[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH08241869A - Plasma treatment method - Google Patents

Plasma treatment method

Info

Publication number
JPH08241869A
JPH08241869A JP6189096A JP6189096A JPH08241869A JP H08241869 A JPH08241869 A JP H08241869A JP 6189096 A JP6189096 A JP 6189096A JP 6189096 A JP6189096 A JP 6189096A JP H08241869 A JPH08241869 A JP H08241869A
Authority
JP
Japan
Prior art keywords
substrate
plasma
hydrogen
reaction furnace
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6189096A
Other languages
Japanese (ja)
Other versions
JP2802747B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP8061890A priority Critical patent/JP2802747B2/en
Publication of JPH08241869A publication Critical patent/JPH08241869A/en
Application granted granted Critical
Publication of JP2802747B2 publication Critical patent/JP2802747B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE: To clean the inside of a reaction furnace by a method wherein impurities existing in a reaction chamber are removed by forming a plasma consisting of hydrogen and hydrogen chloride or chlorine in the reaction furnace forming a film on a substrate surface. CONSTITUTION: A pair of electrodes 9, 10 is arranged outside a reaction furnace 25 arranging a substrate 1 inside. As a pretreatment step for forming a film on a substrate 1, a reaction furnace 25 is evacuated and a hydrogen plasma is formed by electromagnetic energy from the electrodes 9, 10 to perform plasma cleaning, and absorbed moisture and oxygen on a surface of the substrate 1 are removed. Further, after removing hydrogen, helium is made plasma and further hydrogen on a surface of the substrate 1 is removed. For this hydrogen plasma generation, hydrogen chloride or chlorine is added to hydrogen (for example, 1 to 5%), chlorine radical is simultaneously generated and this radical sucks an alkali metal like sodium in a quartz holder, and also chlorine which is left and sucked on a wall surface is removed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はプラズマ気相法によ
り、再現性、特性のよい半導体装置を作製する方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device having good reproducibility and characteristics by a plasma vapor phase method.

【0002】[0002]

【従来の技術】本発明はプラズマ気相法により反応炉内
に設けられた基板上にP型およびN型の半導体層を有す
る第1の半導体装置を形成した後、この半導体装置のN
またはP型不純物が次に作られるPまたはN型の半導体
装層中に反応装置の内壁または基板のホルダーより再放
出され、これが1015〜1018cm-3の濃度で混入されて
しまうことを防止するため、この各工程の間に前回作ら
れた半導体層上に真性または実質的に真性(以下I層と
いう)のコーティング用の被膜を形成する工程(この場
合は次の工程の最初に作られる被膜をコーティングして
もよい)により実質的に過去の履歴を除去してしまうこ
とを目的としている。
2. Description of the Related Art In the present invention, after a first semiconductor device having P-type and N-type semiconductor layers is formed on a substrate provided in a reaction furnace by a plasma vapor phase method, the N-type semiconductor device is formed.
Alternatively, P-type impurities may be re-emitted from the inner wall of the reactor or the holder of the substrate into the P- or N-type semiconductor layer to be formed next, and this may be mixed in at a concentration of 10 15 -10 18 cm -3. In order to prevent this, a step of forming a coating film for the intrinsic or substantially intrinsic (hereinafter referred to as I layer) coating on the semiconductor layer previously produced during each step (in this case, the step of forming at the beginning of the next step). The coating may be coated) to substantially remove the past history.

【0003】さらにまたは前回作られた半導体層のう
ち、反応装置の内壁、基板ホルダー等の表面に付着した
ものをCF等の反応性気体をプラズマ化することにより
除去してしまう工程を設けることを目的とする。
Further, it is necessary to provide a step of removing the previously deposited semiconductor layers adhered to the inner wall of the reaction apparatus, the surface of the substrate holder and the like by converting reactive gas such as CF into plasma. To aim.

【0004】かくすることにより再現性よくRUN−T
O−RUNの特性バラツキを少なくするとともに、その
得られた特性もきわめてすぐれたものとすることができ
るという特徴を有する。
By doing so, the RUN-T can be reproduced with good reproducibility.
The characteristics of O-RUN can be reduced and the obtained characteristics can be made very excellent.

【0005】また本発明は反応炉内に設けられた基板上
に少なくともひとつの接合特にPIN,PI,NIまた
はPN接合を有する半導体装置において、反応炉の内壁
特にプラズマ原子または反応性気体が衝突する内壁より
不純物特に酸素、アルカリ金属原子が放出されることを
防ぐため、これらの表面にあらかじめ真性または実質的
に真性の半導体層例えば非単結晶珪素を形成することを
目的としている。
Further, according to the present invention, in a semiconductor device having at least one junction, especially PIN, PI, NI or PN junction on a substrate provided in a reaction furnace, inner walls of the reaction furnace, particularly plasma atoms or reactive gas collide. In order to prevent the release of impurities, particularly oxygen and alkali metal atoms, from the inner wall, it is intended to form an intrinsic or substantially intrinsic semiconductor layer such as non-single-crystal silicon in advance on the surface of these.

【0006】本発明はこれらの実質的に除去するための
コーティングにより再放出を防ぐため、半導体層を半導
体装置の作製に必要な電磁エネルギの出力Po例えば5
〜100W、温度To例えば200〜320℃に対し、
Po−10W(但し最低5Wとする)〜Po+30Wの
範囲、またTo−50℃〜To+50℃特に好ましくは
Po,Toと同じまたは概略同じ条件にて作製し、0.
2〜1μの厚さに形成せしめることを特徴としている。
In order to prevent re-emission with the coating for substantially removing them, the present invention causes the semiconductor layer to output the electromagnetic energy Po necessary for manufacturing a semiconductor device, eg, Po.
~ 100W, temperature To, for example, 200 ~ 320 ℃,
Po-10W (provided that the minimum is 5W) to Po + 30W, and To-50 ° C to To + 50 ° C are particularly preferably prepared under the same or substantially the same conditions as Po and To, and 0.
It is characterized in that it is formed to a thickness of 2-1 μm.

【0007】従来プラズマCVD法に関しては、ひとつ
の反応炉にてPIN接合等を有する半導体装置の作製が
行なわれていた。しかしこの接合をくりかえし行なう
と、全くわけのわからない劣化、バラツキに悩まされて
しまい、半導体装置としての信頼性に不適当なものしか
できなかった。
In the conventional plasma CVD method, a semiconductor device having a PIN junction or the like has been manufactured in one reaction furnace. However, if this bonding is repeated, it suffers from completely indefinite deterioration and variation, and only the reliability as a semiconductor device is unsuitable.

【0008】この原因を1べた結果、この最大の原因
は、反応炉内に付着している酸素、アルカリ金属が半導
体層中に混入して、電気伝導度の低下をもたらすもので
あり、酸素にあっては1PPMの混入であっても、暗伝
導度10-6(Ωcm)-1を10-8(Ωcm)-1と1/100
にまで下げてしまっていた。
As a result of one of the causes, the most significant cause is that oxygen and alkali metals adhering to the inside of the reaction furnace are mixed in the semiconductor layer, resulting in a decrease in electric conductivity. Even if 1PPM is mixed, the dark conductivity of 10 -6 (Ωcm) -1 is 10 -8 (Ωcm) -1 and 1/100.
Had been lowered to.

