JPH0816695B2 - Magnetic field correction device - Google Patents
Magnetic field correction deviceInfo
- Publication number
- JPH0816695B2 JPH0816695B2 JP2302782A JP30278290A JPH0816695B2 JP H0816695 B2 JPH0816695 B2 JP H0816695B2 JP 2302782 A JP2302782 A JP 2302782A JP 30278290 A JP30278290 A JP 30278290A JP H0816695 B2 JPH0816695 B2 JP H0816695B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- magnetic field
- magnetic body
- correction device
- sectional area
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/38—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
- G01R33/387—Compensation of inhomogeneities
- G01R33/3873—Compensation of inhomogeneities using ferromagnetic bodies ; Passive shimming
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Measuring Magnetic Variables (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] この発明は、核磁気共鳴用マグネット等に使用される
磁場補正装置に関するものである。TECHNICAL FIELD The present invention relates to a magnetic field correction apparatus used for a nuclear magnetic resonance magnet or the like.
[従来の技術] 第8図は例えば特開昭52−193230号公報に示された従
来の磁場補正装置であり、図において、符号(10)で示
されるものは非磁性体の円筒内壁で、この円筒内壁(1
0)には棒状の磁性体(2)が貼りつけられている。円
筒内壁(10)の外周には主磁場を発生するコイル(3)
が設けられており、この円筒内壁(10)内には、磁場均
一性が要求される領域(4)が破線で示されている。[Prior Art] FIG. 8 shows a conventional magnetic field correction device disclosed in, for example, Japanese Unexamined Patent Publication No. 52-193230, in which reference numeral (10) indicates a cylindrical inner wall of a non-magnetic material. The inner wall of this cylinder (1
A rod-shaped magnetic body (2) is attached to (0). A coil (3) that generates the main magnetic field on the outer circumference of the inner wall (10) of the cylinder
In the inner wall (10) of the cylinder, a region (4) where magnetic field homogeneity is required is indicated by a broken line.
従来の磁場補正装置は以上のように構成されており、
以下に、その動作について説明する。一般的にコイル
(3)によって発生する磁場は、領域(4)においては
必ずしも必要とされる磁場均一性を有していない。そこ
で磁場均一性を高める手段1つとして、円筒内壁(10)
に棒状の磁性体(2)を貼りつけることにより、発生磁
場の空間分布に変化を与えることが考えられる。前述の
従来の装置では予め磁性体(2)を円筒内壁(10)の適
当な位置に複数個配置した状態で、領域(4)の磁場分
布がどのように変化するのを実験的に確かめておき、幾
つかの磁性体の組み合わせで経験的に磁場の均一性を高
める手段がとられていた。The conventional magnetic field correction device is configured as described above,
The operation will be described below. Generally, the magnetic field generated by the coil (3) does not necessarily have the required magnetic field homogeneity in the region (4). Therefore, as one means to enhance the magnetic field uniformity, the inner wall of the cylinder (10)
It is possible to change the spatial distribution of the generated magnetic field by sticking the rod-shaped magnetic body (2) on the. In the above-mentioned conventional apparatus, experimentally confirming how the magnetic field distribution in the region (4) changes with a plurality of magnetic bodies (2) previously arranged at appropriate positions on the inner wall (10) of the cylinder. Once again, a combination of several magnetic materials has been used empirically to enhance the homogeneity of the magnetic field.
[発明が解決しようとする課題] 従来の磁場補正装置は以上のように構成されているの
で、磁性体の大きさ、形状、本数、貼付位置等の決定に
際しては、取付ける人間の経験的な勘に頼ることが多
く、かつ一定の規則が無いため、組立後の各磁場補正装
置は必ずしも最適な磁性体の設定になっておらず、特性
にバラツキがあると云うだけではなく、他の構成品との
干渉を考慮した制作者の意図する範囲に磁性体取付位置
を限定できない場合が生じるという重大な課題を有して
いた。[Problems to be Solved by the Invention] Since the conventional magnetic field correction device is configured as described above, when deciding the size, shape, number of sticking positions, etc. of the magnetic substance, the empirical sense of the person who attaches it. It is not always said that each magnetic field correction device after assembly is not set to the optimum magnetic substance because there is no fixed rule, and that there are variations in characteristics, as well as other components. There was a serious problem that the magnetic material mounting position could not be limited to the range intended by the creator in consideration of the interference with.
