[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH04347137A - Magnetic field corrector - Google Patents

Magnetic field corrector

Info

Publication number
JPH04347137A
JPH04347137A JP3121005A JP12100591A JPH04347137A JP H04347137 A JPH04347137 A JP H04347137A JP 3121005 A JP3121005 A JP 3121005A JP 12100591 A JP12100591 A JP 12100591A JP H04347137 A JPH04347137 A JP H04347137A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
bodies
tube
magnetic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3121005A
Other languages
Japanese (ja)
Inventor
Moriaki Takechi
盛明 武智
Toshiki Demaru
俊樹 出丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3121005A priority Critical patent/JPH04347137A/en
Priority to US07/886,806 priority patent/US5237275A/en
Priority to DE4217567A priority patent/DE4217567A1/en
Priority to GB9211194A priority patent/GB2256714B/en
Publication of JPH04347137A publication Critical patent/JPH04347137A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/387Compensation of inhomogeneities
    • G01R33/3873Compensation of inhomogeneities using ferromagnetic bodies ; Passive shimming
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/387Compensation of inhomogeneities
    • G01R33/3875Compensation of inhomogeneities using correction coil assemblies, e.g. active shimming

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To achieve higher workability of manufacture and assembling by eliminate connection by mutual soldering between first and second magnetic bodies to allow smooth insertion of the magnetic bodies into the first and second non-magnetic tubes. CONSTITUTION:First and second magnetic bodies 21 and 22 different in length are inserted separately into first and second non-magnetic tubes 23 and 24 to match the respective lengths of the magnetic bodies and fixed along the length thereof within the magnetic tubes 23 and 24.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、例えば磁気共鳴イメ
ージング装置などに用いられる均一磁界発生用マグネッ
トの磁場補正装置に関するものである。に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic field correction device for a magnet for generating a uniform magnetic field used, for example, in a magnetic resonance imaging apparatus. It is related to.

【0002】0002

【従来の技術】一般に、均一磁界発生用マグネットは、
それ自体で均一な磁界を発生するように設計されるが、
工作上の誤差や設置場所周囲の鉄体の影響などのため、
設計当初の磁界均一度を完全に達成することは困難であ
る。従って、均一磁界発生用マグネットには、磁場補正
装置が設けられており、これにより工作上の誤差や鉄体
の影響に対する補償が行われる。
[Prior Art] Generally, magnets for generating a uniform magnetic field are
Although it is designed to generate a uniform magnetic field by itself,
Due to manufacturing errors and the influence of iron bodies around the installation location,
It is difficult to completely achieve the original design uniformity of the magnetic field. Therefore, the magnet for generating a uniform magnetic field is provided with a magnetic field correction device, which compensates for manufacturing errors and the influence of the iron body.

【0003】図7は従来の磁界発生用マグネットの一例
を示す斜視図である。図において、マグネットケース1
は、均一な磁界を発生するように設計されたソレノイド
状のコイル(図示せず)を内蔵している。マグネットケ
ース1の上部には、コイルへの通電のための端子(図示
せず)を内蔵したポート2が設けられている。このポー
ト2への通電により、マグネットケース1の内側の磁界
発生空間3に、コイルによる磁界が発生する。
FIG. 7 is a perspective view showing an example of a conventional magnetic field generating magnet. In the figure, magnet case 1
contains a solenoid-like coil (not shown) designed to generate a uniform magnetic field. A port 2 containing a built-in terminal (not shown) for supplying electricity to the coil is provided at the top of the magnet case 1. By energizing the port 2, a magnetic field is generated by the coil in the magnetic field generation space 3 inside the magnet case 1.

【0004】マグネットケース1の内周面上には、非磁
性管4が取り付けられている。この非磁性管4の内部に
は、磁界均一度補正用の磁性体シム要素5が複数挿入さ
れている。それぞれの磁性体シム要素5は、長さの異な
る棒状の磁性体を接合してなっている。非磁性管4の両
端部は、非磁性体の栓6により封止されている。また、
従来の磁場補正装置7は、非磁性管4,磁性体シム要素
5及び栓6により構成されている。
A non-magnetic tube 4 is attached to the inner peripheral surface of the magnet case 1. A plurality of magnetic shim elements 5 for magnetic field uniformity correction are inserted into the non-magnetic tube 4 . Each magnetic shim element 5 is made by joining together rod-shaped magnetic bodies of different lengths. Both ends of the non-magnetic tube 4 are sealed with non-magnetic plugs 6. Also,
A conventional magnetic field correction device 7 includes a non-magnetic tube 4, a magnetic shim element 5, and a plug 6.