【0009】またアルカリ金属にあっても、5PPMの
混入において、P型、I型の伝導度の低下また透明導電
膜の伝導度の低下をもたらしてしまった。
Further, even in the case of alkali metal, the incorporation of 5PPM causes a decrease in the conductivity of P-type and I-type and a decrease in the conductivity of the transparent conductive film.

【0010】これらの混入を防ぐため、反応炉内の内壁
また基板ホルダー(ボートともいう)の特にプラズマに
よる反応性気体にスパッタされる部分に対して、あらか
じめ半導体層を0.2〜2μの厚さに形成させ、コーテ
ィングしてしまうことがきわめて重要であった。さらに
再現性特性劣化に対しては、ひとつの半導体装置の作製
に対し、その最後の工程がNまたはP型半導体層を作り
また次の最初の工程にPまたはN型の半導体層を作ろう
とした時、1015〜1018cm-3の濃度に最初の不純物例
えばリンがP型半導体中に混入してしまう。このためP
型半導体層は例えば1018〜1021cm-3の濃度にホウ素
を添加してP型層としてもその電気伝導度はリンの混入
により再結合中心が増加するためきわめて特性が悪く、
混入がない場合10-2〜10+1(Ωcm)-1に対し、10
-6〜10-4(Ωcm)-1と1/100〜1/1000しか
得られなかった。
In order to prevent these contaminations, a semiconductor layer having a thickness of 0.2 to 2 μm is previously formed on the inner wall of the reaction furnace or the portion of the substrate holder (also referred to as a boat) which is sputtered by the reactive gas due to the plasma. It was extremely important to form and coat it. Further, with respect to deterioration of reproducibility characteristics, an attempt was made to form an N or P type semiconductor layer in the last step and to form a P or N type semiconductor layer in the next first step in the production of one semiconductor device. At this time, the first impurities such as phosphorus are mixed in the P-type semiconductor at a concentration of 10 15 to 10 18 cm -3 . Therefore, P
For example, even if a p-type layer is formed by adding boron to a concentration of 10 18 to 10 21 cm −3 , the electric conductivity of the p-type semiconductor layer is extremely poor because the recombination centers increase due to the incorporation of phosphorus.
When there is no mixture, 10 -2 to 10 +1 (Ωcm) -1 against 10
Only -6 to 10 -4 (Ωcm) -1 and 1/100 to 1/1000 were obtained.

【0011】このためPIN型光電変換装置においては
2〜4%の効率を各ランごとのバラツキを±200%も
有して得られたにすぎず好ましくなかった。しかし本発
明方法にあっては、8〜10%の約3〜5倍の高い変換
効率を得ることができるようになった。
Therefore, in the PIN photoelectric conversion device, an efficiency of 2 to 4% was obtained only with a variation of ± 200% for each run, which was not preferable. However, according to the method of the present invention, it has become possible to obtain a high conversion efficiency of about 3 to 5 times, which is 8 to 10%.

【0012】またこの不純物酸素ドーピングの効果を少
なくするため、本発明人の出願になる特許願 半導体装
置作製方法 56−55608(原表示53−1528
87昭和53年12月10日出願)が知られている。こ
れは例えばPIN半導体装置を作ろうとする時、各P
層、I層、N層をそれぞれ独立の反応炉を作り、基板を
その層間を移動せしめることにより行わんとするもので
ある。この方法にあっては、本発明と同じ対策を持つこ
とができ、きわめて好ましい電気的特性を得ることがで
きる。しかしその場合、装置はひとつの室の方式の3倍
であり、製造コストが2.5〜3倍も高価になってしま
う。さらに多量生産向きでない等の欠点を有していた。
In order to reduce the effect of the impurity oxygen doping, a patent application for semiconductor device fabrication method filed by the inventor of the present invention is 56-55608 (original display 53-1528).
87 filed on Dec. 10, 1978) is known. For example, when making a PIN semiconductor device, each P
Layers, I layers, and N layers are made into independent reactors, and the substrate is moved between the layers. This method can have the same measures as those of the present invention, and can obtain extremely preferable electric characteristics. However, in that case, the apparatus is three times as much as the one-chamber system, and the manufacturing cost is 2.5 to 3 times more expensive. Further, it has a defect that it is not suitable for mass production.

【0013】本発明はかかる反応炉において、特に横型
の反応炉において特に有効である。また多量に基板上に
半導体装置を作ろうとする時特に有効であり、半導体装
置ひとつあたりの装置の減価償却を含めて、製造コスト
をたて型反応炉の1/100にできるという大きな特徴
を有している。すなわち本発明はかかる多量生産用に横
型に配置された反応炉または反応筒(10〜30cmφ、
長さ1〜5m)を用いる方法を中心として記す。
The present invention is particularly effective in such a reactor, especially in a horizontal reactor. In addition, it is particularly effective when trying to make a large number of semiconductor devices on a substrate, and has a major feature that the manufacturing cost including depreciation of each semiconductor device can be reduced to 1/100 of that of a vertical reactor. are doing. That is, the present invention is directed to such a horizontally arranged reaction furnace or reaction tube (10 to 30 cmφ,
A method using a length of 1 to 5 m) will be mainly described.

【0014】かかる反応筒の外側に一対の反応性気体を
プラズマ化する電磁エネルギ供給用の電極と該電極の外
側にこの反応筒および電極を囲んで加熱装置とを具備
し、この反応炉内を炉方向に反応性気体を流し、この気
体の流れにそって基板を配置せしめたものである。
An electrode for supplying electromagnetic energy for converting a pair of reactive gases into plasma is provided outside the reaction tube, and a heating device is provided outside the electrode so as to surround the reaction tube and the electrode. A reactive gas is caused to flow in the direction of the furnace, and the substrate is arranged along the flow of this gas.

【0015】さらにかかる装置内に一対の電極により発
生する電磁界に垂直または平行に基板を配置し、これを
複数段または複数列配置して2〜20cm□の基板例えば
10cm□の基板を20段20列計400枚の被形成面上
に一度に被膜特に珪素、炭素炭化珪素または珪素ゲルマ
ニューム、ゲルマニューム被膜すなわち4価の元素を中
心とした半導体被膜を形成せしめることを中心として記
す。
Further, substrates are arranged in the apparatus in a direction perpendicular or parallel to an electromagnetic field generated by a pair of electrodes, and the substrates are arranged in a plurality of stages or a plurality of rows to form a substrate of 2 to 20 cm □, for example, 20 stages of 10 cm □ substrates. It is mainly described that a film, in particular, a silicon, carbon silicon carbide or silicon germanium, germanium film, that is, a semiconductor film mainly composed of a tetravalent element is formed on one surface of 400 sheets of 20 rows in total.