この発明は以上のような課題を解決するためになされ
たもので、特に必要とする磁性体の構成、取付け経度、
取付け緯度等を一定の規則に従って制作者の意図する取
付範囲内に定めることができる磁場補正装置を得ること
を目的とする。The present invention has been made to solve the above problems, and particularly requires the configuration of the magnetic body, the mounting longitude,
It is an object of the present invention to obtain a magnetic field correction device capable of determining the installation latitude and the like according to a certain rule within the installation range intended by the creator.
[課題を解決するための手段] この発明の第一の発明に係る磁場補正装置は、主磁場
に含まれる不均一な誤差成分を補正するための磁性体
が、磁性体の端面角度と端面断面積比を相互の関係に基
く適切な値に選定した2つの磁性体対で構成されたもの
を用いるようにしたものである。[Means for Solving the Problems] In the magnetic field correction device according to the first aspect of the present invention, a magnetic body for correcting an inhomogeneous error component included in a main magnetic field has an end face angle and an end face disconnection of the magnetic body. It is configured such that a magnetic field composed of two magnetic material pairs whose area ratio is selected to be an appropriate value based on the mutual relationship is used.
また、この発明の他の発明は、磁性体の端面角度と端
面断面積比の関係が、一定の具体的な関係式によってい
る。Further, in another invention of the present invention, the relationship between the end face angle and the end face cross-sectional area ratio of the magnetic body is based on a specific concrete relational expression.
[作 用] この発明においては、補正すべき特定の磁場成分の補
正量が分かれば、それに応じた所定量の磁性体を制作者
の意図した範囲内の位置に配置する。[Operation] In the present invention, if the correction amount of the specific magnetic field component to be corrected is known, a predetermined amount of the magnetic material is arranged at a position within the range intended by the creator.
[実施例] 以下、この発明の一実施例を図について説明する。[Embodiment] An embodiment of the present invention will be described below with reference to the drawings.
第1図および第2図において、非磁性体よりなる非磁
性管(1)内には棒状の磁性体(2)が選択的に取付け
および取外しができるように設けられており、これらの
非磁性管(1)および磁性体(2)は、円筒状をなし主
磁場を発生するコイル(3)内に配設されている。ま
た、破線で示される部分(4)は均一性が要求される磁
場領域である。1 and 2, a rod-shaped magnetic body (2) is provided in a non-magnetic tube (1) made of a non-magnetic material so that it can be selectively attached and detached. The tube (1) and the magnetic body (2) are arranged in a coil (3) having a cylindrical shape and generating a main magnetic field. Further, a portion (4) shown by a broken line is a magnetic field region where uniformity is required.
第3図および第4図は主磁場方向(Z軸方向)に沿っ
て、断面積Aを有する棒状磁性体が取付角の位置に配
置された様子を示している。この磁性体(2)が均一性
の必要な領域(4)の任意点P(r,θ,φ)に作る磁場
のZ方向成分BZは、次式で表わされる。FIGS. 3 and 4 show a state in which a rod-shaped magnetic body having a cross-sectional area A is arranged at the mounting angle position along the main magnetic field direction (Z-axis direction). The Z-direction component B Z of the magnetic field produced by the magnetic body (2) at an arbitrary point P (r, θ, φ) in the region (4) requiring uniformity is expressed by the following equation.
ここで、K:磁性体の磁気特性で決まる定数 a:磁性体の取付半径 εm:ノイマン係数,m=0ならεm=1,m≠0ならεm=
2, Pm n:n次m位のルジャンドル陪多項式 である。 Here, K: a constant determined by the magnetic properties of the magnetic substance a: mounting radius of the magnetic substance εm: Neumann coefficient, εm = 1 if m = 0, εm = if m ≠ 0
2, P m n : Legendre polynomial of order m.
式は極座標系による表示であるが、通常用いられる
直交座標系との対応は表1のとおりである。The expression is expressed in a polar coordinate system, and the correspondence with a commonly used orthogonal coordinate system is as shown in Table 1.
一方、コイル(3)が均一度領域(4)に作る磁場の
z方向成分Bczは次式で表わされる。 On the other hand, the z-direction component Bcz of the magnetic field created by the coil (3) in the homogeneity region (4) is expressed by the following equation.
