cooling rate: 20 ° C /
After holding for 2 hours at 700 ° C. in hr), it was cooled to 500 ° C. at the above cooling rate. However, some of them do not hold this temperature, from 850 ℃ to 500 ℃, 20 ℃
It was cooled at a cooling rate of / hr. This hot-rolled sheet was pickled, cold-rolled and finish-annealed (850 ° C x 60
Seconds) to obtain a cold rolled steel sheet having a thickness of 0.7 mm. Using the steel sheet obtained by the above method as a test material, TS × El, r
Values, Δr, and ridging characteristic values were measured in the same manner as in Example 1.
【0029】上記した粗圧延条件および熱延板焼鈍条件
と得られた特性値を表3に示す。なお、本発明法で製造
した鋼板はすべて、表面性状の劣化、噛み込み不良、形
状不良のいずれをも発生せず良好であった。Table 3 shows the above-mentioned rough rolling conditions and hot-rolled sheet annealing conditions and the obtained characteristic values. In addition, all the steel sheets manufactured by the method of the present invention were good without any deterioration in surface quality, defective biting, or defective shape.
【0030】[0030]
【表3】 [Table 3]
【0031】表3から、本発明方法を適用した鋼板は、
Δrが−0.30〜0.30の範囲にあって小さく、T
S×Elが18000以上であり、しかもr値および耐
リジング性にも優れていることがわかる。From Table 3, the steel plates to which the method of the present invention is applied are:
Δr is small in the range of −0.30 to 0.30, and T
It can be seen that S × El is 18,000 or more, and the r value and ridging resistance are excellent.
【0032】[0032]
【発明の効果】上述したように、本発明法によれば、r
の面内異方性が小さく、強度−伸びバランスに優れ、し
かもr値および耐リジング性にも優れるフェライト系ス
テンレス鋼帯の製造が可能となる。したがって、本明法
によれば、従来適用が困難であったような加工部材への
フェライト系ステンレス鋼の適用が可能となり、ステン
レス製品の高品質化、コスト低下に寄与するところ大で
ある。As described above, according to the method of the present invention, r
It is possible to manufacture a ferritic stainless steel strip having a small in-plane anisotropy, excellent strength-elongation balance, and excellent r value and ridging resistance. Therefore, according to the present method, it becomes possible to apply the ferritic stainless steel to a processed member, which has been difficult to apply conventionally, which contributes to the quality improvement and cost reduction of stainless steel products.
【図1】TS×Elに及ぼすγp、熱延、焼鈍条件の影
響を示すグラフである。FIG. 1 is a graph showing the effects of γp, hot rolling, and annealing conditions on TS × El.
【図2】r値の面内異方性に及ぼすγp、熱延、焼鈍条
件の影響を示すグラフである。FIG. 2 is a graph showing the influence of γp, hot rolling, and annealing conditions on the in-plane anisotropy of r value.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 宇城 工 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内内 (72)発明者 小林 眞 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 金成 昌平 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Uki Ko, 1 Kawasaki-cho, Chuo-ku, Chiba, Chiba Prefecture Inside the Technical Research Laboratory, Kawasaki Steel Co., Ltd. (72) Inventor Makoto Kobayashi 1 Kawasaki-cho, Chuo-ku, Chiba-shi Kawasaki Steel Co., Ltd. Chiba Steel Works (72) Inventor Shohei Kanari 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Co., Ltd.