【0016】本発明は炭素─珪素結合を有する水素化物
またはハロゲン化物(炭化珪化物気体)よりなる反応性
気体、シラン(Sin 2n+1 n≧l)の如き珪化物気
体またはアセチレン等の炭化水素を用いて被形成面上に
非単結晶の炭化珪素、珪素または炭素を主成分とする被
膜を0.05〜1torrの反応炉圧力で100〜40
0℃の温度で形成せしめるプラズマ気相法に関する。
The present invention relates to a reactive gas composed of a hydride or a halide (carbide silicide gas) having a carbon-silicon bond, a silicide gas such as silane (Si n H 2n + 1 n ≧ l) or acetylene. A non-single crystal silicon carbide, silicon or carbon-based coating film is formed on the surface to be formed using hydrocarbons at a reactor pressure of 0.05 to 1 torr at a pressure of 100 to 40
The present invention relates to a plasma vapor phase method for forming at a temperature of 0 ° C.

【0017】本発明はさらにかかる反応性気体に3価の
不純物であるB,Al,Ga,Inを含む不純物気体例
えばジボラン(B2 6 )、5価の不純物を含む不純物
気体例えばフォスフィン(PH3 )またはアルシン(A
sH3 )を漸次添加して被形成面を有する基板上に密接
してP型層、さらにI型層およびN型層をPINの順序
にて積層形成せしめ、これをくりかえし、安定して作製
することを目的としている。さらに本発明はプラズマ化
する電磁エネルギのパワーにより、アモルファス構造の
半導体(ASという)、5〜100Åの大きさの微結晶
性を有するセミアモルファス(半非晶質、以下SASと
いう)または5〜200Åの大きさのマイクロポリクリ
スタル(微多結晶、以下PCという)の構造を有する半
導体の如き非単結晶半導体膜を作製せんとするものであ
る。さらに強い電磁エネルギを与える場合、基板表面で
はスパッタされた電気的に欠陥だらけのアモルファス構
造になりやすい。かかる欠陥構造をなくすため、基板は
互いに10〜40mm代表的には20〜25mm離間し、プ
ラズマ反応に200〜500Wという高いエネルギが必
要な場合であっても、被形成面上にはこのスピーシスの
実質的なプラズマエネルギを得る距離を基板間の距離で
制御し、実質的に2〜20Wという弱いパワーで被膜化
せしめると同等の特性を有せしめたことを特徴とする。
The present invention further includes an impurity gas containing trivalent impurities such as B, Al, Ga and In, such as diborane (B 2 H 6 ), and an impurity gas containing pentavalent impurities such as phosphine (PH). 3 ) or arsine (A
sH 3 ) is gradually added so that the P-type layer, the I-type layer and the N-type layer are further laminated in the order of PIN in close contact with the substrate having the surface to be formed, and this is repeated and stably manufactured. Is intended. Further, the present invention uses a semiconductor having an amorphous structure (referred to as AS), a semi-amorphous (semi-amorphous, hereinafter referred to as SAS) having a crystallinity of 5 to 100 Å, or 5 to 200 Å by the power of electromagnetic energy to generate plasma. A non-single-crystal semiconductor film such as a semiconductor having a micro-polycrystal (micro-polycrystal, hereinafter referred to as PC) structure having a size of 1 is produced. When stronger electromagnetic energy is applied, the substrate surface is apt to have an amorphous structure sputtered with defects. In order to eliminate such a defect structure, the substrates are separated from each other by 10 to 40 mm, typically 20 to 25 mm, and even when high energy of 200 to 500 W is required for the plasma reaction, this spice is formed on the surface to be formed. It is characterized in that it has characteristics equivalent to those obtained by controlling the distance for obtaining substantial plasma energy by the distance between the substrates and forming a film with a weak power of substantially 2 to 20 W.

【0018】このため本発明においては、その出発物質
である反応性気体に炭化珪素(SixC1-x 0<x<
1)を作ろうとした場合、炭素─珪素結合を有する材料
を用いた。すなわち炭素─珪素結合を有する水素化物ま
たはハロゲン化物例えばテトラメチルシラン (Si(CH
3)4)(単にTMSという)、テトラエチルシラン (Si
(C2 5)4), (Si(CH3)xCl4-x (1≦x≦3)
Si(CH3)xH4-x (1≦x≦3)等の反応性気体を用
いて反応生成物中にSi−C結合を得やすくしている。
Therefore, in the present invention, silicon carbide (SixC 1-x 0 <x <
When trying to make 1), a material having a carbon-silicon bond was used. That is, a hydride or a halide having a carbon-silicon bond such as tetramethylsilane (Si (CH
3 ) 4 ) (simply called TMS), tetraethylsilane (Si
(C 2 H 5 ) 4 ), (Si (CH 3 ) xCl 4-x (1 ≦ x ≦ 3)
A reactive gas such as Si (CH 3 ) xH 4-x (1 ≦ x ≦ 3) is used to easily obtain a Si—C bond in the reaction product.

【0019】また珪素を主成分とする被膜を得ようとす
る時はSin 2n+2(n≧1)のシラン、SiF4 また
はこれらの混合気体を用いた。炭素を得ようとする時
は、アセチレン(C2 2 )またはエチレン(C
2 4 )を主として用いた。こうすることにより、珪素
(Si)、炭化珪素(SixC1-x 0<x<1)または
炭素(C)(これらを合わせるとSixC1-x (0≦x
≦1)と示すことができるため、以下に炭化珪素という
時はSixC1-x (0≦x≦1)を意味するものとす
る)を作製する。
When a film containing silicon as the main component is to be obtained, Si n H 2n + 2 (n ≧ 1) silane, SiF 4 or a mixed gas thereof is used. When trying to obtain carbon, acetylene (C 2 H 2 ) or ethylene (C
2 H 4 ) was mainly used. By doing so, silicon (Si), silicon carbide (SixC 1-x 0 <x <1) or carbon (C) (when these are combined, SixC 1-x (0 ≦ x
Since it can be expressed as ≦ 1), hereinafter, when referring to silicon carbide, SixC 1-x (meaning 0 ≦ x ≦ 1) is produced).

【0020】さらにここに3価または5価の不純物を添
加して被形成面よりP型、I型(真性またはオートドー
ピング等を含む人為的に不純物を添加しない実質的に真
性)さらにN型の半0体または半絶縁体を作製した。
Further, trivalent or pentavalent impurities are added here to form a P type, an I type (intrinsic or substantially intrinsic without artificially adding impurities including autodoping) and an N type from the surface to be formed. A half body or a half insulator was produced.

【0021】さらにかかる反応性気体を用いると、反応
炉を1気圧以下特に0.01〜10torr、代表的に
は0.3〜0.6torrの圧力下にて50W以下の電
磁エネルギにおいても、例えば0.01〜100MHz
特に500KHzまたは13.56MHzにおいて被膜
を形成することが可能である。即ち低エネルギプラズマ
CVD装置とすることができた。
Further, when such a reactive gas is used, the electromagnetic energy of 50 W or less at a pressure of 1 atm or less, particularly 0.01 to 10 torr, typically 0.3 to 0.6 torr, is applied to the reactor, for example. 0.01-100MHz
In particular, it is possible to form a coating at 500 KHz or 13.56 MHz. That is, a low energy plasma CVD apparatus could be obtained.