Bcz=B0+A1X+A2Y+A3ZX+A4ZY+A5XY+ A6(X2−Y2)+ ここで、B0は原点(0,0,0)での磁場、従って、例え
ば、A1Xは、Xに比例した誤差成分を示している。 Bcz = B 0 + A 1 X + A 2 Y + A 3 ZX + A 4 ZY + A 5 XY + A 6 (X 2 -Y 2) + where, B 0 is the magnetic field at the origin (0,0,0), therefore, for example, A 1 X Indicates an error component proportional to X.
即ち、均一度領域(4)の均一性を高めるには式の
A1X等を打消すような磁性体(2)が必要であることが
分かる。以下に、一例として、X成分補正用の磁性体
(2)について述べる。前述の式から分かるように、
磁性体(2)が作る磁場成分は無限個あるが、一般的に
a>rであるからnの値が大きい成分は式中の が非常に小さくなるために無視できる。そこで、実用上
はn,mの値が小さい成分についてのみ考えればよい。こ
こで、前述の磁場のz方向成分Bzの径方向成分(即ちm
≠0)のみに注目して以下の成分を考える。That is, in order to improve the uniformity of the uniformity region (4),
It can be seen that a magnetic substance (2) that cancels A 1 X etc. is necessary. The magnetic substance (2) for correcting the X component will be described below as an example. As you can see from the above equation,
There are an infinite number of magnetic field components created by the magnetic body (2), but since a> r in general, the component with a large value of n is Is so small that it can be ignored. Therefore, in practice, it is only necessary to consider the components with small values of n and m. Here, the radial direction component (that is, m
Considering only the following, the following components will be considered.
B11,B21,B22,B31,B32,B33,B41,B42,B43,B44,B51,B52,
B53,B54。ここでB11成分は表1によりX成分に対応して
いる。従って、B11成分だけを発生するような磁性体
(2)の形状、位置は次の手順で決まる。m=2,3,4の
成分を発生しないように、取付角度を に選ぶと式でcos(φ−)=0となるから、B22,
B32,B33,B42,B43,B44,B52,B53,B54の成分はなくなるこ
とになり、残りはB11,B21,B31,B41,B51である。B 11 ,, B 21 , B 22 , B 31 , B 32 , B 33 , B 41 , B 42 , B 43 , B 44 , B 51 , B 52 ,
B 53 , B 54 . Here, the B 11 component corresponds to the X component according to Table 1. Therefore, the shape and position of the magnetic body (2) that generates only the B 11 component are determined by the following procedure. Set the mounting angle so that the component of m = 2,3,4 is not generated. If we choose, then we have cos (φ −) = 0 in the equation, so B 22 ,
The components of B 32 , B 33 , B 42 , B 43 , B 44 , B 52 , B 53 , and B 54 are lost, and the rest are B 11 , B 21 , B 31 , B 41 , and B 51 .
また、前記磁性体(2)の一方の端面角度をαとした
とき、もう一方の端面角度を(π−α)に選べば、即
ち、Z軸について対称な磁性体(2)であれば、式で B21∝[P1 3(cosα)sin4α▲]α π▼−α=0 B41∝[P1 5(cosα)sin6α▲]α π▼−α=0 となり、結局、B21,B41は発生しないことになる。最後
にB51=0,B31=0を満たすように、第5図に示す如くの
2つの部分で構成された磁性体(2)の端面角度と、そ
れらの断面積比を決める。いま2つの部分で構成された
磁性体(2)の両端の端面角度のうち、小さい方の角度
(以下内側端面角度と呼ぶ)、断面積をそれぞれα1,A1
およびα2,A2とすると、B31,B51の出力は B31∝A1[P1 4(cosα1)sin5α1] +A2[P1 4(cosα2)sin5α2] B51∝A1[P1 6(cosα1)sin7α1] +A2[P1 6(cosα2)sin7α2] となる。If one end face angle of the magnetic body (2) is α, and the other end face angle is (π−α), that is, if the magnetic body (2) is symmetric about the Z axis, expression in B 21 α [P 1 3 ( cosα) sin 4 α ▲] α π ▼ -α = 0 B 41 α [P 1 5 (cosα) sin 6 α ▲] α π ▼ -α = 0 , and the end, B 21 and B 41 will not occur. Finally, the end face angle of the magnetic body (2) composed of two parts as shown in FIG. 5 and the cross-sectional area ratio thereof are determined so as to satisfy B 51 = 0 and B 31 = 0. Of the end face angles at both ends of the magnetic body (2) composed of two parts, the smaller one (hereinafter referred to as the inner end face angle) and the cross sectional area are α 1 and A 1 respectively.