Claims (2)
および仕上げ圧延よりなる熱間圧延を施し、その後熱延
板焼鈍、酸洗を経て、冷間圧延、さらに仕上げ焼鈍を行
ってステンレス鋼帯を製造する方法において、 前記フェライト系ステンレス鋼の化学組成から算出され
る下記(1) 式で表されるγpを20〜80とし、前記粗
圧延工程のうちの少なくとも1パスの圧延を、圧延温度
970〜1150℃、摩擦係数0.3以下かつ圧下率4
0〜75%の条件で行い、さらに前記熱延板焼鈍工程に
おいて750〜950℃で1hr以上の保持を行い、か
つその降温過程において600〜750℃で1hr以上
の保持を行うことを特徴とする面内異方性が小さく強度
−伸びバランスに優れるフェライト系ステンレス鋼帯の
製造方法。 記 γp=288(Cwt%)+350(Nwt%)+22(Niwt%)+7.5(Mn wt%)―18.75(Crwt%)―54(Siwt%)+338.5 ……(1) 1. A stainless steel strip is obtained by subjecting a ferritic stainless steel material to hot rolling consisting of rough rolling and finish rolling, followed by hot-rolled sheet annealing, pickling, cold rolling and finish annealing. In the manufacturing method, γp represented by the following formula (1) calculated from the chemical composition of the ferritic stainless steel is set to 20 to 80, and at least one pass of the rough rolling step is performed at a rolling temperature of 970. ~ 1150 ° C, friction coefficient 0.3 or less and rolling reduction 4
It is carried out under the condition of 0 to 75%, and further, it is held for 1 hr or more at 750 to 950 ° C. in the hot-rolled sheet annealing step, and is held for 1 hr or more at 600 to 750 ° C. in the temperature decreasing process. A method for producing a ferritic stainless steel strip having a small in-plane anisotropy and an excellent strength-elongation balance. Note γp = 288 (Cwt%) + 350 (Nwt%) + 22 (Niwt%) + 7.5 (Mn wt%)-18.75 (Crwt%)-54 (Siwt%) + 338.5 (1)
および仕上げ圧延よりなる熱間圧延を施し、その後熱延
板焼鈍、酸洗を経て、冷間圧延、さらに仕上げ焼鈍を行
ってステンレス鋼帯を製造する方法において、 前記フェライト系ステンレス鋼の化学組成から算出され
る下記(1) 式で表されるγpを20〜80とし、前記粗
圧延工程のうちの少なくとも1パスの圧延を、圧延温度
970〜1150℃、摩擦係数0.3以下かつ圧下率4
0〜75%の条件で行い、また前記仕上げ圧延工程のう
ちの少なくとも1パスの圧延を、圧延温度600〜95
0℃、圧下率20〜45%の条件で行い、さらに前記熱
延板焼鈍工程において750〜950℃で1hr以上の
保持を行い、かつその降温過程において600〜750
℃で1hr以上の保持を行うことを特徴とする面内異方
性が小さく強度−伸びバランスに優れるフェライト系ス
テンレス鋼帯の製造方法。 記 γp=288(Cwt%)+350(Nwt%)+22(Niwt%)+7.5(Mn wt%)―18.75(Crwt%)―54(Siwt%)+338.5……(1)2. A stainless steel strip is obtained by subjecting a ferritic stainless steel material to hot rolling consisting of rough rolling and finish rolling, followed by hot rolling sheet annealing, pickling, cold rolling and finish annealing. In the manufacturing method, γp represented by the following formula (1) calculated from the chemical composition of the ferritic stainless steel is set to 20 to 80, and at least one pass of the rough rolling step is performed at a rolling temperature of 970. ~ 1150 ° C, friction coefficient 0.3 or less and rolling reduction 4
The rolling temperature is 600 to 95 at least 1 pass of the finish rolling step.
It is carried out under the conditions of 0 ° C. and a reduction rate of 20 to 45%, and further, it is held at 750 to 950 ° C. for 1 hour or more in the hot rolled sheet annealing step, and 600 to 750 in the temperature lowering process.