【0022】さらに50〜500Wという高エネルギプ
ラズマ雰囲気とすると、形成された炭化珪素は微結晶化
し、その結果P型またはN型において、ホウ素またはリ
ンを0.1〜5%(ここでは(BHまたはPH)/(炭
化物気体または炭化珪化物気体+珪化物気体)の比をパ
ーセントで示す)添加した場合、低エネルギでは電気伝
導度は10-9〜10-3(Ωcm)-1であったものが10-6
〜10+2(Ωcm)-1と約千倍にまで高めることができ
た。
When a high-energy plasma atmosphere of 50 to 500 W is further applied, the formed silicon carbide is crystallized, and as a result, 0.1 to 5% of boron or phosphorus in the P-type or N-type (here, (BH or PH) / (carbide gas or silicon carbide gas + silicide gas ratio) is added, the electrical conductivity was 10 -9 to 10 -3 (Ωcm) -1 at low energy. Is 10 -6
We were able to increase it to about 10 times +2 (Ωcm) -1 .

【0023】さらにこの高エネルギ法を用いて得られた
炭化珪素は5〜200Åの大きさの微結晶構造を有する
いわゆるSAS構造を有せしめることができた。かかる
SASにおいて、そのPまたはN型の不純物のアクセプ
タまたはドナーとなるイオン化率を97〜100%を有し、添
加した不純物のすべてを活性化することができた。以下
に図面に従って本発明のプラズマ気相法を説明する。
Further, the silicon carbide obtained by using this high energy method could have a so-called SAS structure having a microcrystalline structure with a size of 5 to 200 Å. In such a SAS, the ionization rate of the P or N type impurity serving as an acceptor or a donor was 97 to 100%, and all of the added impurities could be activated. The plasma vapor phase method of the present invention will be described below with reference to the drawings.

【0024】[0024]

【実施例】図1は本発明を用いたプラズマCVD装置の
概要を示す。図1において被形成面を有する基板(1)
は角型の石英ホルダーにて保持され、図面では7段2列
計14まいの構成をさせている。基板およびホルダーは
反応炉の前方の別室(29)に入口(30)より予め設
置され、バルブ(32)ロータリーポンプ(33)によ
り真空びきがなされる。さらに開閉とびら(34)を開
けて、反応炉内に自動送り装置により導入され、さらに
ミキサー用混合板(35)も同時配置される。これらは
反応炉、別室ともに真空状態においてなされ、反応炉内
に酸素(空気)が少しでも混入しないように努めた。さ
らに開閉とびら(34)を閉じたことにより、図面の如
く電極(9),(10)の間に基板が配置された。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an outline of a plasma CVD apparatus using the present invention. A substrate having a surface to be formed in FIG. 1 (1)
Is held by a square quartz holder, and in the drawing, it has a structure of 7 rows and 2 columns in total. The substrate and the holder are installed in advance in a separate room (29) in front of the reaction furnace from an inlet (30), and a valve (32) and a rotary pump (33) perform vacuum squeezing. Further, the opening / closing door (34) is opened and introduced into the reaction furnace by an automatic feeder, and the mixing plate (35) for the mixer is also arranged at the same time. These were made in a vacuum state in both the reaction furnace and the separate chamber, and efforts were made to prevent any oxygen (air) from entering the reaction furnace. Further, by closing the opening / closing door (34), the substrate was placed between the electrodes (9) and (10) as shown in the drawing.

【0025】各基板は10〜40mm代表的には20〜2
5mmの間隔をおいて配列されており、このホルダーによ
る反応性気体は反応炉(25)の前方にミキサ(8)を
設け層流とし、さらにこれらの反応性気体が基板の間の
空隙に均一に注入するように設けてある。被形成面は基
板の下面または互いに裏面を重ね合わせて垂直に配置さ
れた側面である。
Each substrate is 10 to 40 mm, typically 20 to 2
The reactive gases from the holder are arranged at intervals of 5 mm, and a mixer (8) is provided in front of the reaction furnace (25) to form a laminar flow, and these reactive gases are evenly distributed in the space between the substrates. It is provided to be injected into. The formation surface is a bottom surface of the substrate or a side surface vertically arranged with the back surfaces of the substrates overlapped with each other.

【0026】また図面は反応系を上方よりながめた構造
を示したものであり、基板(1)は互いに裏面を合わせ
て垂直に配置させている。かくの如く重力を利用してフ
レイクを下部に除去することは、量産歩留りを考慮する
点きわめて重要である。さらにこの基板(1)を折入さ
せた反応炉(25)には、この基板に垂直または平行
(特に平行にすると被膜の均一性が得やすい)に電磁エ
ネルギの電界が図2(A)または(B)特に(B)の如
くに加わるように一対の電極(9),(10)を上下ま
たは左右に配置して設けた。この電極の外側に電気炉
(5)が設けられており、基板(1)が100〜400
℃代表的には300℃に加熱されている。
Further, the drawing shows a structure in which the reaction system is seen from above, and the substrates (1) are arranged vertically with their back surfaces aligned with each other. As described above, it is extremely important to remove the flake to the lower part by utilizing gravity, considering the mass production yield. Further, in the reaction furnace (25) in which the substrate (1) is inserted, an electric field of electromagnetic energy is perpendicular to or parallel to the substrate (especially if it is parallel, it is easy to obtain the uniformity of the coating). (B) In particular, a pair of electrodes (9) and (10) are arranged vertically or horizontally so as to be added as shown in (B). An electric furnace (5) is provided outside this electrode, and the substrate (1) is 100 to 400.
C. Typically, it is heated to 300.degree.

【0027】反応性気体は水素またはヘリュームのキャ
リアガス例えばヘリュームを(13)より、3価の不純
物であるジボラン(14)より、5価の添加物であるフ
ォスフィンを(15)より4価の添加物である珪化物気
体のシランを(16)より導入した。
As the reactive gas, hydrogen or helium carrier gas such as helium is added from (13), trivalent impurity of diborane (14), and pentavalent additive phosphine from (15) to tetravalent. Silane gas silane, which is a substance, was introduced from (16).

【0028】また炭素─珪素結合を有する反応性気体T
MS(20)を用いると、初期状態で液体であるためス
テンレス容器(21)に保存される。この容器は電子恒
温層(22)により所定の温度に制御されている。
A reactive gas T having a carbon-silicon bond is also used.
When MS (20) is used, it is stored in the stainless steel container (21) because it is a liquid in the initial state. This container is controlled to a predetermined temperature by the electronic thermostatic layer (22).

【0029】このTMSは沸点が25℃であり、ロータ
リーポンプ(12)をバルブ(11)をへて排気させ、
反応炉内を0.01〜10torr特に0.02〜0.
4torrに保持させた。こうすることにより、1気圧
より低い圧力により結果として特に加熱しなくてもTM
Sを気化させることができる。この気化したTMSを1
00%の濃度で流量計を介して反応炉に導入すること
は、従来の如く容器(21)をバブルして反応性気体を
放出するやり方に比較して、その流量制御が精度よく可
能であり、技術上重要である。
This TMS has a boiling point of 25 ° C., the rotary pump (12) is evacuated through the valve (11),
The inside of the reaction furnace is 0.01 to 10 torr, particularly 0.02 to 0.
It was kept at 4 torr. By doing this, a pressure lower than 1 atm results in no TM
S can be vaporized. This vaporized TMS is 1
Introducing into the reaction furnace at a concentration of 00% via a flow meter enables the flow rate to be controlled more accurately than in the conventional method in which the container (21) is bubbled to release the reactive gas. , Technically important.