And α 2 , A 2 , the output of B 31 , B 51 is B 31 ∝A 1 [P 1 4 (cosα 1 ) sin 5 α 1 ] + A 2 [P 1 4 (cosα 2 ) sin 5 α 2 ] B 51 ∝ A 1 [P 1 6 (cos α 1 ) sin 7 α 1 ] + A 2 [P 1 6 (cos α 2 ) sin 7 α 2 ].
g(α)=P1 6(cosα)sin7α/P1 4(cosα)sin5α =P1 6(cosα)sin2α/P1 4(cosα) なる量を導入すると式は B51∝A1g(α1)[P1 4(cosα1)sin5α1] +A2g(α2)[P1 4(cosα2)sin5α2] (4a) となる。式のαを変化させたときのグラフを第6図に
示す。If we introduce a quantity g (α) = P 1 6 (cosα) sin 7 α / P 1 4 (cosα) sin 5 α = P 1 6 (cosα) sin 2 α / P 1 4 (cosα), the formula becomes B 51 ∝ A 1 g (α 1 ) [P 1 4 (cos α 1 ) sin 5 α 1 ] + A 2 g (α 2 ) [P 1 4 (cos α 2 ) sin 5 α 2 ] (4a). FIG. 6 shows a graph when α of the expression is changed.
第6図より R=g(α1)=g(α2) α1≠α2 なるα1,α2が存在することがわかる。It can be seen from FIG. 6 that there are α 1 and α 2 such that R = g (α 1 ) = g (α 2 ) α 1 ≠ α 2 .
式を(4a)式に代入すれば、 B51∝R{A1[P1 4(cosα1)sin5α1] +A2[P1 4(cosα2)sin5α2]} (4b) (4b)の{ }は式の右辺と全く同じである。従って
式において、あるを決めると、それに対応する が決まり、このときのB31,B51の出力はそれぞれ以下の
とおりである。Substituting the equation into the equation (4a), B 51 ∝ R {A 1 [P 1 4 (cosα 1 ) sin 5 α 1 ] + A 2 [P 1 4 (cosα 2 ) sin 5 α 2 ]} (4b) The {} in (4b) is exactly the same as the right side of the equation. Therefore, in a formula, if you decide that there is a corresponding Is determined, and the outputs of B 31 and B 51 at this time are as follows.
B31,B51の出力が共に零となるためには、断面積比が すなわち の条件を満せば良い。ここで設計例を示す。製作者の意
図する磁性体取付範囲が端面角度で140゜以下である場
合を考える。この場合第6図よりg(α)=−0.5を選
べば2つの磁性体の各々の内側端面角度はα1=40.1
0、α2=66.50となるこれらに対応した外側の端面角度
(磁性体の両端の端面角度のうち大きい方の角度)はπ
−40.1=139.90、π−66.50=113.50となり製作者の意
図する範囲140゜以内となる。このとき、式より とすれば、本比率および上記端面角を満足する2つの部
分で構成された磁性体を用いることによりB31,B51は共
に零となる。 In order that the outputs of B 31 and B 51 both become zero, the cross-sectional area ratio Ie It is sufficient to satisfy the conditions of. Here is a design example. Consider the case where the magnetic material mounting range intended by the manufacturer is 140 ° or less at the end face angle. In this case, if g (α) =-0.5 is selected from Fig. 6, the inner end face angle of each of the two magnetic bodies is α 1 = 40.1.
0, α 2 = 66.50 and the corresponding outer end face angles (the larger one of the end face angles of the magnetic substance) is π
−40.1 = 139.90, π−66.50 = 113.50, which is within the range of 140 ° intended by the manufacturer. At this time, from the formula Then, B 31 and B 51 are both zero by using a magnetic body composed of two parts satisfying this ratio and the end face angle.