【0005】次に、動作について説明する。図8は図7
のZ軸方向を長手方向として置かれた磁性体シム要素5
の1本の磁性体11を示す斜視図である。棒状の磁性体
11は、Z軸方向の外部磁界12により磁化されて磁気
飽和する。これにより、磁性体11の端面11a,11
bには、それぞれ外部磁界12と逆方向の磁界13を発
生するような磁荷が生じる。従って、適切な形状の磁性
体11を有する磁性体シム要素5を、マグネットケース
1の開口内の適切な位置に配置することにより、磁界発
生空間3の不均一な磁場を補正することができることに
なる。
Next, the operation will be explained. Figure 8 is Figure 7
Magnetic shim element 5 placed with the Z-axis direction as the longitudinal direction
FIG. 2 is a perspective view showing one magnetic body 11 of FIG. The rod-shaped magnetic body 11 is magnetized by an external magnetic field 12 in the Z-axis direction and becomes magnetically saturated. As a result, the end surfaces 11a, 11 of the magnetic body 11
A magnetic charge is generated in each region b that generates a magnetic field 13 in the opposite direction to the external magnetic field 12. Therefore, by arranging the magnetic shim element 5 having an appropriately shaped magnetic body 11 at an appropriate position within the opening of the magnet case 1, it is possible to correct the non-uniform magnetic field in the magnetic field generation space 3. Become.

【0006】以下、磁場補正方法の詳細について説明す
る。図9は図7の磁性体シム要素5の1本の磁性体11
及び測定点PのZY面での位置を示す説明図、図10は
図9の磁性体11及び測定点PのXY面での位置を示す
説明図である。図において、磁性体11は、XY面の取
付角度φ、取付半径aの位置に取り付けられており、ま
た磁性体11のZY面の端面角度はα1,α2である。 測定点Pは、XY面の角度Φ、ZY面の角度θ、半径r
の位置である。
The details of the magnetic field correction method will be explained below. FIG. 9 shows one magnetic body 11 of the magnetic shim element 5 in FIG.
FIG. 10 is an explanatory diagram showing the position of the magnetic body 11 of FIG. 9 and the measurement point P on the XY plane. In the figure, the magnetic body 11 is attached at a position with an attachment angle φ on the XY plane and an attachment radius a, and the end face angles of the magnetic body 11 on the ZY plane are α1 and α2. The measurement point P has an angle Φ on the XY plane, an angle θ on the ZY plane, and a radius r
This is the position of

【0007】このような座標表現を用いた場合、磁性体
11の測定点Pでの磁場Bzは、式1により示される。
[0007] When such a coordinate expression is used, the magnetic field Bz at the measurement point P of the magnetic body 11 is expressed by Equation 1.

【0008】[0008]

【数1】[Math 1]

【0009】ここで、Kは定数(磁性体シム要素5の磁
気特性で決まる数値)、Aは磁性体11の断面積、εm
はノイマン係数(m≠0ならεm=2、m=0ならεm
=1)、Pnmはn次m位のルジャンドル陪多項式であ
る。 また、表1は、極座標系での磁界出力Bznmと直交座
標系での出力成分を、n=2までについて対照して示す
ものである。
Here, K is a constant (a value determined by the magnetic properties of the magnetic shim element 5), A is the cross-sectional area of the magnetic material 11, and εm
is the Neumann coefficient (if m≠0, εm=2; if m=0, εm
= 1), Pnm is a Legendre polynomial of order n and m. Further, Table 1 shows the magnetic field output Bznm in the polar coordinate system and the output component in the orthogonal coordinate system in comparison up to n=2.