【0030】実用上流量計がつまった場合、図面におい
て(24)よりヘリュームを導入した。また反応筒(2
5)またはホルダー(2)の内壁または表面に付着した
反応生成物を除去する場合は(17)よりCF4 または
CF4 +O2 (2〜5%)を導入し、電磁エネルギを加
えてフッ素ラジカルを発生させて気相エッチングをして
除去した。
When the flow meter was clogged for practical use, a helium was introduced from (24) in the drawing. In addition, the reaction tube (2
5) or when removing the reaction product attached to the inner wall or surface of the holder (2), CF 4 or CF 4 + O 2 (2 to 5%) is introduced from (17), and electromagnetic energy is applied to add fluorine radicals. Were generated and vapor-phase-etched to remove.

【0031】さらにこのプラズマ放電においては、反応
性気体が混合室(8)をへて混合された後、励起室(2
6)において分解または反応をおこさしめ、反応生成物
を基板上に形成する空間反応を主として用いた。電磁エ
ネルギは電源(4)より直流または高周波を主として用
いた。
Further, in this plasma discharge, after the reactive gas is mixed into the mixing chamber (8), the excitation chamber (2
In 6), a spatial reaction in which decomposition or reaction was caused and a reaction product was formed on the substrate was mainly used. As the electromagnetic energy, DC or high frequency was mainly used from the power source (4).

【0032】このようにして被形成面上に炭化珪素被膜
を形成した。例えば基板温度300℃、高周波エネルギ
の出力25W、シランまたはTMS 50cc/分キャリ
アガスとしてのHe 250cc/分とした。(反応性気
体/He)5において160Å/分の被膜成長速度を得
ることができた。
In this way, a silicon carbide coating film was formed on the formation surface. For example, the substrate temperature was 300 ° C., the high-frequency energy output was 25 W, silane or TMS was 50 cc / min and He was 250 cc / min as a carrier gas. With (reactive gas / He) 5, a film growth rate of 160Å / min could be obtained.

【0033】さらにこの被膜形成には、PIN接合、P
N接合、PI、NI接合、PINPIN接合等をその必
要な厚さに必要な反応生成物を基板上に漸次積層して形
成させた。
Furthermore, for this film formation, a PIN junction, P
An N junction, a PI, an NI junction, a PINPIN junction, etc. were formed by gradually laminating reaction products required to have the required thickness on the substrate.

【0034】このようにして被形成面上に被膜を形成さ
せてしまった後、反応性気体を反応筒より十分にパージ
した後、開閉とびら(34)を開け、ミキサ用混合板
(35)、ジグ(3)上の基板を別室(29)に自動引
出し管により反応筒および別室をともに真空(0.01
torr以下)にして移動させた。さらに開閉とびら
(34)を閉じた後、別室に(31)よりバルブを開け
て空気を充填し大気圧とした後、外部にジグおよび被膜
の形成された基板をとり出した。
After the coating film has been formed on the surface to be formed in this way, after the reactive gas is sufficiently purged from the reaction tube, the opening / closing door (34) is opened and the mixer mixing plate (35). , The substrate on the jig (3) is placed in a separate chamber (29) by an automatic drawing tube, and the reaction cylinder and the separate chamber are both vacuumed (0.01
(below torr) and moved. Further, after closing the opening / closing door (34), the valve was opened from (31) in another room to fill the air with air to bring it to atmospheric pressure, and then the substrate on which the jig and the film were formed was taken out.

【0035】以上の実施例より明らかな如く、本発明は
反応性気体をミキサ(8)にて混合した後、排気口
(6)に層状(ミクロにはプラズマ化された状態ではラ
ンダム運動をしていた)に流し、この流れに平行に基板
を配置して被形成面上にその膜厚が±5%以内のバラツ
キで0.1〜3μの厚さに被膜を形成せしめたことを特
徴としている。
As is clear from the above examples, according to the present invention, the reactive gas is mixed in the mixer (8), and then the exhaust port (6) is randomly moved in a layered state (microscopically in a plasmaized state). The substrate is arranged in parallel with this flow, and a film is formed on the surface to be formed to a thickness of 0.1 to 3 μ with a variation of ± 5% or less. There is.

【0036】さらにこの際プラズマをグロー放電法を利
用しておこさせるが、その電極を反応筒の外側に配置せ
しめ、多量の基板に均一にプラズマがおこるようにした
ことを特徴としている。
Further, at this time, the plasma is generated by utilizing the glow discharge method, and the feature thereof is that the electrode is arranged outside the reaction tube so that the plasma is uniformly generated on a large amount of the substrates.

【0037】また被膜の形成に際し、図面の如く7段2
列ではなく、20段20列の如く反応筒を長くする場
合、0.4torrではなくさらに0.2、0.1、
0.05torrとより低圧にすることが、その膜質の
均一性特に最前列と最後列との均一性を得しめる上に重
要である。
Further, in forming the film, 7 steps 2 as shown in the drawing.
When the reaction cylinder is lengthened to 20 rows and 20 rows instead of a row, it is not 0.4 torr but 0.2, 0.1,
The lower pressure of 0.05 torr is important for obtaining the uniformity of the film quality, particularly the uniformity of the front row and the last row.

【0038】またこの反応筒内に酸素等の制御できない
酸化物気体の混入を防ぐため、別室を設け、この別室を
介して大気中での作業と結合せしめたことは、得られた
被膜の特性の再現性を得るのにきわめて重要であった。
Further, in order to prevent mixing of uncontrollable oxide gas such as oxygen into the reaction cylinder, a separate chamber was provided, and it was combined with the work in the atmosphere through this separate chamber. Was very important to obtain reproducibility of.

【0039】図2は図1の図面における排気口(6)方
向よりみた基板(1)の配置と電極(9),(10)と
の関係を示す。図面において(A)は基板を水平、電極
(9),(10)による電磁界を水平方向に配置したも
ので、この場合一度に導入できる基板の枚数をふやすこ
とができる。
FIG. 2 shows the relationship between the arrangement of the substrate (1) and the electrodes (9) and (10) as seen from the direction of the exhaust port (6) in the drawing of FIG. In the drawing, (A) shows the substrates arranged horizontally and the electromagnetic fields of the electrodes (9) and (10) arranged in the horizontal direction. In this case, the number of substrates that can be introduced at one time can be increased.

【0040】図2(B)は電極(9),(10)による
電磁界、基板が(1)ともに垂直にしたもので、基板の
配置数が(A)の2倍になる。
FIG. 2B shows an electromagnetic field generated by the electrodes (9) and (10) and the substrate (1) is vertically arranged, and the number of substrates arranged is twice that of (A).