以上のようにしてX成分磁性体に対して製作者の意図
した端面角度(α)、取付角度(ψ)、断面積を決める
ことができた。このような組合せは、Rを変えることに
よって設計自由度の確保を可能としていることがわか
る。As described above, the end face angle (α), the mounting angle (ψ), and the cross-sectional area intended by the manufacturer could be determined for the X component magnetic body. It can be seen that such a combination makes it possible to secure design freedom by changing R.
第5図の磁性体(2)を第1図のように に配置すると、Xのマイナス出力(A1X<0)が発生
し、各々→+πとすると、Xのプラス出力(A1X>
0)となる。また、A1Xの出力調整は、前述の式から
分かるように、磁性体(2)の2つの構成部分の断面積
比率を変えない条件で総断面積を変えることによって可
能である。The magnetic body (2) of FIG. , The negative output of X (A 1 X <0) is generated, and the positive output of X (A 1 X>) when each →→ π.
0). Further, the output of A 1 X can be adjusted by changing the total cross-sectional area under the condition that the cross-sectional area ratio of the two constituent parts of the magnetic body (2) is not changed, as can be seen from the above equation.
そこで補正前に長さと断面積比が上記の条件に同一で
断面積の異なるいくつかの種類の棒を用意しておき、選
択的に用いれば簡単に磁場調整ができる。Therefore, before correction, several kinds of rods having the same length and cross-sectional area ratio under the above conditions but different cross-sectional areas are prepared and selectively used, whereby the magnetic field can be easily adjusted.
また、本発明に対し、磁場の均一度調整に先立つて、
予め、X成分用の磁性体(2)が取付けられる位置に磁
性体(2)を挿入する非磁性体よりなる非磁性管(1)
を取付けておき、この非磁性管(1)の長さは、磁性体
(2)の長さ相当分であり、この非磁性管(1)の内径
は、必要とされる成分の出力の絶対値によって定められ
るように磁場補正装置を構成している。Further, for the present invention, prior to adjusting the homogeneity of the magnetic field,
A non-magnetic tube (1) made of a non-magnetic material in which the magnetic material (2) is previously inserted in a position where the magnetic material (2) for the X component is attached.
The length of this non-magnetic tube (1) is equivalent to the length of the magnetic body (2), and the inner diameter of this non-magnetic tube (1) is the absolute output of the required component. The magnetic field correction device is configured to be determined by the value.
さらに、Y,ZX,ZY,XY,X2−Y2用の棒状の磁性体(2)
の構成についても2つの部分から構成された磁性体の端
面角度と端面断面積比をX成分用と同様に相互の関係に
基く適切な値に選定することにより、製作者の意図する
範囲内への磁性体の取り付けを可能とし、必要な補償磁
界を発生し得ることとなる。Furthermore, rod-shaped magnetic materials for Y, ZX, ZY, XY, X 2 − Y 2 (2)
As for the structure of, the end surface angle and the end surface cross-sectional area ratio of the magnetic body composed of two parts are selected to be appropriate values based on the mutual relationship as in the case of the X component. It becomes possible to attach the magnetic body and to generate a necessary compensating magnetic field.
表2はその一例を示したもので断面積比と端面角度は
設計条件により変化する。Table 2 shows an example, and the cross-sectional area ratio and the end face angle change depending on the design conditions.
尚第7図は以上、X,Y,ZX,ZY,XY,Z2−Y2の不均一磁界
成分を補正するために1つの円周上に配置された磁性体
挿入用の非磁性管を示したものである。 In addition, FIG. 7 shows a non-magnetic tube for inserting a magnetic body arranged on one circumference to correct the non-uniform magnetic field components of X, Y, ZX, ZY, XY, Z 2 -Y 2. It is shown.
[発明の効果] 以上のように、この発明によれば、誤差成分ごとに磁
性体を製作者の取付を意図した範囲内に設定でき、か
つ、当該成分用の非磁性管を取付け、この磁性体を非磁
性管内に対して選択的に取付け、または取外しできるよ
うにしたので、均一度の調整が簡単、かつ、確実にでき
るという効果がある。[Effects of the Invention] As described above, according to the present invention, the magnetic body can be set for each error component within the range intended by the manufacturer, and a non-magnetic tube for the component can be installed to provide the magnetic substance. Since the body can be selectively attached to or detached from the non-magnetic tube, there is an effect that the uniformity can be adjusted easily and surely.