【0010】0010

【表1】[Table 1]

【0011】次に、一例として、直交座標系で示される
X成分の負の出力を出す磁場補正について説明する。式
1から分かるように、磁性体11がつくる磁界成分は無
限個であるが、一般にはa>rであるから、nの値が大
きい成分は、式1中の(r/a)nが非常に小さくなり
、無視できる。従って、n,mの小さい成分Bz11,
Bz21,Bz22,Bz31,Bz32,Bz33,
Bz41,Bz42,Bz43,Bz44,Bz51,
Bz52,Bz53,Bz54の中から、X成分に対応
するBz11だけを発生させるような磁性体11の形状
,位置を次の(i),(ii),(iii)のように決
めればよい。
Next, as an example, magnetic field correction that produces a negative output of the X component shown in the orthogonal coordinate system will be explained. As can be seen from Equation 1, there are an infinite number of magnetic field components created by the magnetic body 11, but generally a>r, so for components with a large value of n, (r/a)n in Equation 1 is extremely large. is small and can be ignored. Therefore, the small component Bz11 of n, m,
Bz21, Bz22, Bz31, Bz32, Bz33,
Bz41, Bz42, Bz43, Bz44, Bz51,
The shape and position of the magnetic body 11 that generates only Bz11 corresponding to the X component from among Bz52, Bz53, and Bz54 may be determined as shown in the following (i), (ii), and (iii).

【0012】(i)  磁性体11の取付角度φを、以
下の式2〜式9の通りとする。これにより、m=2,3
,4に対して式1のcosm(Φ−φ)はゼロとなり、
Bz22,Bz32,Bz33,Bz42,Bz43,
Bz44,Bz52,Bz53,Bz54の成分は出力
しない。また、B11ではX成分の負の出力を発生する
ものとなる。
(i) The mounting angle φ of the magnetic body 11 is set as shown in Equations 2 to 9 below. As a result, m=2,3
, 4, cosm(Φ-φ) in equation 1 becomes zero,
Bz22, Bz32, Bz33, Bz42, Bz43,
The components of Bz44, Bz52, Bz53, and Bz54 are not output. Further, B11 generates a negative output of the X component.

【0013】[0013]

【数2】[Math 2]

【0014】[0014]

【数3】[Math 3]

【0015】[0015]

【数4】[Math 4]

【0016】[0016]

【数5】[Math 5]

【0017】[0017]

【数6】[Math 6]

【0018】[0018]

【数7】[Math 7]

【0019】[0019]

【数8】[Math. 8]

【0020】[0020]

【数9】[Math. 9]

【0021】(ii)  磁性体11の端面角度α1,
α2をα2=π−α1とする。これにより、次の式10
及び式11が成立し、B21,B41の成分は出力しな
い。さらに、2本の磁性体11について、端面角度(α
1,α2)を、それぞれ(33.88°,146.12
°)、(62.04°,117.96°)に選べば、双
方のB51をともにゼロにすることができる。
(ii) End face angle α1 of the magnetic body 11,
Let α2 be α2=π−α1. This gives the following equation 10
Equation 11 is established, and the components B21 and B41 are not output. Furthermore, regarding the two magnetic bodies 11, the end face angle (α
1, α2), respectively (33.88°, 146.12
), (62.04°, 117.96°), both B51 can be set to zero.

【0022】[0022]

【数10】[Math. 10]

【0023】[0023]

【数11】[Math. 11]

【0024】(iii)  端面角度(33.88°,
146.12°)の磁性体11、及び端面角度(62.
04°,117.96°)の磁性体11の断面積を、そ
れぞれA1,A2とすると、双方の磁性体11を同時に
配置した場合のB31出力は、次の式12となる。
(iii) End face angle (33.88°,
The magnetic body 11 has an angle of 146.12 degrees and an end face angle of 62 degrees.
04° and 117.96°) are respectively A1 and A2, the B31 output when both magnetic bodies 11 are arranged at the same time is expressed by the following equation 12.

【0025】[0025]

【数12】[Math. 12]

【0026】従って、次の式13のように、A1/A2
を7.16とすれば、B31がゼロとなる。
Therefore, as shown in the following equation 13, A1/A2
If 7.16, B31 becomes zero.

【0027】[0027]

【数13】[Math. 13]

【0028】以上、(i),(ii),(iii)の手
順により、所望のB11成分のみが発生するような磁性
体11の位置及び2本の磁性体11の断面積比が決定さ
れる。
[0028] Through the steps (i), (ii), and (iii) above, the position of the magnetic body 11 and the cross-sectional area ratio of the two magnetic bodies 11 are determined so that only the desired B11 component is generated. .

【0029】このように決定された長さの異なる2本の
磁性体11は、図11に示すように、長さ方向への相互
の位置がずれないようにはんだ14等により接合されて
、1個の磁性体シム要素5にされる。そして、(i)で
示した取付角度φの位置に配置された非磁性管4内に、
それぞれ所定の個数の磁性体シム要素5が挿入され固定
される。これにより、X成分の磁界均一度が調整される
。なお、補正する磁界の大きさに応じて磁性体11の断
面積は増減させるが、2本の磁性体11の断面積比は一
定に維持する。
As shown in FIG. 11, the two magnetic bodies 11 having different lengths determined in this way are joined by solder 14 or the like so that their mutual positions in the length direction do not deviate. magnetic shim elements 5. Then, in the non-magnetic tube 4 placed at the position of the installation angle φ shown in (i),
A predetermined number of magnetic shim elements 5 are respectively inserted and fixed. Thereby, the magnetic field uniformity of the X component is adjusted. Note that the cross-sectional area of the magnetic body 11 is increased or decreased depending on the magnitude of the magnetic field to be corrected, but the cross-sectional area ratio of the two magnetic bodies 11 is maintained constant.

【0030】[0030]

【発明が解決しようとする課題】上記のように構成され
た従来の磁場補正装置7においては、2本の磁性体11
をはんだ14等により接合して非磁性管4に挿入する必
要があるため、この磁性体11の接合作業に手間がかか
り、また複数の磁性体シム要素5を1本の非磁性管4に
挿入する場合、先に挿入された磁性体シム要素5の短い
磁性体11に、後から挿入する磁性体シム要素5が引っ
掛かるため、非磁性管4への磁性体シム要素5の挿入作
業が面倒であるなどの問題点があった。
[Problems to be Solved by the Invention] In the conventional magnetic field correction device 7 configured as described above, two magnetic bodies 11
Since it is necessary to join the magnetic material 11 with solder 14 or the like and insert it into the non-magnetic tube 4, it takes time and effort to join the magnetic material 11, and it is also difficult to insert a plurality of magnetic shim elements 5 into one non-magnetic tube 4. In this case, the magnetic shim element 5 inserted later gets caught on the short magnetic body 11 of the magnetic shim element 5 inserted first, so the work of inserting the magnetic shim element 5 into the non-magnetic tube 4 is troublesome. There were some problems.

【0031】この発明は、上記のような問題点を解決す
ることを課題としてなされたものであり、磁性体シム要
素の長さの異なる磁性体相互を接合せずに使用すること
ができ、これにより製造・組立を簡単にすることができ
る磁場補正装置を得ることを目的とする。
[0031] The present invention was made to solve the above-mentioned problems, and it is possible to use magnetic shim elements of different lengths without bonding them to each other. An object of the present invention is to obtain a magnetic field correction device that can be manufactured and assembled easily.

【0032】[0032]

【課題を解決するための手段】この発明に係る磁場補正
装置は、長さの異なる第1及び第2の磁性体を、それぞ
れ第1及び第2の非磁性管に別々に挿入して、それぞれ
その長さ方向に固定するようにしたものである。
[Means for Solving the Problems] A magnetic field correction device according to the present invention is provided by inserting first and second magnetic bodies having different lengths into first and second non-magnetic tubes respectively. It is fixed in the length direction.

【0033】[0033]

【作用】この発明においては、長さの異なる第1及び第
2の磁性体を、それぞれ第1及び第2の非磁性管に別々
に挿入することにより、第1及び第2の磁性体の接続を
省略し、かつ各磁性体の各非磁性管への挿入をスムーズ
にする。
[Operation] In this invention, the first and second magnetic bodies having different lengths are inserted separately into the first and second non-magnetic tubes, thereby connecting the first and second magnetic bodies. This eliminates the need to insert each magnetic body into each non-magnetic tube.

【0034】[0034]

【実施例】以下、この発明の実施例を図について説明す
る。なお、この実施例では、一例としてX成分の負の出
力を出す補正について説明する。図1はこの発明の一実
施例による磁場補正装置の磁性体シム要素を示す構成図
であり、図において、磁性体シム要素20を構成する第
1及び第2の磁性体21,22は、それぞれ任意の磁性
体棒材から所定の長さに切断されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below with reference to the drawings. In this embodiment, as an example, a correction for producing a negative output of the X component will be described. FIG. 1 is a configuration diagram showing a magnetic shim element of a magnetic field correction device according to an embodiment of the present invention. In the figure, first and second magnetic bodies 21 and 22 that constitute a magnetic shim element 20 are respectively It is cut into a predetermined length from an arbitrary magnetic bar.

【0035】第1の磁性体21はYZ平面において図2
に示すような端面角度を形成するように、長さL1が決
定されている。第2の磁性体22はYZ平面において図
3に示すような端面角度を形成するように、長さL2が
決定されている。また、第1の磁性体21の第1の端面
21aと第2の磁性体22の第1の端面22aとの断面
積比、及び第1の磁性体21の第2の端面21bと第2
の磁性体22の第2の端面22bとの断面積比が、それ
ぞれほぼ7.16となるように、第1及び第2の磁性体
21,22の断面積A1,A2がそれぞれ決定されてい
る。
The first magnetic body 21 is shown in FIG. 2 in the YZ plane.
The length L1 is determined so as to form an end face angle as shown in FIG. The length L2 of the second magnetic body 22 is determined so as to form an end face angle as shown in FIG. 3 in the YZ plane. Further, the cross-sectional area ratio between the first end surface 21a of the first magnetic body 21 and the first end surface 22a of the second magnetic body 22, and the cross-sectional area ratio between the second end surface 21b of the first magnetic body 21 and the second
The cross-sectional areas A1 and A2 of the first and second magnetic bodies 21 and 22 are respectively determined so that the cross-sectional area ratio with the second end surface 22b of the magnetic body 22 is approximately 7.16. .

【0036】図4は図1の磁性体シム要素20を有する
磁場補正装置のXY面での取付状態を示す構成図、図5
は図4のYZ面での取付状態を示す構成図である。第1
の非磁性管23とこれに平行に隣接する第2の非磁性管
24とからなる組は、従来例の式2〜式9で示したのと
同様の8カ所に取り付けられており、第1の非磁性管2
3には第1の磁性体21が、第2の非磁性管24には第
2の磁性体22がそれぞれ挿入されている。各非磁性管
23,24は、それぞれ各磁性体21,22の長さに合
わせて形成されている。 各磁性体21,22は、各非磁性管23,24の端部に
設けられた栓(図示せず)等により、それらの長さ方向
への位置ずれが防止されている。そして、各非磁性管2
3,24の長さ方向の相互の取付位置を調節することに
より、各磁性体21,22の長さ方向への相互の位置が
所定の位置に調節されている。
FIG. 4 is a configuration diagram showing how the magnetic field correction device having the magnetic shim element 20 of FIG. 1 is installed in the XY plane, and FIG.
5 is a configuration diagram showing an attached state on the YZ plane of FIG. 4. FIG. 1st
The set consisting of the non-magnetic tube 23 and the second non-magnetic tube 24 adjacent in parallel thereto is attached at eight locations similar to those shown in formulas 2 to 9 in the conventional example. non-magnetic tube 2
A first magnetic body 21 is inserted into the tube 3 , and a second magnetic body 22 is inserted into the second non-magnetic tube 24 . Each non-magnetic tube 23, 24 is formed to match the length of each magnetic body 21, 22, respectively. The magnetic bodies 21 and 22 are prevented from shifting in the length direction by plugs (not shown) provided at the ends of the non-magnetic tubes 23 and 24, respectively. And each non-magnetic tube 2
By adjusting the mutual attachment positions of the magnetic bodies 3 and 24 in the longitudinal direction, the mutual positions of the magnetic bodies 21 and 22 in the longitudinal direction are adjusted to predetermined positions.

【0037】次に、動作について説明する。磁性体シム
要素20は、式2〜式9に示した取付角度で取り付けら
れ、端面角度が(33.88°,146.12°)、(
62.04°,117.96°)となり、断面積比が7
.16となっているため、従来例と同様に、X成分の負
の出力だけを出す磁場補正が行われる。
Next, the operation will be explained. The magnetic shim element 20 is attached at the attachment angle shown in Formulas 2 to 9, and the end face angles are (33.88°, 146.12°), (
62.04°, 117.96°), and the cross-sectional area ratio is 7.
.. 16, therefore, similar to the conventional example, magnetic field correction is performed to output only the negative output of the X component.

【0038】このとき、上記実施例の磁性体シム要素2
0では、第1及び第2の磁性体21,22が相互に接続
されておらず、各磁性体21,22の長さ方向の相互の
位置は、第1及び第2の非磁性管23,24相互の位置
により調節されているので、各磁性体21,22相互の
接続の手間はかからず、各非磁性体23,24への各磁
性体21,22の挿入も容易である。
At this time, the magnetic shim element 2 of the above embodiment
0, the first and second magnetic bodies 21, 22 are not connected to each other, and the mutual positions of the magnetic bodies 21, 22 in the longitudinal direction are the same as those of the first and second non-magnetic tubes 23, 22. Since the positions of the magnetic bodies 21 and 24 are adjusted with respect to each other, it is not necessary to connect the magnetic bodies 21 and 22 to each other, and it is easy to insert the magnetic bodies 21 and 22 into the non-magnetic bodies 23 and 24.

【0039】なお、上記実施例ではX成分の出力を補正
するものについて述べたが、その他の成分を補正するも
のであってもよい。例えば、X成分補正用の磁性体シム
要素20の取付箇所をそれぞれ90°移動させると、Y
成分を補正するものとなる。また、上記実施例では2本
の磁性体21,22を有する磁性体シム要素20を示し
たが、例えば図6に示すように、長さの異なる第1,第
2及び第3の磁性体21,22,25を有するものであ
ってもよい。この場合、第1,第2及び第3の非磁性管
23,24,26を使用すればよい。さらに。磁性体を
4本以上有するものであってもよく、磁性体シム要素2
0の個数も特に限定されない。
[0039] In the above embodiment, a method for correcting the output of the X component has been described, but a method for correcting other components may also be used. For example, if the mounting points of the magnetic shim elements 20 for X component correction are moved by 90 degrees,
This will correct the components. Further, in the above embodiment, the magnetic shim element 20 having two magnetic bodies 21 and 22 was shown, but as shown in FIG. , 22, 25. In this case, the first, second and third non-magnetic tubes 23, 24, 26 may be used. moreover. It may have four or more magnetic materials, and the magnetic material shim element 2
The number of 0's is also not particularly limited.

【0040】さらに、上記実施例では第1及び第2磁性
体21,22の長さに応じて長さが異なる第1及び第2
の非磁性管23,24を示したが、各非磁性管23,2
4の長さを同じにして、第1の磁性体21の長さ方向の
位置決めをするストッパ等を、第1の非磁性管23内に
設けるなどしてもよい。さらにまた、上記実施例では磁
気共鳴イメージング装置用の磁場補正装置を示したが、
この発明の磁場補正装置は他の装置に適用してもよい。
Furthermore, in the above embodiment, the first and second magnetic bodies have different lengths depending on the lengths of the first and second magnetic bodies 21 and 22.
Although the non-magnetic tubes 23, 24 are shown, each non-magnetic tube 23, 2
4 may have the same length, and a stopper or the like for positioning the first magnetic body 21 in the length direction may be provided inside the first non-magnetic tube 23. Furthermore, although the above embodiment shows a magnetic field correction device for a magnetic resonance imaging device,
The magnetic field correction device of the present invention may be applied to other devices.

【0041】[0041]

【発明の効果】以上説明したように、この発明の磁場補
正装置は、長さの異なる第1及び第2の磁性体を、それ
ぞれ第1及び第2の非磁性管に別々に挿入して、それぞ
れその長さ方向に固定するようにしたので、各磁性体相
互の接続を省略することができ、かつ各磁性体を各非磁
性管にスムーズに挿入することができ、従って製造・組
立を簡単にすることができ、作業性を向上させることが
できるなどの効果を奏する。
As explained above, the magnetic field correction device of the present invention includes first and second magnetic bodies having different lengths inserted separately into the first and second non-magnetic tubes. Since each is fixed in its length direction, it is possible to omit the connection between each magnetic body and each magnetic body can be smoothly inserted into each non-magnetic tube, thus simplifying manufacturing and assembly. This has the effect of improving workability.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】この発明の一実施例による磁場補正装置の磁性
体シム要素を示す構成図である。
FIG. 1 is a configuration diagram showing a magnetic shim element of a magnetic field correction device according to an embodiment of the present invention.

【図2】図1の第1の磁性体のYZ平面における長さ及
び端面角度を示す説明図である。
FIG. 2 is an explanatory diagram showing the length and end face angle in the YZ plane of the first magnetic body in FIG. 1;

【図3】図1の第2の磁性体のYZ平面における長さ及
び端面角度を示す説明図である。
FIG. 3 is an explanatory diagram showing the length and end face angle in the YZ plane of the second magnetic body in FIG. 1;

【図4】図1の磁性体シム要素を有する磁場補正装置の
XY面での取付状態を示す構成図である。
FIG. 4 is a configuration diagram showing how the magnetic field correction device having the magnetic shim element shown in FIG. 1 is attached in the XY plane.

【図5】図4のYZ面での取付状態を示す構成図である
FIG. 5 is a configuration diagram showing the mounting state on the YZ plane of FIG. 4;

【図6】この発明の他の実施例による磁性体及び非磁性
管を示す斜視図である。
FIG. 6 is a perspective view showing a magnetic material and a non-magnetic tube according to another embodiment of the present invention.

【図7】従来の磁界発生用マグネットの一例を示す斜視
図である。
FIG. 7 is a perspective view showing an example of a conventional magnetic field generating magnet.

【図8】図7のZ軸方向を長手方向として置かれた磁性
体シム要素の1本の磁性体を示す斜視図である。
8 is a perspective view showing one magnetic body of the magnetic shim element placed with the Z-axis direction of FIG. 7 as the longitudinal direction; FIG.

【図9】図7の磁性体シム要素の1本の磁性体及び測定
点PのZY面での位置を示す説明図である。
9 is an explanatory diagram showing the position of one magnetic body of the magnetic shim element of FIG. 7 and the measurement point P on the ZY plane; FIG.

【図10】図9の磁性体及び測定点PのXY面での位置
を示す説明図である。
10 is an explanatory diagram showing the positions of the magnetic body and measurement point P in FIG. 9 on the XY plane.

【図11】図7の1個の磁性体シム要素を示す斜視図で
ある。
FIG. 11 is a perspective view of one magnetic shim element of FIG. 7;

【符号の説明】[Explanation of symbols]

20    磁性体シム要素 21    第1の磁性体 22    第2の磁性体 23    第1の非磁性管 24    第2の非磁性管 20 Magnetic shim element 21 First magnetic material 22 Second magnetic material 23 First non-magnetic tube 24 Second non-magnetic tube

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  棒状の第1の磁性体と、この第1の磁
性体と長さが異なる棒状の第2の磁性体とを有し、周囲
の磁場を補正する磁性体シム要素、前記第1の磁性体が
挿入されている第1の非磁性管、及びこの第1の非磁性
管に近接して平行に設けられ、前記第2の磁性体が挿入
されている第2の非磁性管を備え、第1及び第2の磁性
体は、前記第1及び第2の非磁性管内で長さ方向への相
互の位置ずれが防止されていることを特徴とする磁場補
正装置。
1. A magnetic shim element comprising a rod-shaped first magnetic body and a rod-shaped second magnetic body having a length different from the first magnetic body, and corrects a surrounding magnetic field; a first non-magnetic tube into which a first magnetic body is inserted; and a second non-magnetic tube which is provided close to and parallel to the first non-magnetic tube and into which the second magnetic body is inserted. A magnetic field correction device, characterized in that the first and second magnetic bodies are prevented from being displaced from each other in the longitudinal direction within the first and second non-magnetic tubes.
JP3121005A 1991-05-27 1991-05-27 Magnetic field corrector Pending JPH04347137A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3121005A JPH04347137A (en) 1991-05-27 1991-05-27 Magnetic field corrector
US07/886,806 US5237275A (en) 1991-05-27 1992-05-22 Magnetic field correction device
DE4217567A DE4217567A1 (en) 1991-05-27 1992-05-27 MAGNETIC FIELD CORRECTION DEVICE
GB9211194A GB2256714B (en) 1991-05-27 1992-05-27 Magnetic field correction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3121005A JPH04347137A (en) 1991-05-27 1991-05-27 Magnetic field corrector

Publications (1)

Publication Number Publication Date
JPH04347137A true JPH04347137A (en) 1992-12-02

Family

ID=14800432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3121005A Pending JPH04347137A (en) 1991-05-27 1991-05-27 Magnetic field corrector

Country Status (4)

Country Link
US (1) US5237275A (en)
JP (1) JPH04347137A (en)
DE (1) DE4217567A1 (en)
GB (1) GB2256714B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017033715A1 (en) * 2015-08-21 2017-03-02 株式会社日立製作所 Magnetic resonance imaging device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1007783A3 (en) * 1993-11-25 1995-10-17 Philips Electronics Nv A magnetic resonance imaging apparatus with elements for homogenising the magnetic field.
JP3618910B2 (en) * 1996-07-10 2005-02-09 三菱電機株式会社 Magnetic field correction method for electromagnet device
DE10114319C2 (en) * 2001-03-23 2003-02-13 Siemens Ag Shim device for a magnetic resonance device
GB2439749B (en) * 2006-07-06 2010-03-03 Siemens Magnet Technology Ltd Passive shimming of magnet systems
US8712706B2 (en) * 2009-12-02 2014-04-29 Nanalysis Corp. Method and apparatus for producing homogeneous magnetic fields
US9588200B2 (en) * 2011-03-25 2017-03-07 Hitachi, Ltd. Method for adjusting static magnetic field homogeneity, static magnetic field generation device for magnetic resonance imaging, magnetic field adjustment system, and program

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8419763U1 (en) * 1984-07-02 1986-03-20 Siemens AG, 1000 Berlin und 8000 München Magnetic resonance tomography device
NL8402249A (en) * 1984-07-17 1986-02-17 Philips Nv NUCLEAR SPIN RESONANCE DEVICE WITH A PERMANENT MAGNETIC MAGNET.
JPS62193230A (en) * 1986-02-20 1987-08-25 Toshiba Corp Magnetic resonance imaging system
FR2609206B1 (en) * 1986-12-30 1992-02-14 Thomson Cgr MAGNETIC CORRECTIVE DEVICE FOR MAGNETIC FIELD INHOMOGENEITIES IN A MAGNET
WO1988008126A1 (en) * 1987-04-15 1988-10-20 Oxford Magnet Technology Limited Magnetic field generating apparatus
EP0303880B1 (en) * 1987-08-14 1991-11-06 Siemens Aktiengesellschaft Electromagnet for nuclear spin tomography
US4803433A (en) * 1987-12-21 1989-02-07 Montefiore Hospital Association Of Western Pennsylvania, Inc. Method and apparatus for shimming tubular supermagnets
JPH0339676A (en) * 1989-07-07 1991-02-20 Mitsubishi Electric Corp Magnetic field correcting device
US4990877A (en) * 1989-12-04 1991-02-05 General Electric Company Passive shimming assembly for MR magnet
JPH04181706A (en) * 1990-11-15 1992-06-29 Mitsubishi Electric Corp Superconducting magnet device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017033715A1 (en) * 2015-08-21 2017-03-02 株式会社日立製作所 Magnetic resonance imaging device
JPWO2017033715A1 (en) * 2015-08-21 2018-05-17 株式会社日立製作所 Magnetic resonance imaging system

Also Published As

Publication number Publication date
US5237275A (en) 1993-08-17
GB2256714A (en) 1992-12-16
GB9211194D0 (en) 1992-07-08
DE4217567A1 (en) 1992-12-03
GB2256714B (en) 1995-02-15

Similar Documents

Publication Publication Date Title
US6845166B2 (en) Plane driving type electroacoustic transducer
JPH04347137A (en) Magnetic field corrector
TW202334665A (en) Power generation sensor
JPH05329128A (en) Magnetic field corrector
JPH01305508A (en) Magnetic shim for correcting magnetic field
US4153889A (en) Method and device for generating a magnetic field of a potential with electric current components distributed according to a derivative of the potential
US6396378B1 (en) Fine taper adjustment in a magic cylinder
US11527929B2 (en) Motor for improving flux content and robot comprising the same
JPH04180731A (en) Magnetic field correcting device
JPH0531115B2 (en)
USRE30466E (en) Method and device for generating a magnetic field of a potential with electric current components distributed according to a derivative of the potential
JPH10127602A (en) Superconducting magnetic device
EP1339083B1 (en) Colour picture tube device
JP7398730B2 (en) speaker device
JP7398731B2 (en) speaker device
US10790078B2 (en) Apparatus and method for magnetic field compression
JP7398732B2 (en) Speaker device and method for manufacturing the speaker device
US5258693A (en) Geometry corrector for a cathode ray tube
JP7506781B2 (en) Lens drive device, camera device, and electronic device
US11747301B2 (en) Magnetic field structure
JPH0418778A (en) Magnetoresistive device
JPH076607Y2 (en) Deflection yoke device
JPH04177187A (en) Magnetic field correction device
JPS61200452A (en) Method for forming uniform magnetic field in nuclear magnetic resonance image pick-up apparatus
JPH103865A (en) Deflection yoke for cathode-ray tube