【0041】図3は本発明の半導体装置作製方法の操作
手順チャートを示したものである。図面において”0”
である(49)は反応炉の真空引による0.01tor
r以下の保持を示す。さらに”1”の(40)は本発明
による反応炉または反応筒およびホルダーに珪素または
炭化珪素のコーティングを示す。このコーティングはそ
の詳細を示すと図3(B),(C)である。図3(B)
は真空引(49)により0.01torr以下にし、1
0〜30分保持した後、水素を電磁エネルギにより0〜
30分30〜50Wの出力によりプラズマクリーニング
を行ない、吸着、水分、酸素を除去した。さらにその水
素を除去した後、(51)によりヘリュームを同時に3
0〜50Wの出力により10〜30分プラズマ化し、さ
らに表面の水素を除去した。この水素プラズマ発生(5
0)に対しては、水素中に1〜5%の濃度でHClまた
はClを添加して行なうと、塩素ラジカルが同時に発生
し、このラジカルが石英等ホルダーの内側に存在してい
るナトリュームの如きアルカリ金属を吸い出す効果を有
する。このためバックグラウンドレベルでのナトリュー
ム、水分、酸素等の濃度を形成された被膜中にて1014
cm-3以下にすることができ、きわめて重要な前処理工程
であった。
FIG. 3 shows an operation procedure chart of the semiconductor device manufacturing method of the present invention. "0" in the drawing
(49) is 0.01 torr due to vacuuming of the reactor.
Retention below r is shown. Furthermore, the "1" (40) indicates the coating of silicon or silicon carbide on the reactor or reactor and the holder according to the invention. Details of this coating are shown in FIGS. 3 (B) and 3 (C). FIG. 3 (B)
Is less than 0.01 torr by vacuuming (49), 1
After holding for 0 to 30 minutes, hydrogen is 0 to 0 by electromagnetic energy.
Plasma cleaning was performed at an output of 30 to 50 W for 30 minutes to remove adsorption, moisture and oxygen. After further removing the hydrogen, the helium is simultaneously set to 3 by (51).
Plasma was generated for 10 to 30 minutes with an output of 0 to 50 W, and hydrogen on the surface was removed. This hydrogen plasma generation (5
Regarding 0), when HCl or Cl is added to hydrogen at a concentration of 1 to 5%, chlorine radicals are simultaneously generated, and the radicals are present inside a holder such as quartz such as a sodium. Has the effect of sucking out alkali metals. Therefore, the concentration of sodium, water, oxygen, etc. at the background level is 10 14 in the formed film.
It was a very important pretreatment step, as it could be less than cm -3 .

【0042】この塩素を添加した場合、さらにこの壁面
に残留吸着した塩素を除去するため(51)の不活性気
体によるスパッタリングによる除去も有効であった。
When this chlorine was added, it was also effective to remove chlorine remaining adsorbed on the wall surface by sputtering with an inert gas (51).

【0043】この後これらの系を真空引した後、珪化物
気体であるシランまたは炭化珪素化物であるTMSを導
入し、プラズマエネルギにより分解して、0.1〜2μ
代表的には0.2〜0.5μの厚さに形成させた。これ
らの被膜形成をさせる際、高い電磁エネルギが加わる領
域すなわち不純物が再放出されやすい領域に特に厚くつ
きやすく、二重に好ましい結果をもたらせた。
Then, after vacuuming these systems, silane which is a silicide gas or TMS which is a silicon carbide is introduced and decomposed by plasma energy to obtain 0.1 to 2 μm.
Typically, it is formed to have a thickness of 0.2 to 0.5 μ. When these films were formed, it was particularly thick and easy to stick to a region to which high electromagnetic energy was applied, that is, a region where impurities were likely to be re-emitted, which gave doubly favorable results.

【0044】かかる本発明の複雑な前処理工程を行わな
い場合であっても、図3(C)に示す如く真空引の後、
珪素または炭化珪素を(52)において同様に0.1〜
2μ形成し、反応炉壁からの酸素、アルカリ金属の再放
出を防ぐことが有効であった。
Even when the complicated pretreatment process of the present invention is not performed, after vacuuming as shown in FIG.
Silicon or silicon carbide in (52) is also 0.1 to
It was effective to prevent the re-release of oxygen and alkali metal from the reactor wall after forming 2 μm.

【0045】また図3(A)においては半導体装置の作
製のため、基板のコーティング、系の真空引(41)さ
らにPまたはN型半導体の作製(42)、I型半導体層
の作製(43)、N型半導体層の作製(44)を行い、
第1の半導体装置を作製(48)した。この半導体装置
は前記したPI、NI、PIN、PN等の接合を少なく
とも1つ有するディバイス設計仕様によって作られなけ
ればならないということはいうまでもない。
In FIG. 3A, for manufacturing a semiconductor device, substrate coating, system vacuuming (41), P or N-type semiconductor manufacturing (42), I-type semiconductor layer manufacturing (43). , Manufacturing an N-type semiconductor layer (44),
A first semiconductor device was produced (48). It goes without saying that this semiconductor device must be manufactured according to the device design specification having at least one junction such as PI, NI, PIN, PN.

【0046】さらにこの後、この系に対し、反応炉のみ
またはこの反応炉とホルダーを挿入設置された反応系に
対し(46)に示すI型半導体層または(42)に示す
半導体層と同じ半導体層のコーティングにより前の半導
体装置作製の際用いられた工程(44)のりれきが次の
ランに対して影響を与えないようにした。その詳細は図
3(B),(C),(D),(E)に示す。
Thereafter, for this system, the same semiconductor as the I-type semiconductor layer shown in (46) or the semiconductor layer shown in (42) for the reaction system in which only the reaction furnace or this reaction furnace and the holder are inserted is installed. The layer coating was such that the debris from step (44) used in the previous fabrication of the semiconductor device did not affect the next run. The details are shown in FIGS. 3 (B), (C), (D), and (E).

【0047】すなわち図3(B)は前記した前処理と同
じく真空引(49)水素プラズマ放電(50),ヘリュ
ームプラズマ処理(51),半導体装置のランの最初の
工程の半導体層を形成する工程(52)を有する。しか
しこの(50),(51)がすでに(A)での(46)
で行われているため、一般には(C)の(52)での
0.1〜2μの厚さの半導体層の作製で十分であった。
That is, as shown in FIG. 3B, the semiconductor layer is formed in the first step of vacuum drawing (49) hydrogen plasma discharge (50), helium plasma processing (51), and run of the semiconductor device as in the above-mentioned pretreatment. It has a step (52). However, these (50) and (51) are already (46) in (A)
Therefore, it is generally sufficient to form a semiconductor layer having a thickness of 0.1 to 2 μm in (52) of (C).

【0048】またこの前の半導体装置の作製(40)す
なわち前のランでの履歴をなくすため、(D),(E)
に示すプラズマエッチング工程を行ってもよい。すなわ
ち図3(B)は真空引(49)CFまたはCF+0(約
5%)を図1での(17)より導入し、20〜1時間プ
ラズマエッチング(53)を行なった。さらに真空引を
してその後C、Fの残留物を除去するため水素プラズマ
処理(50)を10〜30分、さらにこのI層に0.0
5〜0.5μのI型または次の工程の最初のランの半導
体層(42)と同様の導電型、成分の半導体層の作製を
行なった。この方法が最も徹底して再現性を保証するこ
とができた。
Further, in order to eliminate the history of the previous semiconductor device fabrication (40), that is, the previous run, (D), (E)
You may perform the plasma etching process shown in FIG. That is, in FIG. 3B, vacuum drawing (49) CF or CF + 0 (about 5%) was introduced from (17) in FIG. 1 and plasma etching (53) was performed for 20 to 1 hour. A vacuum is further applied, and then a hydrogen plasma treatment (50) is performed for 10 to 30 minutes to remove the C and F residues.
A semiconductor layer having a conductivity type and components similar to those of the semiconductor layer (42) of I-type of 5 to 0.5 μm or the first run in the next step was prepared. This method was the most thorough and guaranteed reproducibility.