【図面の簡単な説明】 第1図はこの発明の一実施例の横断面図、第2図は第1
図のものの側側面図、第3図および第4図は磁性体の発
生磁場を説明するための模式図、第5図はX成分補正用
磁性体の斜視図、第6図は端面角度の特性線図、第7図
は各成分補正用磁性体の配置図、第8図は従来の磁場補
正装置の斜視図である。 (1),(1A),(1B),(1C)……非磁性管、(2)
……磁性体、(3)……コイル、(4)……均一度領
域。 なお、各図中、同一符号は同一または相当部分を示す。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view of an embodiment of the present invention, and FIG.
3 and 4 are schematic views for explaining the magnetic field generated by the magnetic material, FIG. 5 is a perspective view of the X component correcting magnetic material, and FIG. 6 is end face angle characteristics. FIG. 7 is a layout view of magnetic components for correcting each component, and FIG. 8 is a perspective view of a conventional magnetic field correction device. (1), (1A), (1B), (1C) ... Non-magnetic tube, (2)
…… Magnetic material, (3) …… Coil, (4) …… Uniformity area. In each drawing, the same reference numerals indicate the same or corresponding parts.
Claims (2)
形状のマグネットに使用される磁性体を用いた磁場補正
装置において、主磁場に含まれる不均一な誤差成分を補
正するための前記磁性体が、均一性の必要な領域におい
て磁場を直交座標系で級数展開したときに現れる各成分
に応じ特定の位置に配置されるように、前記マグネット
の内周面の円周方向の特定位置に配置された複数本の非
磁性管の内部に対して選択的に取付け取外しができ、か
つ、前記磁性体が、前記磁性体の端面角度と端面断面積
比を相互の関係に基づく適切な値に選定し、特定の不均
一磁界成分を発生しないようにした2つの磁性体対でな
ることを特徴とする磁場補正装置。1. A magnetic field correction device using a magnetic material used for a cylindrical magnet, which requires a spatially uniform magnetic field distribution, for correcting an inhomogeneous error component contained in a main magnetic field. A specific position in the circumferential direction of the inner peripheral surface of the magnet so that the magnetic body is arranged at a specific position according to each component that appears when the magnetic field is developed in series in the orthogonal coordinate system in the region where uniformity is required. Can be selectively attached to and detached from the inside of a plurality of non-magnetic tubes arranged in the above-mentioned manner, and the magnetic body has an appropriate value based on the mutual relationship between the end face angle and the end face sectional area ratio of the magnetic body. The magnetic field correction device is characterized in that the magnetic field correction device is composed of two magnetic body pairs selected to prevent generation of a specific nonuniform magnetic field component.
体の両端それぞれの端面角の和がπであり、かつ前記磁
性体対をなす各磁性体の両端の端面角度のうち小さい方
の角度と前記各磁性体の断面積比が (ただしA1,A2は断面積、α1,α2は各磁性体の両端の
端面角度のうち小さい方の端面角度、Pn mはルジャンド
ルの多項式を示す。)であることを特徴とする請求項
(1)記載の磁場補正装置。2. Two magnetic material pairs are mounted at positions in the circumferential direction. The sum of the end face angles of both ends of each magnetic body of this magnetic body pair is π, and the smaller one of the end face angles of both ends of each magnetic body forming the magnetic body pair. And the cross-sectional area ratio of each magnetic body (Wherein A 1, A 2 is the cross-sectional area, α 1, α 2 is the end face angle of the smaller one of the end surface angle of both ends of the magnetic body, P n m denotes the Legendre polynomials.) And characterized by a The magnetic field correction device according to claim 1.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2302782A JPH0816695B2 (en) | 1990-11-09 | 1990-11-09 | Magnetic field correction device |
DE19914136834 DE4136834C2 (en) | 1990-11-09 | 1991-11-08 | Magnetic field correction device |
GB9123941A GB2252168B (en) | 1990-11-09 | 1991-11-11 | Magnetic field correction device |
US08/054,827 US5343183A (en) | 1990-11-09 | 1993-04-30 | Magnetic field correction device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2302782A JPH0816695B2 (en) | 1990-11-09 | 1990-11-09 | Magnetic field correction device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04177187A JPH04177187A (en) | 1992-06-24 |
JPH0816695B2 true JPH0816695B2 (en) | 1996-02-21 |
Family
ID=17913056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2302782A Expired - Lifetime JPH0816695B2 (en) | 1990-11-09 | 1990-11-09 | Magnetic field correction device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPH0816695B2 (en) |
DE (1) | DE4136834C2 (en) |
GB (1) | GB2252168B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05329128A (en) * | 1992-05-29 | 1993-12-14 | Mitsubishi Electric Corp | Magnetic field corrector |
US5418462A (en) * | 1994-05-02 | 1995-05-23 | Applied Superconetics, Inc. | Method for determining shim placement on tubular magnet |
JP3618910B2 (en) * | 1996-07-10 | 2005-02-09 | 三菱電機株式会社 | Magnetic field correction method for electromagnet device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4698611A (en) * | 1986-12-03 | 1987-10-06 | General Electric Company | Passive shimming assembly for MR magnet |
FR2609206B1 (en) * | 1986-12-30 | 1992-02-14 | Thomson Cgr | MAGNETIC CORRECTIVE DEVICE FOR MAGNETIC FIELD INHOMOGENEITIES IN A MAGNET |
EP0345300A1 (en) * | 1987-04-15 | 1989-12-13 | Oxford Medical Limited | Magnetic field generating apparatus |
US4803433A (en) * | 1987-12-21 | 1989-02-07 | Montefiore Hospital Association Of Western Pennsylvania, Inc. | Method and apparatus for shimming tubular supermagnets |
JPH0339676A (en) * | 1989-07-07 | 1991-02-20 | Mitsubishi Electric Corp | Magnetic field correcting device |
-
1990
- 1990-11-09 JP JP2302782A patent/JPH0816695B2/en not_active Expired - Lifetime
-
1991
- 1991-11-08 DE DE19914136834 patent/DE4136834C2/en not_active Expired - Fee Related
- 1991-11-11 GB GB9123941A patent/GB2252168B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
DE4136834A1 (en) | 1992-05-14 |
DE4136834C2 (en) | 1999-06-02 |
JPH04177187A (en) | 1992-06-24 |
GB2252168A (en) | 1992-07-29 |
GB9123941D0 (en) | 1992-01-02 |
GB2252168B (en) | 1994-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5235284A (en) | Passive shim arrangement for nuclear magnetic resonance | |
US5992006A (en) | Method for passive control of magnet hemogeneity | |
ITUB20155325A1 (en) | Magnet for clinical diagnostics using magnetic resonance (MRI) composed of Halbach-type cylindrical rings: construction methods and techniques for making the magnetic field homogeneous in a large fraction of the internal volume of the magnet. | |
CN111220937B (en) | Halbach magnet arrangement system with slots | |
JPH02501805A (en) | A correction device that uses a magnetic member to correct the non-uniformity of the magnetic field within a magnet. | |
JPH02502967A (en) | magnetic field generator | |
JP3682627B2 (en) | Magnetic resonance imaging device | |
JPH0816695B2 (en) | Magnetic field correction device | |
JPH03501342A (en) | NMR imager, method of correcting non-uniformity, and method of making magnets used in NMR imager | |
US6351125B1 (en) | Method of homogenizing magnetic fields | |
US9778334B2 (en) | Magnetic shimming and magnet arrangements | |
JP2003512629A (en) | Permanent magnet and shim design | |
JPH0339676A (en) | Magnetic field correcting device | |
CN112444762B (en) | Octagonal-prism-shaped radial shimming coil design method | |
JP3618910B2 (en) | Magnetic field correction method for electromagnet device | |
CN212516755U (en) | Solenoid coil and magnetic measuring apparatus including the same | |
US5742164A (en) | Misalignment compensation for MR gradient coil assembly | |
JPH0531115B2 (en) | ||
CN210572816U (en) | Appearance calibrating device is visited to polycyclic combination formula magnetism | |
JPH04347137A (en) | Magnetic field corrector | |
JPH0434282B2 (en) | ||
JP3115806B2 (en) | Magnetic field generator for MRI | |
CN114675226B (en) | Method, system, chip and device for measuring mounting matrix of three-axis magnetometer | |
JPH05220127A (en) | Magnet device | |
JPH0532882B2 (en) |