A method for producing a ferritic stainless steel strip having a small in-plane anisotropy and an excellent strength-elongation balance, which is characterized by holding at 0 ° C for 1 hour or more. Note γp = 288 (Cwt%) + 350 (Nwt%) + 22 (Niwt%) + 7.5 (Mn wt%)-18.75 (Crwt%)-54 (Siwt%) + 338.5 ... (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05469495A JP3484805B2 (en) | 1995-03-14 | 1995-03-14 | Method for producing ferritic stainless steel strip with low in-plane anisotropy and excellent strength-elongation balance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05469495A JP3484805B2 (en) | 1995-03-14 | 1995-03-14 | Method for producing ferritic stainless steel strip with low in-plane anisotropy and excellent strength-elongation balance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08253818A true JPH08253818A (en) | 1996-10-01 |
JP3484805B2 JP3484805B2 (en) | 2004-01-06 |
Family
ID=12977914
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05469495A Expired - Fee Related JP3484805B2 (en) | 1995-03-14 | 1995-03-14 | Method for producing ferritic stainless steel strip with low in-plane anisotropy and excellent strength-elongation balance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3484805B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11100617A (en) * | 1997-09-24 | 1999-04-13 | Sumitomo Metal Ind Ltd | Production of cold rolled ferritic stainless steel sheet |
EP0924313A1 (en) * | 1997-12-19 | 1999-06-23 | Armco Inc. | Non-ridging ferritic chromium alloyed steel |
JP2000273547A (en) * | 1999-03-19 | 2000-10-03 | Nippon Steel Corp | Production of ferritic stainless steel sheet excellent in surface property |
JP2001003143A (en) * | 1999-06-22 | 2001-01-09 | Nippon Steel Corp | Ferritic stainless steel sheet excellent in workability and surface characteristics, and its manufacture |
JP2001316775A (en) * | 1999-12-03 | 2001-11-16 | Kawasaki Steel Corp | Ferritic stainless steel sheet excellent in ridging resistance and formability and its production method |
JP2002194507A (en) * | 2000-12-25 | 2002-07-10 | Nisshin Steel Co Ltd | Ferritic stainless steel superior in workability with less planar anisotropy and production method for the same |
JP2002194508A (en) * | 2000-12-25 | 2002-07-10 | Nisshin Steel Co Ltd | Ferritic stainless steel sheet superior in workability and production method for the same |
JP2006328524A (en) * | 2005-01-24 | 2006-12-07 | Nippon Steel & Sumikin Stainless Steel Corp | Ferritic stainless steel thin sheet reduced in plane anisotropy upon forming and excellent in ridging resistance and roughening resistance, and method for producing the same |
JP2006328525A (en) * | 2005-01-24 | 2006-12-07 | Nippon Steel & Sumikin Stainless Steel Corp | Low carbon-low nitrogen ferritic stainless steel thin sheet having reduced plane anisotropy upon forming and having excellent ridging resistance and roughening resistance, and method for producing the same |
JP2010095742A (en) * | 2008-10-15 | 2010-04-30 | Jfe Steel Corp | Cold-rolled stainless steel sheet showing adequate strength-elongation balance and small ridging, and method for manufacturing the same |
JP2019002053A (en) * | 2017-06-16 | 2019-01-10 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel sheet, steel tube, ferritic stainless member for exhaust system component, and manufacturing method of ferritic stainless steel sheet |
-
1995
- 1995-03-14 JP JP05469495A patent/JP3484805B2/en not_active Expired - Fee Related
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11100617A (en) * | 1997-09-24 | 1999-04-13 | Sumitomo Metal Ind Ltd | Production of cold rolled ferritic stainless steel sheet |
EP0924313A1 (en) * | 1997-12-19 | 1999-06-23 | Armco Inc. | Non-ridging ferritic chromium alloyed steel |
JP2000273547A (en) * | 1999-03-19 | 2000-10-03 | Nippon Steel Corp | Production of ferritic stainless steel sheet excellent in surface property |
JP2001003143A (en) * | 1999-06-22 | 2001-01-09 | Nippon Steel Corp | Ferritic stainless steel sheet excellent in workability and surface characteristics, and its manufacture |
JP2001316775A (en) * | 1999-12-03 | 2001-11-16 | Kawasaki Steel Corp | Ferritic stainless steel sheet excellent in ridging resistance and formability and its production method |
JP4590719B2 (en) * | 1999-12-03 | 2010-12-01 | Jfeスチール株式会社 | Ferritic stainless steel sheet excellent in ridging resistance and formability and method for producing the same |
JP2002194508A (en) * | 2000-12-25 | 2002-07-10 | Nisshin Steel Co Ltd | Ferritic stainless steel sheet superior in workability and production method for the same |
JP4562281B2 (en) * | 2000-12-25 | 2010-10-13 | 日新製鋼株式会社 | Ferritic stainless steel sheet with excellent workability and method for producing the same |
JP4562280B2 (en) * | 2000-12-25 | 2010-10-13 | 日新製鋼株式会社 | Ferritic stainless steel with excellent workability and small in-plane anisotropy and method for producing the same |
JP2002194507A (en) * | 2000-12-25 | 2002-07-10 | Nisshin Steel Co Ltd | Ferritic stainless steel superior in workability with less planar anisotropy and production method for the same |