【0049】簡単な方法としては(E)に示す(49)
の真空引、プラズマエッチング(53)残部吸着ガスの
除去(50)の工程を行なった。
A simple method is shown in (E) (49).
The steps of vacuum evacuation and plasma etching (53) and removal of residual adsorption gas (50) were performed.

【0050】かくすることにより第1の半導体装置の作
製(48)の最終工程(44)と次の工程(48)の最
初の工程(42)との間でPまたはN型の不純物が互い
に(42)にて混入する可能性を除去することができ
た。また(44)での炭素、ゲルマニューム等の添加物
を(42)にて混入することも防ぐことができた。
By doing so, P or N type impurities are mutually () between the final step (44) of the fabrication (48) of the first semiconductor device and the first step (42) of the next step (48). It was possible to eliminate the possibility of contamination in 42). It was also possible to prevent the addition of additives such as carbon and germanium in (44) in (42).

【0051】かかる本発明の方法によりその効果を評価
した結果を図4に示す。
FIG. 4 shows the result of evaluation of the effect by the method of the present invention.

【0052】図4は本発明方法を用いて作られた光電変
換装置の結果である。この場合基板として金属例えばス
テンレス基板または透光性基板であるガラス上にITO
を500〜2000Å、さらにこの上に酸化スズまたは
酸化アンチモンを100〜500Åの厚さに形成させた
多重膜の電極を有する基板を用いた。この上にP型炭化
珪素(SixC1-x 0≦x≦1)(例えばx=0.3〜
0.5)を100〜300Åの厚さにまたこの上面に真
性または実質的に真性のASまたはSASの珪素を0.
4〜0.7μの厚さに、さらにこの上面にN型炭化珪素
(SixC1-x0≦x≦1例えばx=0.3〜0.5)
を100〜300Åの厚さに形成させたPIN構造を有
せしめた。このP、I、N型半導体の仕様は図3(A)
のチャートにおける(42),(43),(44),
(42)………に対応させた。
FIG. 4 shows the result of a photoelectric conversion device manufactured using the method of the present invention. In this case, ITO is formed on a metal such as a stainless substrate or a glass which is a transparent substrate as a substrate.
Was used, and a substrate having a multi-layered electrode on which tin oxide or antimony oxide was formed to a thickness of 100 to 500Å was used. On top of this, P-type silicon carbide (SixC 1-x 0 ≦ x ≦ 1) (for example, x = 0.3 to
0.5) to a thickness of 100 to 300 Å and to this upper surface is added intrinsic or substantially intrinsic AS or SAS silicon.
N-type silicon carbide (SixC 1-x 0 ≦ x ≦ 1 such as x = 0.3 to 0.5) is formed on the upper surface to a thickness of 4 to 0.7 μm.
Was made to have a thickness of 100 to 300 Å. The specifications of the P, I, and N type semiconductors are shown in FIG.
(42), (43), (44),
(42) .....

【0053】さらにこの後この工程にITOを600〜
800Åの厚さにまたはアルミニューム金属膜を真空蒸
着法で形成して光電変換装置を作った。その変換効率を
図4(A)に示す。
Further, after this, ITO is added in the range of 600 to
A photoelectric conversion device was made by forming an aluminum metal film with a thickness of 800Å by a vacuum deposition method. The conversion efficiency is shown in FIG.

【0054】1cm2 のセルの大きさでAMl(100m
W/cm2 )の条件にて前処理(40)をいれない場合
(71)の3%が、また前処理を行なうと(70)の値
が得られた。さらに中間の(46)の工程を加えること
によるラン(製造日毎)の効率の変化(60)になり全
く加えないと(61)が得られた。
With a cell size of 1 cm 2 , AMl (100 m
Under the condition of W / cm 2 ), 3% of the case (71) without the pretreatment (40) and the value (70) with the pretreatment were obtained. Furthermore, the efficiency (60) of the run (every production date) changes due to the addition of the intermediate step (46), and (61) is obtained without any addition.

【0055】(60)はその効率が11〜9%を得るこ
とができるのに対し、本発明方法を用いない場合1〜4
%しかなかった。
The efficiency of (60) can be 11 to 9%, while 1 to 4 is obtained when the method of the present invention is not used.
There was only%.

【0056】さらにこのセル面積を100cm2 にする
と、本発明方法を用いると7〜9%の効率を得ることが
できるのに際し、本発明方法を用いないと0〜3%であ
った。特にダイオード特性がないものが30%以上を有
し、製造不可能であった。
Further, when the cell area was 100 cm 2 , the efficiency of 7 to 9% could be obtained by using the method of the present invention, and it was 0 to 3% without using the method of the present invention. In particular, those having no diode characteristics had 30% or more and could not be manufactured.

【0057】図4(B)は特に表面工程にてP型の半導
体を作る工程でI型の珪素半導体を作った場合の電気伝
導度の値を示す。
FIG. 4B shows the electric conductivity value when an I-type silicon semiconductor is formed in the step of forming a P-type semiconductor in the surface step.

【0058】前工程でP型半導体を作り、本発明方法の
中間処理法の前処理を行なわない時、AMlの光照射に
よる電気伝導度が(65)である。暗伝導度(64)と
逆の場合もみられ、またその値も10-6〜10-4で大き
な、バラツキがあった。他方本発明の前処理を行なった
場合、光伝導度(70)、暗伝導度(70’)が得られ
た。また中間処理を行なった時は光伝導度(62)、暗
伝導度(63)が得られた。これらは本発明におけるド
ーピング効果防止がいかに重要であるかを明確に示した
ものである。
When a P-type semiconductor is produced in the previous step and the pretreatment of the intermediate treatment method of the present invention is not performed, the electric conductivity by light irradiation of AM1 is (65). The case opposite to the dark conductivity (64) was also observed, and the value was 10 −6 to 10 −4, which was large and varied. On the other hand, when the pretreatment of the present invention was performed, photoconductivity (70) and dark conductivity (70 ') were obtained. Further, when the intermediate treatment was performed, photoconductivity (62) and dark conductivity (63) were obtained. These clearly show how important the prevention of the doping effect in the present invention is.

【0059】[0059]

【発明の効果】以上の説明より明らかな如く、本発明は
同一反応筒を用いて光電変換装置または発光素子のみな
らず、電界効果半導体装置、フォトセンサアレー等の各
種の半導体装置を作製する上にきわめて重要な製造装置
および製造方法を提供したものであり、これにより従来
たて型のプラズマCVD装置にて10cm□を4枚作ると
同じ時間で、100〜500枚の基板上に日単結晶半導
体膜を作ることができ、きわめて多量生産向きである。
さらに本発明の如き電極構造または基板の配置をするこ
とにより、PIN構造を有する光電変換装置において1
0%以上の変換効率をくりかえし安定して得ることがで
き、その膜質においてもきわめてすぐれたものであっ
た。
As is apparent from the above description, the present invention is applicable to not only the photoelectric conversion device or the light emitting element but also various semiconductor devices such as a field effect semiconductor device and a photosensor array using the same reaction tube. It provides a very important manufacturing device and manufacturing method, and by this means, a single crystal of 100 to 500 substrates can be formed on 100 to 500 substrates in the same time as the production of four 10 cm □ by a conventional vertical plasma CVD device. A semiconductor film can be made, and it is suitable for mass production.
Further, by arranging the electrode structure or the substrate as in the present invention, the photoelectric conversion device having the PIN structure is
A conversion efficiency of 0% or more could be repeatedly and stably obtained, and the film quality was also excellent.

【0060】本発明においては、炭化珪素(SixC
1-x 0≦x<1)を中心として記した。しかし反応性
気体をゲルマンを用いると、SixGe1-x (0≦x<
1)を得ることができ、第1のPIN構造を珪素と炭化
珪素によりさらに第2のPIN構造を珪素と珪化ゲルマ
ニュームによりPINPIN構造いわゆるタンデム構造
を得ることも可能である。
In the present invention, silicon carbide (SixC
The description is centered on 1−x 0 ≦ x <1). However, if germane is used as the reactive gas, SixGe 1-x (0 ≦ x <
1) can be obtained, and it is also possible to obtain a so-called tandem structure, in which the first PIN structure is made of silicon and silicon carbide, and the second PIN structure is made of silicon and germanium silicide.

【0061】本発明は図1に示す横型のプラズマCVD
装置を中心として示した。しかしその電極の作り方を誘
電型としたり、またアーク放電を利用するプラズマCV
D装置であっても本発明は有効である。またたて型、た
て横型のベルジャー型のプラズマCVD装置であっても
同様に本発明方法を適用することができる。
The present invention employs the horizontal plasma CVD shown in FIG.
The device is shown as the center. However, the method of making the electrode is a dielectric type, and plasma CV that uses arc discharge.
The present invention is effective even for the D device. The method of the present invention can be similarly applied to a vertical type and vertical type bell jar type plasma CVD apparatus.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のプラズマ気相装置である。FIG. 1 is a plasma vapor phase apparatus of the present invention.

【図2】図1の一部を示す。FIG. 2 shows a part of FIG.

【図3】図1の装置を用い、本発明方法のプラズマ気相
法を用いるチャートである。
FIG. 3 is a chart using the apparatus of FIG. 1 and a plasma vapor phase method of the method of the present invention.

【図4】(A)は図3のチャートに従って得られた光電
変換装置の効率および(B)は本発明方法のドーピング
防止効果を示す他の資料である。
4 (A) is the efficiency of the photoelectric conversion device obtained according to the chart of FIG. 3 and (B) is another material showing the doping prevention effect of the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被膜を形成する反応炉内で水素と塩化水
素または塩素とをプラズマ化させることにより反応室内
に存在する不純物を除去することを特徴とするプラズマ
処理方法。
1. A plasma processing method comprising removing hydrogen and hydrogen chloride or chlorine into plasma in a reaction furnace for forming a film to remove impurities existing in the reaction chamber.
JP8061890A 1996-02-23 1996-02-23 Plasma processing method Expired - Lifetime JP2802747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8061890A JP2802747B2 (en) 1996-02-23 1996-02-23 Plasma processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8061890A JP2802747B2 (en) 1996-02-23 1996-02-23 Plasma processing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3169305A Division JP2573108B2 (en) 1991-06-14 1991-06-14 Plasma processing method

Publications (2)

Publication Number Publication Date
JPH08241869A true JPH08241869A (en) 1996-09-17
JP2802747B2 JP2802747B2 (en) 1998-09-24

Family

ID=13184203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8061890A Expired - Lifetime JP2802747B2 (en) 1996-02-23 1996-02-23 Plasma processing method

Country Status (1)

Country Link
JP (1) JP2802747B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001071790A1 (en) * 2000-03-17 2001-09-27 Hitachi, Ltd. Method of manufacturing semiconductor device
JP2009277757A (en) * 2008-05-13 2009-11-26 Denso Corp Method of manufacturing semiconductor device
JP2012227385A (en) * 2011-04-20 2012-11-15 Shin Etsu Handotai Co Ltd Method of cleaning reaction vessel of epitaxial growth device and method of manufacturing epitaxial wafer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145338A (en) * 1979-05-01 1980-11-12 Toshiba Corp Pressure reduction chemical vapour deposition device
JPS5690528A (en) * 1979-12-22 1981-07-22 Chiyou Lsi Gijutsu Kenkyu Kumiai Surface treatment of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145338A (en) * 1979-05-01 1980-11-12 Toshiba Corp Pressure reduction chemical vapour deposition device
JPS5690528A (en) * 1979-12-22 1981-07-22 Chiyou Lsi Gijutsu Kenkyu Kumiai Surface treatment of semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001071790A1 (en) * 2000-03-17 2001-09-27 Hitachi, Ltd. Method of manufacturing semiconductor device
JP2009277757A (en) * 2008-05-13 2009-11-26 Denso Corp Method of manufacturing semiconductor device
JP2012227385A (en) * 2011-04-20 2012-11-15 Shin Etsu Handotai Co Ltd Method of cleaning reaction vessel of epitaxial growth device and method of manufacturing epitaxial wafer

Also Published As

Publication number Publication date
JP2802747B2 (en) 1998-09-24

Similar Documents

Publication Publication Date Title
US7741144B2 (en) Plasma treatment between deposition processes
JPS5892217A (en) Manufacture of semiconductor device
US7875486B2 (en) Solar cells and methods and apparatuses for forming the same including I-layer and N-layer chamber cleaning
US7919398B2 (en) Microcrystalline silicon deposition for thin film solar applications
US7582515B2 (en) Multi-junction solar cells and methods and apparatuses for forming the same
US6755151B2 (en) Hot-filament chemical vapor deposition chamber and process with multiple gas inlets
US20080173350A1 (en) Multi-junction solar cells and methods and apparatuses for forming the same
JPH0512850B2 (en)
US20090130827A1 (en) Intrinsic amorphous silicon layer
JPH08241869A (en) Plasma treatment method
JPH0620975A (en) Carbon film manufacturing method
JP2573108B2 (en) Plasma processing method
JPH02119126A (en) Manufacture of semiconductor device
JP2805611B2 (en) Coating method
US20110171774A1 (en) Cleaning optimization of pecvd solar films
JPH08195348A (en) Semiconductor device manufacturing equipment
JP2002246622A (en) Silicon crystal thin film photovoltaic element, method of manufacturing it and method of evaluating it
JPH0458173B2 (en)
JPS6062113A (en) Plasma cvd equipment
JPH0332210B2 (en)
JPH0522375B2 (en)
JP2002175983A (en) Thin-film polycrystalline silicon, method of manufacturing the same and silicon photoelectric conversion element
JPH01278782A (en) Manufacture of photovoltaic element
JPH0673348B2 (en) Cleaning method for plasma processing apparatus
JPH0516655B2 (en)