JP2006328524A (en) * | 2005-01-24 | 2006-12-07 | Nippon Steel & Sumikin Stainless Steel Corp | Ferritic stainless steel thin sheet reduced in plane anisotropy upon forming and excellent in ridging resistance and roughening resistance, and method for producing the same |
JP2006328525A (en) * | 2005-01-24 | 2006-12-07 | Nippon Steel & Sumikin Stainless Steel Corp | Low carbon-low nitrogen ferritic stainless steel thin sheet having reduced plane anisotropy upon forming and having excellent ridging resistance and roughening resistance, and method for producing the same |
JP2010095742A (en) * | 2008-10-15 | 2010-04-30 | Jfe Steel Corp | Cold-rolled stainless steel sheet showing adequate strength-elongation balance and small ridging, and method for manufacturing the same |
JP2019002053A (en) * | 2017-06-16 | 2019-01-10 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel sheet, steel tube, ferritic stainless member for exhaust system component, and manufacturing method of ferritic stainless steel sheet |
Also Published As
Publication number | Publication date |
---|---|
JP3484805B2 (en) | 2004-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR950013188B1 (en) | Process for the production of a strip of a chromium stainless steel of a duplex structure having high strength and elongation as will as reduced plane anisotropy | |
EP2415893B1 (en) | Steel sheet excellent in workability and method for producing the same | |
JP2772237B2 (en) | Method for producing ferritic stainless steel strip with small in-plane anisotropy | |
US7959747B2 (en) | Method of making cold rolled dual phase steel sheet | |
EP0574814B2 (en) | High-strength cold-rolled steel sheet excelling in deep drawability and method of producing the same | |
KR950013187B1 (en) | Process for the production of a strip of a chromium staimless steel of a duplex structure having high strength and elong tion as wellas reduced plane anisotropy | |
JPH0814004B2 (en) | Method for producing high-ductility and high-strength dual-phase chrome stainless steel strip with excellent corrosion resistance | |
JP2007291514A (en) | Hot-rolled steel sheet with small in-plane anisotropy after cold rolling and recrystallization annealing, cold-rolled steel sheet with small in-plane anisotropy and production method therefor | |
JP3484805B2 (en) | Method for producing ferritic stainless steel strip with low in-plane anisotropy and excellent strength-elongation balance | |
EP1394276B1 (en) | High tensile hot-rolled steel sheet excellent in resistance to scuff on mold and in fatigue characteristics | |
JP2001089815A (en) | Method of manufacturing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance | |
JP3493722B2 (en) | Method for producing ferritic stainless steel strip with excellent stretch formability | |
JP2001207244A (en) | Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method | |
JP3379826B2 (en) | Ferritic stainless steel sheet with small in-plane anisotropy and method for producing the same | |
JP3709709B2 (en) | Ferritic stainless steel with excellent formability and manufacturing method thereof | |
JP2001089814A (en) | Method of manufacturing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance | |
JPS6052551A (en) | Steel having high ductility and high workability and its production | |
JP3911075B2 (en) | Manufacturing method of steel sheet for ultra deep drawing with excellent bake hardenability | |
EP4407062A1 (en) | Ultra-high strength cold-rolled steel sheet having excellent hole-expandability and method for manufacturing same | |
JP2001098327A (en) | Method of producing ferritic stainless steel excellent in ductility, workability and ridging resistance | |
EP4403662A1 (en) | A cold rolled steel and a production process to it | |
JP3043901B2 (en) | Method for producing high-strength cold-rolled steel sheet and galvanized steel sheet with excellent deep drawability | |
JP2001107149A (en) | Method for producing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance | |
US20240167137A1 (en) | High strength cold rolled steel sheet for automotive use having excellent global formability and bending property | |
JP3369619B2 (en) | Method for producing high-strength cold-rolled steel sheet excellent in deep drawability and ductility and method for producing hot-dip galvanized steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071024 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081024 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091024 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101024 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101024 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111024 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111024 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121024 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121024 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131024 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |