JPH08151686A - Pillar/beam connecting part provided with energy absorbing mechanism - Google Patents
Pillar/beam connecting part provided with energy absorbing mechanismInfo
- Publication number
- JPH08151686A JPH08151686A JP6297658A JP29765894A JPH08151686A JP H08151686 A JPH08151686 A JP H08151686A JP 6297658 A JP6297658 A JP 6297658A JP 29765894 A JP29765894 A JP 29765894A JP H08151686 A JPH08151686 A JP H08151686A
- Authority
- JP
- Japan
- Prior art keywords
- energy absorbing
- column
- pillar
- flange
- energy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Building Environments (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、柱と梁を接合してラ
ーメンを形成する建築構造体の柱梁接合部に実施され
る、振動エネルギを塑性エネルギとして吸収し建物の振
動を抑制するエネルギ吸収機構を備えた柱梁接合部に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an energy applied to a beam-column joint portion of a building structure in which a column and a beam are joined to form a rigid frame, which absorbs vibration energy as plastic energy and suppresses building vibration. The present invention relates to a beam-column joint provided with an absorption mechanism.
【0002】[0002]
【従来の技術】従来、柱と梁を接合してラーメンを形成
する建築構造体の柱梁接合部に実施される、振動エネル
ギを塑性エネルギとして吸収し建物の振動を抑制する、
耐震性の柱梁接合部に関しては、およそ下記のものが知
られ実施されている。 柱と梁を接合した柱梁接合部の柱及び梁の端部に、
母材より遙に降伏点の低い極軟鋼材を積層し、地震時に
前記極軟鋼材を塑性化させ減衰の大きい復元力特性を得
る機構(特開平4−1373号、特開平4−29767
4号、特開平5−156839号公報の発明参照)。 柱と梁を接合した柱梁接合部の梁端に、梁材が局部
座屈する前に塑性変形する端板を介在させて接合し、骨
組の靱性を高めた機構(特公昭63−53340号、実
公平1−13682号公報の発明参照)。 通常の構造設計において、図19のように、梁の端
部近傍をハンチ形状とすることは慣例的に行われてい
る。2. Description of the Related Art Conventionally, vibration energy is absorbed as plastic energy to suppress building vibration, which is carried out at a beam-column joint of a building structure in which columns and beams are joined to form a rigid frame.
About the seismic-resistant beam-column joints, the following are known and implemented. At the end of the column and beam of the column-beam joint where the column and beam are joined,
A mechanism in which extremely mild steel material having a much lower yield point than that of the base material is laminated, and the extremely mild steel material is plasticized at the time of an earthquake to obtain a restoring force characteristic with large damping (JP-A-4-1373, JP-A-4-29767).
No. 4, JP-A-5-156839). A mechanism that enhances the toughness of the frame by joining the beam end of the beam-column joint where the column and beam are joined together with an end plate that plastically deforms before the local buckling of the beam material (Japanese Patent Publication No. 63-53340). See the invention of Japanese Utility Model Publication No. 1-13682). In a normal structure design, it is customary to form a haunch shape near the end of the beam as shown in FIG.
【0003】[0003]
【本発明が解決しようとする課題】上記の機構によれ
ば、振動エネルギを塑性エネルギとして吸収し建物の振
動を抑制することは可能であろう。しかし、この機構だ
と中立軸から極軟鋼材までの成を十分に確保できないの
で、極軟鋼材に大きな塑性率を与えることが出来ず、制
振効果が小さい。例えば図20A,Bのように梁の上フ
ランジが床スラブと合成梁を形成し、下フランジにのみ
極軟鋼材を積層した場合を考えると、この例の歪み分布
形は図21のようになる。即ち、この耐震性能は、図1
2において成Xa が0に近い条件として考えられ、断面
A位置での曲げモーメント(母材の弾性限度内における
曲げモーメント)My が小さく、所要大きさの曲げモー
メントに対して母材を弾性限度内に留めようとすると、
梁母材の断面を大きくしなければならない。また、塑性
率は2.5程度以下であり、大きなエネルギ吸収能力を
期待できない。According to the above mechanism, it is possible to suppress the vibration of a building by absorbing the vibration energy as plastic energy. However, with this mechanism, it is not possible to sufficiently secure the formation from the neutral axis to the ultra-soft steel material, so it is not possible to give a high plasticity rate to the ultra-soft steel material, and the damping effect is small. For example, considering the case where the upper flange of the beam forms a composite beam with the floor slab as shown in FIGS. 20A and 20B, and the ultra-soft steel material is laminated only on the lower flange, the strain distribution form of this example is as shown in FIG. . That is, this seismic performance is shown in Figure 1.
2 is considered to be a condition that Xa is close to 0, the bending moment at the position of section A (bending moment within the elastic limit of the base metal) My is small, and the base metal is within the elastic limit for the bending moment of the required size. When I try to keep it
The cross section of the beam base material must be enlarged. Further, the plasticity ratio is about 2.5 or less, and a large energy absorption capacity cannot be expected.
【0004】次に、上記の機構は、軽微な建築架構を
対象としたものであり、本発明が対象とする大規模な建
築架構には適用し難い。また、一旦端板が塑性変形を起
こした後は繰り返し変位による振動エネルギを吸収する
ことは期待できない。上記の設計方式は、エネルギ吸
収による振動低減を意図したものではない。一次設計レ
ベル外力に対する設計では、母材部分がほぼ弾性である
ことが求められるので、例えば図19に示した構成の柱
梁接合部ではエネルギ吸収を期待できない。即ち、梁端
部での曲げモーメントと回転変形の関係を模式的に示す
と、図22のように直線的になり、エネルギ吸収量に相
当する面積が発生しない。Next, the above-mentioned mechanism is intended for a small building frame, and it is difficult to apply it to a large-scale building frame targeted by the present invention. Also, once the end plate has undergone plastic deformation, it cannot be expected to absorb the vibration energy due to repeated displacement. The above design scheme is not intended to reduce vibration by absorbing energy. In the design for the external force at the primary design level, the base material portion is required to be substantially elastic, so that energy absorption cannot be expected at the beam-column joint having the configuration shown in FIG. 19, for example. That is, when the relationship between the bending moment and the rotational deformation at the beam end is schematically shown, it becomes linear as shown in FIG. 22, and the area corresponding to the energy absorption amount does not occur.
【0005】従って、本発明の目的は、母材部分が弾性
限度内で断面全体が負担可能な応力を高めることが出
来、同時にエネルギ吸収部の塑性率(歪み量の降伏歪み
量に対する比率)を大きくしてエネルギ吸収能力を高め
ることが出来、母材部分が弾性状態であるにもかかわら
ず十分大きなエネルギ吸収が行われ、一次設計レベル外
力に対する応答の低減効果を期待でき、母材の弾性限度
能力を調整できて構造設計上有効なエネルギ吸収機構を
備えた柱梁接合部を提供することである。Therefore, an object of the present invention is to increase the stress that the entire cross section can bear within the elastic limit of the base material portion, and at the same time, increase the plasticity ratio (the ratio of the strain amount to the yield strain amount) of the energy absorbing portion. It is possible to increase the energy absorption capacity by increasing it, and it is possible to expect a sufficient effect of reducing the response to external force at the primary design level even though the base material part is in an elastic state, and the elastic limit of the base material can be expected. An object of the present invention is to provide a beam-column joint having an energy absorbing mechanism whose ability can be adjusted and which is effective in structural design.
【0006】[0006]
【課題を解決するための手段】上記の課題を解決するた
めの手段として、請求項1の発明に係るエネルギ吸収機
構を備えた柱梁接合部は、柱と梁を剛接合してラーメン
を形成する建築構造体の柱梁接合部において、柱梁接合
部の柱又は梁のフランジ交差部の材軸方向に、柱材又は
梁材よりも降伏点が低い金属材料からなるT形断面形状
のエネルギ吸収部が、そのウエブ部を前記柱又は梁のウ
エブと平行な配置としたハンチ形状に一体的に接合され
ていることを特徴とする。As means for solving the above-mentioned problems, a column-beam joint provided with an energy absorbing mechanism according to the invention of claim 1 rigidly joins the columns to form a ramen. Energy of T-shaped cross-sectional shape made of a metal material having a lower yield point than the pillar material or the beam material in the material-beam direction of the pillar-beam joint of the building structure The absorbent part is integrally joined in a haunch shape in which the web part is arranged in parallel with the web of the pillar or the beam.
【0007】本発明の柱梁接合部の柱は鉄筋コンクリー
ト造又は鉄骨鉄筋コンクリート造柱で、梁は鉄骨造であ
り、エネルギ吸収部は梁のフランジに接合されているこ
とを特徴とする(図4参照)。本発明に係る柱梁接合部
のエネルギ吸収部は、柱のフランジ又は梁のフランジの
両側に対称的なハンチ形状に接合されていることを特徴
とする(図2又は図3参照)。The column of the column-beam joint of the present invention is a reinforced concrete structure or a steel frame reinforced concrete structure column, the beam is a steel frame structure, and the energy absorbing portion is joined to the flange of the beam (see FIG. 4). ). The energy absorbing portion of the beam-column joint according to the present invention is characterized in that it is joined to both sides of the flange of the column or the flange of the beam in a symmetrical haunch shape (see FIG. 2 or FIG. 3).
【0008】本発明の柱梁接合部のエネルギ吸収部は、
そのフランジ部の幅寸及びウエブ部の高さが、柱又は梁
のフランジ交差部が最大で材軸方向に漸減する断面変化
の形状とされていることを特徴とする(図7A〜C参
照)。本発明の柱梁接合部において、柱又は梁における
エネルギ吸収部が接合される部分のフランジの幅寸は、
エネルギ吸収部のフランジ部の幅寸よりも小さく形成さ
れていることを特徴とする。The energy absorbing portion of the beam-column joint of the present invention is
The width dimension of the flange portion and the height of the web portion are characterized by a cross-sectional change shape in which the flange intersection portion of the column or beam is maximum and gradually decreases in the material axis direction (see FIGS. 7A to 7C). . In the beam-column joint portion of the present invention, the width dimension of the flange of the portion to which the energy absorbing portion of the column or beam is joined is
It is characterized in that it is formed smaller than the width dimension of the flange portion of the energy absorbing portion.
【0009】本発明の柱梁接合部の柱又は梁において、
エネルギ吸収部が接合される部分のフランジは切除さ
れ、そのウエブに直接エネルギ吸収部のウエブ部が接合
されていることを特徴とする。本発明の柱梁接合部にお
けるエネルギ吸収部は、極低降伏点鋼又は低降伏点鋼又
はステンレス鋼で形成されていることを特徴とする。In the column or beam of the column-beam joint of the present invention,
The flange of the portion where the energy absorbing portion is joined is cut off, and the web portion of the energy absorbing portion is joined directly to the web. The energy absorbing portion in the beam-column joint of the present invention is characterized by being formed of an extremely low yield point steel, a low yield point steel or stainless steel.
【0010】なお、本発明において云う柱とは通常のラ
ーメンを構成する柱のほか耐震間柱である場合を含む。The column referred to in the present invention includes the case where it is an earthquake-resistant stud as well as the column which constitutes a normal ramen.
【0011】[0011]
【作用】本発明の一般的な構成例として、図11Aのよ
うに梁母材2の上フランジが床スラブ4と合成梁を形成
している場合を考える。横断面に生ずるひずみ分布は図
11Bのようになり、エネルギ吸収部に塑性ひずみEが
発生する。エネルギ吸収部の成を記号Xで表すと、断面
全体が負担できる曲げモーメントMは、梁母材が弾性限
度内の場合は図11Bのひずみ分布形を参考にして、概
算的に下記の〔数1〕で表すことができる。As a general configuration example of the present invention, consider a case where the upper flange of the beam base material 2 forms a composite beam with the floor slab 4 as shown in FIG. 11A. The strain distribution generated in the cross section is as shown in FIG. 11B, and the plastic strain E is generated in the energy absorbing portion. When the composition of the energy absorbing portion is represented by the symbol X, the bending moment M that can be borne by the entire cross section is roughly calculated by the following [Numerical formula] with reference to the strain distribution form of FIG. 11B when the beam base material is within the elastic limit. 1].
【0012】[0012]
【数1】 [Equation 1]
【0013】式中の記号Ar は合成梁を形成する床スラ
ブ部分4の引張鉄筋5の断面積、Afは梁母材(H型断
面梁)のフランジ1枚当たりの断面積(上下同断面)、
Aw は梁母材(H型断面梁)のウエブ断面積、Aa はエ
ネルギ吸収部のフランジ部分の断面積、tw はエネルギ
吸収部のウエブ部分の板厚、σy ’はエネルギ吸収部を
構成する材料の降伏応力度で、μ1 はエネルギ吸収部の
フランジ部分の塑性率、μ2 はエネルギ吸収部のウエブ
部分の塑性率の平均的な値である。また、X1 はエネル
ギ吸収部(極低降伏点鋼)の断面中心から中立軸までの
距離であり、下記〔数2〕で表される。The symbol A r in the equation is the cross-sectional area of the tensile reinforcing bar 5 of the floor slab portion 4 forming the composite beam, and A f is the cross-sectional area per flange of the beam base material (H-shaped cross-sectional beam) cross section),
A w is the web cross-sectional area of the beam base material (H-shaped cross-section beam), A a is the cross-sectional area of the flange portion of the energy absorbing portion, t w is the plate thickness of the web portion of the energy absorbing portion, and σ y 'is the energy absorbing portion. Is the yield stress of the material that constitutes, and μ 1 is the plasticity ratio of the flange part of the energy absorbing part, and μ 2 is the average value of the plasticity ratio of the web part of the energy absorbing part. Further, X 1 is the distance from the center of the cross section of the energy absorbing portion (extremely low yield point steel) to the neutral axis, and is represented by the following [Equation 2].
【0014】[0014]
【数2】 [Equation 2]
【0015】その他の記号は図11A,B中に示す通り
である。上記の〔数1〕はエネルギ吸収部が圧縮側とな
る場合を示しており、梁母材の弾性限度の下限値は一般
に〔数1〕においてμ1 が次の〔数3〕になる場合で表
される。Other symbols are as shown in FIGS. 11A and 11B. The above [Equation 1] shows the case where the energy absorbing part is on the compression side, and the lower limit of the elastic limit of the beam base material is generally [Equation 1] when μ 1 becomes the following [Equation 3]. expressed.
【0016】[0016]
【数3】 (Equation 3)
【0017】前記〔数3〕中の記号σy は梁母材の降伏
応力度である。今、一例として、前記のAr =21.6cm2,
Af =75.0cm2, Aw =51.75cm2,Aa =75.0cm2, d=12.5c
m , h=57.5cm , σy =3.3t/cm2 , σy ’=1.0t/cm2と
して、前述の〔数1〕,〔数2〕を、μ1 をパラメータ
として、Mについて解いた結果を図12中に細い実線で
示し、〔数3〕の条件を考慮して梁母材の弾性限度にお
ける曲げモーメントMy を太い実線で示した。ここでは
簡単の為μ1 とμ2 の関係は下記〔数4〕で表現するも
のとした。The symbol σ y in the above [Formula 3] is the yield stress level of the beam base material. Now, as an example, the above A r = 21.6 cm 2 ,
A f = 75.0cm 2 , A w = 51.75cm 2 , A a = 75.0cm 2 , d = 12.5c
Solving M for m, h = 57.5 cm, σ y = 3.3 t / cm 2 , σ y '= 1.0 t / cm 2 using the above [Equation 1] and [Equation 2] with μ 1 as a parameter The result is shown by a thin solid line in FIG. 12, and the bending moment M y at the elastic limit of the beam base material is shown by a thick solid line in consideration of the condition of [Equation 3]. Here, for simplicity, the relationship between μ 1 and μ 2 is expressed by the following [Equation 4].
【0018】[0018]
【数4】 [Equation 4]
【0019】図12の縦軸は断面全体が負担する曲げモ
ーメントM、横軸はエネルギ吸収部の成Xa である。こ
の成Xa が大きいほどMy は大きくなる。また、同じ大
きさの曲げモーメントMが断面に生じた時、Xa を大き
くしてもμ1 はそれ程変動しない特徴が見られる。図1
2中の●印は図13のように成が一定勾配で変化するエ
ネルギ吸収部を組み込んだ例、○印は図14のように成
が一様なエネルギ吸収部を組み込んだ例の各A〜E断面
位置における曲げモーメントの大きさと、エネルギ吸収
部の成との関係を示している。図13,図14の例の曲
げモーメントは、16m×8mスパン、20階建程度の鉄
骨建物がベースシア0.25程度(1次設計レベル外力に相
当)の地震力を受けた際の10階付近の長手梁(16m)
に生ずると考えられる値である。●印と○印を比較する
と、エネルギ吸収部の塑性率は各断面の位置でそれぞれ
殆ど同じ値となり、結局、図13と図14のエネルギ吸
収能力は同等と言える。従って、ハンチ形状とした図1
3の例の方が、使用する材料量も少なく、断面E位置付
近での力の伝達もスムーズなので、優れた形状であると
言える。図12からはまた、断面A位置での塑性率は4.
5 以上となり、大きなエネルギ吸収能力を期待できるこ
とが明らかである。因みに、一次設計レベルの曲げモー
メントと回転変形の関係を模式図で示すと図11Cのよ
うになる。In FIG. 12, the vertical axis represents the bending moment M that the entire cross section bears, and the horizontal axis represents the component X a of the energy absorbing portion. The larger this formation X a , the larger M y . Further, when a bending moment M of the same magnitude is generated in the cross section, μ 1 does not change so much even if X a is increased. FIG.
The symbol ● in 2 indicates an example in which an energy absorbing portion whose composition changes at a constant gradient is incorporated as shown in FIG. 13, and the symbol ○ indicates each of A to A in the example in which an energy absorbing portion whose configuration is uniform is incorporated as shown in FIG. The relationship between the magnitude of the bending moment at the position of the E cross section and the formation of the energy absorbing portion is shown. The bending moments in the examples of FIGS. 13 and 14 are 16 m × 8 m spans, and the longitudinal length near the 10th floor when a 20-story steel building receives a seismic force of about 0.25 base shear (corresponding to the primary design level external force). Beam (16m)
It is a value that is considered to occur in. Comparing the ● mark and the ○ mark, the plasticity ratios of the energy absorbing parts are almost the same at the positions of the respective cross sections, and it can be said that the energy absorbing capacities of FIG. 13 and FIG. 14 are equal after all. Therefore, the shape of the haunch is shown in FIG.
It can be said that the example of 3 has an excellent shape because the amount of material used is smaller and the transmission of force near the position of the cross section E is smooth. From FIG. 12, the plasticity ratio at the position of section A is 4.
It becomes 5 or more, and it is clear that a large energy absorption capacity can be expected. By the way, the relationship between the bending moment and the rotational deformation at the primary design level is schematically shown in FIG. 11C.
【0020】次に、本発明の異なる構成の一般例とし
て、図15Aのようにエネルギ吸収部が接合される梁母
材2のフランジ2aの幅寸がエネルギ吸収部3のフラン
ジ部3aの幅寸よりも小さく、同梁母材2の上フランジ
が床スラブ4と合成梁を形成している場合を考える。横
断面に生ずるひずみ分布は図15Bのようになり、エネ
ルギ吸収部3に大きな塑性ひずみEが生ずる。エネルギ
吸収部3の成を記号Xaで表すと、断面全体が負担でき
る曲げモーメントMは、梁母材が弾性限度内の場合、図
15Bのひずみ分布形を参考にして、略算的に下記の
〔数5〕で表すことができる。Next, as a general example of a different structure of the present invention, the width dimension of the flange 2a of the beam base material 2 to which the energy absorbing portion is joined as shown in FIG. 15A is the width dimension of the flange portion 3a of the energy absorbing portion 3. Consider the case where the upper flange of the beam base material 2 is smaller than the above and forms a composite beam with the floor slab 4. The strain distribution generated in the cross section is as shown in FIG. 15B, and a large plastic strain E is generated in the energy absorbing portion 3. When the composition of the energy absorbing portion 3 is represented by the symbol X a , the bending moment M that the entire cross section can bear is approximately calculated as follows when the beam base material is within the elastic limit, with reference to the strain distribution form of FIG. 15B. [Formula 5] of
【0021】[0021]
【数5】 (Equation 5)
【0022】式中の記号Ar は合成梁を形成する床スラ
ブ部分4の引張鉄筋5の断面積、Afuは梁母材2(H型
断面梁)の上フランジの断面積、Afbは梁母材(H型断
面梁)の下フランジ2a′の断面積、Aw は梁母材(H
型断面梁)のウエブ断面積で、Aa はエネルギ吸収部3
のフランジ部分の断面積、tw はエネルギ吸収部3のウ
エブ部分の板厚、σy ’はエネルギ吸収部3を構成する
材料の降伏応力度、μ1はエネルギ吸収部3のフランジ
部分の塑性率、μ2 はエネルギ吸収部3のウエブ部分の
塑性率の平均的な値である。また、X1 は極低降伏点鋼
の断面中心から中立軸までの距離で下記の〔数6〕で表
される。The symbol A r in the equation is the cross-sectional area of the tensile reinforcing bar 5 of the floor slab portion 4 forming the composite beam, A fu is the cross-sectional area of the upper flange of the beam base material 2 (H-shaped cross-section beam), and A fb is The cross-sectional area of the lower flange 2a ′ of the beam base material (H-shaped cross-section beam), A w is the beam base material (H
The web cross-sectional area of the mold section beam), A a is the energy absorbing portion 3
Cross-sectional area of the flange part of the energy absorption part 3, t w is the plate thickness of the web part of the energy absorption part 3, σ y 'is the yield stress of the material forming the energy absorption part 3, and μ 1 is the plasticity of the flange part of the energy absorption part 3. The rate, μ 2 is an average value of the plasticity rate of the web portion of the energy absorbing portion 3. X 1 is the distance from the center of the cross section of the ultra low yield point steel to the neutral axis and is represented by the following [Equation 6].
【0023】[0023]
【数6】 (Equation 6)
【0024】その他の記号は図15A,B中に示す通り
である。〔数5〕はエネルギ吸収部3が圧縮力側となる
場合を表しており、梁母材2の弾性限度の下限値は、一
般に上記の〔数5〕においてμ1 が下記〔数7〕となる
場合で表される。Other symbols are as shown in FIGS. 15A and 15B. [Equation 5] represents the case where the energy absorbing portion 3 is on the compression force side, and the lower limit of the elastic limit of the beam base material 2 is generally expressed by the following [Equation 5] where μ 1 is the following [Equation 7]. It is represented by the case.
【0025】[0025]
【数7】 (Equation 7)
【0026】〔数7〕中の記号σy は梁母材の降伏応力
度である。本発明の極端な事例として、図10A,Bの
ように梁母材の下フランジが無い場合(Afb=0) を考え
る。各部分の寸法を、Ar =21.6cm2, Afu =75.0cm2,A
w =51.75cm2,Aa =75.0cm2, d=12.5cm , h=57.5cm ,
σy =3.3t/cm2 ,σy ’=1.0t/cm2 として、上記の〔数
5〕〔数6〕を、μ1 をパラメータとして、曲げモーメ
ントMについて解いた結果を図16中に細い実線で示
し、〔数7〕の条件を考慮して梁母材2の弾性限度にお
ける曲げモーメントMy を太い実線で示した。ここでは
簡単の為、μ1 とμ2 の関係は下記の〔数8〕で表現で
きるものとした。The symbol σ y in [Equation 7] is the yield stress level of the beam base material. As an extreme example of the present invention, consider the case where there is no lower flange of the beam base material (A fb = 0) as shown in FIGS. 10A and 10B. The dimensions of each part, A r = 21.6cm 2, A fu = 75.0cm 2, A
w = 51.75cm 2 , A a = 75.0cm 2 , d = 12.5cm, h = 57.5cm,
FIG. 16 shows the results of solving the bending moment M with σ y = 3.3t / cm 2 and σ y '= 1.0t / cm 2 and using the above [Formula 5] and [Formula 6] with μ 1 as a parameter. A thin solid line shows the bending moment M y at the elastic limit of the beam base material 2 in consideration of the condition of [Equation 7]. Here, for the sake of simplicity, the relationship between μ 1 and μ 2 can be expressed by the following [Equation 8].
【0027】[0027]
【数8】 (Equation 8)
【0028】図16の縦軸は断面全体が負担する曲げモ
ーメントM、横軸はエネルギ吸収部3の成Xa である。
この成Xa が大きいほどMy は大きくなり、同じμ1 で
負担できるMも大きくなる。図16中の●印は図10A
のA〜E断面の位置における曲げモーメントの大きさと
エネルギ吸収部3の成との関係を示したものである。図
10A,Bの例の曲げモーメントは、16m×5mスパ
ン、20階建程度の鉄骨建物がベースシア0.25程度(1
次設計レベル外力に相当)の地震力を受けた際の10階
付近の長手梁(16m)に生ずると考えられる値である。
各断面位置でのエネルギ吸収部の塑性率はいずれも3〜
4となり、エネルギ吸収部全体に亙って比較的均等で大
きな塑性変形が生じるので、大きなエネルギ吸収能力を
期待できることが明らかである。In FIG. 16, the vertical axis represents the bending moment M that the entire cross section bears, and the horizontal axis represents the component X a of the energy absorbing portion 3.
The larger this formation X a , the larger M y, and the larger M that can be borne by the same μ 1 . The mark ● in FIG. 16 is the one in FIG. 10A.
3 shows the relationship between the magnitude of the bending moment and the formation of the energy absorbing portion 3 at the positions of the cross sections A to E. The bending moment in the examples of FIGS. 10A and 10B has a span of 16 m × 5 m, and a steel frame building of about 20 stories has a base shear of about 0.25 (1
It is a value considered to occur on the longitudinal beam (16 m) near the 10th floor when it receives an earthquake force of the next design level external force).
The plasticity ratio of the energy absorption portion at each cross-section position is 3 to
4, a relatively uniform and large plastic deformation occurs over the entire energy absorbing portion, and it is clear that a large energy absorbing capacity can be expected.
【0029】次に、図18A,Bのように梁母材2の下
フランジが通例の大きさである梁2の性能曲線を図17
に示した。図17によれば、エネルギ吸収部3の成Xa
が大きくなっても、同じμ1 で負担できる曲げモーメン
トMは大きくならないので、応力が大きい断面A位置の
塑性率に比べ、図18A中の断面D〜Eのような応力が
小さい位置での塑性率は小さくなり、エネルギ吸収部の
全体にわたって大きな塑性変形を生じさせるのは難し
い。この点で、図10Aの梁は、図18A,Bの梁より
も優れていると云える。Next, as shown in FIGS. 18A and 18B, the performance curve of the beam 2 in which the lower flange of the beam base material 2 has a usual size is shown in FIG.
It was shown to. According to FIG. 17, the component X a of the energy absorption unit 3 is
Since the bending moment M that can be borne by the same μ 1 does not become large even if the stress becomes large, the plasticity at the position where the stress is small as in the cross-sections D to E in FIG. The rate becomes small, and it is difficult to cause large plastic deformation over the entire energy absorbing portion. In this respect, it can be said that the beam of FIG. 10A is superior to the beams of FIGS. 18A and 18B.
【0030】但し、図16及び図17を参照すると、図
10A,Bの梁は図18の梁に比べてMY の値が小さ
い。また、図16および図17中には、下記の〔数9〕
で表される、梁母材の断面全部が降伏状態となった全塑
性モーメントMp を太い破線で示したが、図16では図
17に比べてMY からMp までの差が小さい。これは梁
母材が降伏し始めてから終局状態に至るまでの余裕が小
さいことを示しており、望ましいことではない。However, referring to FIGS. 16 and 17, the beam of FIGS. 10A and 10B has a smaller value of M Y than the beam of FIG. In addition, in FIG. 16 and FIG. 17, the following [Equation 9]
The total plastic moment M p , which is represented by the above, at which the entire cross section of the beam base material is in the yield state is shown by a thick broken line. In FIG. 16, the difference from M Y to M p is smaller than that in FIG. This indicates that the beam base material has a small margin from the beginning of yield to the final state, which is not desirable.
【0031】[0031]
【数9】 [Equation 9]
【0032】上記の問題点は、図8A,B又は図15
A,Bのように断面が小さい下フランジ2aを配置する
ことで調整でき、図16と図17の中間的な性能を持つ
梁端部を設計できる。すなわち、適切なMy 及びMP の
値を持ち、かつ、エネルギ吸収部全体に亙って比較的均
等で大きな塑性変形が生じ大きなエネルギ吸収能力を発
揮する梁端部とすることができる。The above problem is caused by the problem shown in FIG. 8A, B or FIG.
It is possible to adjust by arranging the lower flange 2a having a small cross section like A and B, and it is possible to design a beam end having an intermediate performance between FIG. 16 and FIG. That is, a beam end portion having appropriate values of M y and M P and exhibiting a large energy absorbing ability by relatively large and large plastic deformation throughout the energy absorbing portion can be obtained.
【0033】[0033]
【実施例】次に、図示した本発明の実施例を説明する。
図1A,Bは、H形断面の鉄骨柱1と、同じくH形断面
の鉄骨梁2とを剛接合してラーメンを形成する建築構造
体の柱梁接合部であって梁2の下フランジ2aにおける
柱フランジ1aとの交差部から材軸方向に、前記の柱母
材及び梁母材(構造用鋼=普通鋼)よりも降伏点が低い
極低降伏点鋼又は低降伏点鋼又はステンレス鋼などで製
作したT形断面形状のエネルギ吸収部3が、そのウエブ
部3aを前記梁2のウエブと平行な配置とし、梁端から
材軸方向に地震や風荷重により発生する応力勾配に応じ
た傾斜角度で変化する直角三角形状のハンチ形状に一体
的に接合した構成を示している。図中の符号4は床スラ
ブ、6は補強用のスチフナーである。エネルギ吸収部3
の接合手段には応力が十分伝達されるように溶接が採用
される。エネルギ吸収部3の材質は、梁母材2が普通鋼
(構造用鋼)の場合には所謂純鉄の如き極低降伏点鋼、
又は低炭素鋼(軟鋼)の如き低降伏点鋼、ステンレス鋼
などが適し、梁母材2が高張力鋼の場合には普通鋼を採
用することもできる。こうした材質条件は、以下に説明
する各実施例に共通する事項である。EXAMPLE An example of the present invention shown in the drawings will be described below.
1A and 1B are column-beam joints of a building structure in which a steel frame pillar 1 having an H-shaped cross section and a steel frame beam 2 having the same H-shaped cross section are rigidly joined to form a rigid frame, and the lower flange 2a of the beam 2 is shown. In the axial direction from the intersection with the column flange 1a in the column, the yield point is lower than that of the column base material and the beam base material (structural steel = ordinary steel), or the extremely low yield point steel or the low yield point steel or the stainless steel. The energy absorbing portion 3 having a T-shaped cross section formed by, for example, has the web portion 3a arranged in parallel with the web of the beam 2 and is adapted to the stress gradient generated from the end of the beam in the axial direction due to an earthquake or wind load. It shows a structure integrally joined to a right-angled triangular haunch shape that changes depending on the inclination angle. In the figure, reference numeral 4 is a floor slab, and 6 is a stiffener for reinforcement. Energy absorption part 3
Welding is adopted as the joining means so that the stress is sufficiently transmitted. When the beam base material 2 is ordinary steel (structural steel), the material of the energy absorbing portion 3 is an extremely low yield point steel such as so-called pure iron.
Alternatively, low yield point steel such as low carbon steel (mild steel), stainless steel, etc. are suitable, and when the beam base material 2 is high tensile steel, ordinary steel can also be used. Such material conditions are common to the examples described below.
【0034】この柱梁接合部によれば、地震や風荷重等
の水平外力を受けた際に、比較的大きな応力が発生する
梁端部において、梁母材2を弾性限度内に留めたまま、
エネルギ吸収部3がそのほぼ全長に亙って塑性化し、振
動エネルギを塑性エネルギとして効率良く吸収し耐震
(制振)効果を発揮する。換言すれば、一次設計レベル
外力(使用限界状態を想定した外力)に対する応答の低
減効果を期待できるのである。According to this beam-column joint, the beam base material 2 is kept within the elastic limit at the beam end where a relatively large stress is generated when a horizontal external force such as an earthquake or wind load is applied. ,
The energy absorbing portion 3 is plasticized over substantially the entire length thereof, efficiently absorbs vibration energy as plastic energy, and exerts a seismic (vibration damping) effect. In other words, the effect of reducing the response to the external force at the primary design level (the external force assuming the use limit state) can be expected.
【0035】次に、図2に示した実施例は、柱梁接合部
を構成する梁2の上下のフランジ端部に、T形断面形状
のエネルギ吸収部3,3を上下に対称的なハンチ形状に
接合した構成である。吹き抜け部分や外周架構の柱梁接
合部に適用可能である。図3に示した実施例は、柱梁接
合部を構成する柱1の左右のフランジ1a,1aにおけ
る梁2の下フランジ2aとの交差部から材軸方向下向き
に、梁の下フランジとの交差部が最大で下方へ一定勾配
で漸滅する直角三角形状のエネルギ吸収部3が、左右に
対称的なハンチ形状に接合された構成である。Next, in the embodiment shown in FIG. 2, the energy absorbing parts 3, 3 having a T-shaped cross section are vertically symmetrical in the haunches at the upper and lower flange ends of the beam 2 constituting the beam-column joint. It is a structure joined to the shape. It can be applied to the blow-through part and the beam-column joint of the outer frame. In the embodiment shown in FIG. 3, the left and right flanges 1a, 1a of the column 1 forming the beam-column joint section intersects with the lower flange 2a of the beam 2 downward from the intersection with the lower flange 2a of the beam 2. The energy absorption part 3 is a right-angled triangle having a maximum portion that gradually declines downward with a constant gradient, and is joined in a left-right symmetrical haunch shape.
【0036】図4の実施例は、柱1が鉄筋コンクリート
造又は鉄骨鉄筋コンクリート造で、その補強鉄骨7と接
合して架設された鉄骨梁2の下フランジ2aのフランジ
端部から材軸方向に、直角三角形状のエネルギ吸収部3
がハンチ形状に一体的に接合された構成である。次に、
図5はエネルギ吸収部3のハンチ形状が非直線的に形成
された実施例を示している。また、図6はエネルギ吸収
部3のハンチ形状が、直線的な変化形状でありながら、
右端を切除された台形状とされた実施例を示している。In the embodiment shown in FIG. 4, the pillar 1 is made of reinforced concrete or steel frame reinforced concrete, and a right angle is made from the flange end of the lower flange 2a of the steel frame beam 2 which is erected by being joined to the reinforcing steel frame 7. Triangular energy absorption part 3
Is integrally joined in a haunch shape. next,
FIG. 5 shows an embodiment in which the haunch shape of the energy absorbing portion 3 is formed non-linearly. Further, in FIG. 6, the haunch shape of the energy absorbing portion 3 is a linear change shape,
It shows an example of a trapezoidal shape with the right end cut off.
【0037】次に、図7A〜Cに示した実施例は、直角
三角形状のハンチを形成するエネルギ吸収部3のフラン
ジ部3bの幅寸及びウエブ部3aの高さ寸法が、梁のフ
ランジ端部(柱1のフランジ1aとの交差部)が最大で
(図7B参照)、材軸方向に漸滅して右端が最小となる
(図7Cを図7Bと比較して参照)断面変化形状に構成
したことを特徴とする。梁母材2を弾性限度に留めたま
まで、エネルギ吸収部3に大きな塑性ひずみ量(塑性エ
ネルギ)を生じさせる断面設計の有効的な手法を示した
ものであり、少量の鉄鋼材料で大きなエネルギ吸収能力
を発揮する経済設計の一実施例である。Next, in the embodiment shown in FIGS. 7A to 7C, the width dimension of the flange portion 3b and the height dimension of the web portion 3a of the energy absorbing portion 3 forming the right-angled triangle haunch are the flange end of the beam. The portion (intersection with the flange 1a of the pillar 1) is maximum (see FIG. 7B) and gradually decreases in the axial direction of the material to minimize the right end (see FIG. 7C in comparison with FIG. 7B). It is characterized by having done. This shows an effective method of cross-sectional design that causes a large amount of plastic strain (plastic energy) in the energy absorbing portion 3 while keeping the beam base material 2 at the elastic limit, and absorbs a large amount of energy with a small amount of steel material. It is an example of an economic design that demonstrates its ability.
【0038】次に、図8A,Bに示した実施例は、梁2
のフランジ端部から材軸方向にハンチを形成するように
エネルギ吸収部3を接合するべき梁部材2の下フランジ
2aの幅寸が、同エネルギ吸収部3のフランジ部3bの
幅寸よりも格別小さく形成された構成である。やはり、
梁母材2を弾性限度内に留めたまま、エネルギ吸収部3
の全長に亙って塑性率を大きく、かつ比較的均等にして
エネルギ吸収能力を高めるのに有効的な設計手法の一例
である。図9A,Bは、図8A,Bと同様な技術的思想
の下に、エネルギ吸収部3を梁端の上下のフランジに上
下対称的なハンチ形状に一体化接合した構成の実施例を
示している。Next, in the embodiment shown in FIGS. 8A and 8B, the beam 2 is used.
The width dimension of the lower flange 2a of the beam member 2 to which the energy absorbing portion 3 is to be joined so as to form a haunch from the flange end of the energy absorbing portion 3 in the axial direction is significantly larger than the width dimension of the flange portion 3b of the energy absorbing portion 3. It has a small structure. also,
While keeping the beam base material 2 within the elastic limit, the energy absorbing portion 3
This is an example of a design method effective for increasing the energy absorption capacity by making the plasticity ratio relatively large over the entire length of the and making it relatively uniform. 9A and 9B show an embodiment of a structure in which the energy absorbing portion 3 is integrally joined to the upper and lower flanges of the beam end in a vertically symmetrical haunch shape under the same technical idea as FIGS. 8A and 8B. There is.
【0039】更に、図10A,Bは一層極端な実施例と
して、梁母材2の端部のエネルギ吸収部3が接合される
部分の下フランジを完全に切除して、そのウエブに直接
T形断面形状をなすエネルギ吸収部のウエブ部3aを溶
接で接合した構成を示している。かくすることにより梁
端の各断面位置におけるエネルギ吸収部の塑性率は3〜
4と大きくなり、エネルギ吸収部3の全長に亙って比較
的均等で大きな塑性変形が生じて大きなエネルギ吸収能
力を発揮する。10A and 10B, as a more extreme example, the lower flange of the end portion of the beam base material 2 to which the energy absorbing portion 3 is joined is completely cut off and the web is directly T-shaped. It shows a configuration in which the web portion 3a of the energy absorbing portion having a sectional shape is joined by welding. By doing so, the plasticity ratio of the energy absorbing portion at each cross-sectional position of the beam end is 3 to
4, it becomes relatively large and relatively large plastic deformation occurs over the entire length of the energy absorbing portion 3 to exert a large energy absorbing ability.
【0040】以上の各実施例は最良の代表的な構成の例
を示したにすぎない。その他いちいち図示して説明する
ことは省略したが、本発明の技術的思想を基に当業者に
自明な、又は設計変更程度に行われる種々な応用、利用
の実施例を本発明が広く包含していることは云うまでも
ない。Each of the above embodiments is merely an example of the best typical structure. Although not shown and described individually, the present invention broadly embraces examples of various applications and uses which are obvious to those skilled in the art based on the technical idea of the present invention, or are made to a degree of design change. Needless to say.
【0041】[0041]
【本発明が奏する効果】本発明は、柱梁接合部の梁又は
柱にエネルギ吸収部をハンチ形状に取付ける構成である
から、エネルギ吸収部を取付けるための壁やブレース、
間柱などを必要とせず、建築計画上の制約を受けないた
め、建築構造物の架構中に数多く、バランス良く配置し
て実施することが可能であり、実用度が高い。EFFECTS OF THE INVENTION The present invention has a structure in which an energy absorbing portion is attached to a beam or a pillar of a beam-column joint in a haunch shape. Therefore, a wall or a brace for attaching the energy absorbing portion,
Since it does not require studs and is not constrained in the construction plan, it can be placed in a large number in the frame of the building structure in a well-balanced manner and is highly practical.
【0042】本発明の柱梁接合部は、構造計画上、地震
や風荷重等の水平外力を受けた際に通例の部材であれば
降伏を想定するほど大きな応力が発生する梁端部又は柱
部に実施されるので、適切な断面設計、材質設計を行な
うことで、エネルギ吸収部に大きな塑性ひずみ量を生じ
させることが可能であり、地震、風荷重等により建物に
入力される振動エネルギを効果的に吸収し、建物の振動
を抑制する経済的な断面設計を可能とする。また、耐震
(又は制振)効果の定量的な把握、安全性に関する検討
等も、通常の構造設計で行われる部材の断面設計に関す
る検討手法により可能である。The column-beam joint of the present invention is a beam end or column in which a large stress is generated so as to assume yielding if it is an ordinary member when subjected to a horizontal external force such as an earthquake or wind load in the structural plan. Since it is carried out in the section, it is possible to generate a large amount of plastic strain in the energy absorbing section by performing an appropriate cross-section design and material design, and to reduce the vibration energy input to the building due to earthquakes, wind loads, etc. Enables economical cross-sectional design that effectively absorbs and suppresses building vibration. In addition, it is possible to quantitatively grasp the seismic (or vibration damping) effect and to study safety, etc., by using the study method for the cross-sectional design of members that is performed in normal structural design.
【0043】本発明によれば、エネルギ吸収部は、母材
部分を弾性限度に留めたまま、エネルギ吸収部の長さ全
体に亙って大きな塑性変形を生じ、塑性率を大きくして
多くの振動エネルギを塑性エネルギとして効果的に吸収
することができ、少量の鋼材料で大きな耐震能力を発揮
するので、経済的設計が可能となる。その結果、一次設
計レベル外力に対しても応答の低減効果を充分に期待で
きる。According to the present invention, the energy absorbing portion undergoes a large plastic deformation over the entire length of the energy absorbing portion while keeping the base material portion at the elastic limit, thereby increasing the plasticity ratio and increasing the plasticity ratio. The vibration energy can be effectively absorbed as plastic energy, and a large amount of steel material can exert a large seismic capacity, which enables economical design. As a result, it is possible to fully expect the effect of reducing the response to the external force at the primary design level.
【図1】Aは本発明の第1実施例の柱梁接合部を示した
正面図、BはB−B線矢視の断面図である。FIG. 1A is a front view showing a beam-column joint portion of a first embodiment of the present invention, and B is a sectional view taken along the line BB.
【図2】本発明の第2実施例の柱梁接合部を示した正面
図である。FIG. 2 is a front view showing a beam-column joint portion according to a second embodiment of the present invention.
【図3】本発明の第3実施例の柱梁接合部を示した正面
図である。FIG. 3 is a front view showing a beam-column joint portion according to a third embodiment of the present invention.
【図4】本発明の第4実施例の柱梁接合部を示した正面
図である。FIG. 4 is a front view showing a beam-column joint portion according to a fourth embodiment of the present invention.
【図5】本発明の第5実施例の柱梁接合部を示した正面
図である。FIG. 5 is a front view showing a beam-column joint portion according to a fifth embodiment of the present invention.
【図6】本発明の第6実施例の柱梁接合部を示した正面
図である。FIG. 6 is a front view showing a beam-column joint portion of a sixth embodiment of the present invention.
【図7】Aは本発明の第7実施例の柱梁接合部を示した
正面図、BはB−B線矢視の断面図、CはC−C線矢視
の断面図である。7A is a front view showing a beam-column joint portion of a seventh embodiment of the present invention, B is a sectional view taken along the line BB, and C is a sectional view taken along the line CC.
【図8】Aは本発明の第8実施例の柱梁接合部を示した
正面図、BはB−B線矢視の断面図である。FIG. 8A is a front view showing a beam-column joint portion of an eighth embodiment of the present invention, and B is a sectional view taken along the line BB.
【図9】Aは本発明の第9実施例の柱梁接合部を示した
正面図、BはB−B線矢視の断面図である。FIG. 9A is a front view showing a beam-column joint portion of a ninth embodiment of the present invention, and B is a sectional view taken along the line BB.
【図10】Aは本発明の第10実施例の柱梁接合部を示
した正面図、BはB−B線矢視の断面図である。10A is a front view showing a beam-column joint portion of a tenth embodiment of the present invention, and B is a sectional view taken along the line BB.
【図11】Aは合成梁による柱梁接合部モデルの断面
図、Bは同前のひずみ分布図、Cは一次設計レベル外力
の曲げモーメントと回転変形の関係を示す模式図であ
る。11A is a cross-sectional view of a beam-column joint model of a composite beam, B is a strain distribution diagram of the same, and C is a schematic diagram showing a relationship between a bending moment of an external force at a primary design level and rotational deformation.
【図12】梁の曲げモーメントの大きさと成の関係を示
すグラフである。FIG. 12 is a graph showing the relationship between the magnitude of the bending moment of a beam and its success.
【図13】図12のグラフ中の●印の柱梁接合部モデル
図である。FIG. 13 is a model view of a column-beam joint part indicated by a black circle in the graph of FIG.
【図14】図12のグラフ中の○印の柱梁接合部モデル
図である。FIG. 14 is a model view of a column-beam joint part indicated by a circle in the graph of FIG.
【図15】Aは合成梁による柱梁接合部モデルの断面図
であり、Bは同前のひずみ分布図である。FIG. 15A is a cross-sectional view of a column-beam joint model of a composite beam, and B is a strain distribution diagram of the same.
【図16】梁の曲げモーメントの大きさと成の関係を示
すグラフである。FIG. 16 is a graph showing the relationship between the magnitude of the bending moment of a beam and its success.
【図17】図18に示す梁の性能曲線図である。FIG. 17 is a performance curve diagram of the beam shown in FIG. 18.
【図18】Aは梁の下フランジの幅寸が大きい柱梁接合
部モデルの断面図であり、BはA位置の断面図である。FIG. 18A is a cross-sectional view of a column-beam joint model in which the lower flange of the beam has a large width dimension, and B is a cross-sectional view at the A position.
【図19】従来のハンチ形状梁の柱梁接合部を示した正
面図である。FIG. 19 is a front view showing a beam-column joint portion of a conventional haunch-shaped beam.
【図20】Aは従来の梁の下フランジに極軟鋼材を積層
した柱梁接合部の正面図、BはB−B線矢視の断面図で
ある。FIG. 20A is a front view of a beam-column joint portion in which an extremely soft steel material is laminated on a lower flange of a conventional beam, and B is a cross-sectional view taken along the line BB.
【図21】図21A,Bに示した柱梁接合部のひずみ分
布図である。FIG. 21 is a strain distribution diagram of the beam-column joint shown in FIGS. 21A and 21B.
【図22】図19の柱梁接合部の曲げモーメントと回転
変形の関係を示す模式図である。22 is a schematic diagram showing the relationship between the bending moment and the rotational deformation of the beam-column joint in FIG.
1 柱 1a 柱のフランジ 2 梁 2a 梁のフランジ 3 エネルギ吸収部 3a ウエブ部 3b フランジ部 1 pillar 1a pillar flange 2 beam 2a beam flange 3 energy absorption part 3a web part 3b flange part
───────────────────────────────────────────────────── フロントページの続き (72)発明者 谷口 元 千葉県印旛郡印西町大塚一丁目5番 株式 会社竹中工務店技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Moto Taniguchi, 1-5 Otsuka, Inzai-cho, Inba-gun, Chiba Prefecture Takenaka Corporation Technical Research Institute
Claims (7)
建築構造体の柱梁接合部において、 柱梁接合部の柱又は梁のフランジ交差部の材軸方向に、
柱材又は梁材よりも降伏点が低い金属材料からなるT形
断面形状のエネルギ吸収部が、そのウエブ部を前記柱又
は梁のウエブと平行な配置としたハンチ形状に一体的に
接合されていることをを特徴とする、エネルギ吸収機構
を備えた柱梁接合部。1. In a column-beam joint of a building structure in which a column and a beam are rigidly joined to form a rigid frame, a column of the column-beam joint or a material axis direction of a flange intersection of the beam,
An energy absorbing portion having a T-shaped cross section made of a metal material having a lower yield point than a pillar material or a beam material is integrally joined to a haunch shape in which the web portion is arranged in parallel with the web of the pillar or beam. A beam-column joint having an energy absorbing mechanism, which is characterized in that
鉄骨鉄筋コンクリート造柱で、梁は鉄骨造であり、エネ
ルギ吸収部は梁のフランジに接合されていることを特徴
とする、エネルギ吸収機構を備えた柱梁接合部。2. The energy absorbing mechanism according to claim 1, wherein the column is a reinforced concrete structure or a steel frame reinforced concrete structure column, the beam is a steel frame structure, and the energy absorbing portion is joined to a flange of the beam. Beam-column joints.
ンジ又は梁のフランジの両側に対称的なハンチ形状に接
合されていることを特徴とする、エネルギ吸収機構を備
えた柱梁接合部。3. The column-beam joint part having an energy absorbing mechanism, wherein the energy absorbing part of claim 1 is joined to both sides of a column flange or a beam flange in a symmetrical haunch shape. .
フランジ部の幅寸及びウエブ部の高さが、柱又は梁のフ
ランジ交差部が最大で材軸方向に漸減する断面変化形状
とされていることを特徴とする、エネルギ吸収機構を備
えた柱梁接合部。4. The energy absorbing portion according to claim 1, wherein the width of the flange portion and the height of the web portion are such that the crossing shape is such that the flange intersection portion of the column or beam is maximum and gradually decreases in the axial direction of the material. A beam-column joint having an energy absorbing mechanism, which is characterized in that
ルギ吸収部が接合される部分のフランジの幅寸は、エネ
ルギ吸収部のフランジ部の幅寸よりも小さく形成されて
いることを特徴とする、エネルギ吸収機構を備えた柱梁
接合部。5. The pillar or the beam according to claim 1, wherein the width of the flange of the portion to which the energy absorbing portion is joined is smaller than the width of the flange of the energy absorbing portion. And a beam-column joint having an energy absorbing mechanism.
ルギ吸収部が接合される部分のフランジは切除され、そ
のウエブに直接エネルギ吸収部のウエブ部が接合されて
いることを特徴とする、エネルギ吸収機構を備えた柱梁
接合部。6. The pillar or beam according to any one of claims 1 to 4, wherein the flange of the portion to which the energy absorbing portion is joined is cut off, and the web portion of the energy absorbing portion is directly joined to the web. , Beam-column joint with energy absorption mechanism.
降伏点鋼又は低降伏点鋼又はステンレス鋼で形成されて
いることを特徴とする、エネルギ吸収機構を備えた柱梁
接合部。7. A beam-column joint with an energy absorbing mechanism, wherein the energy absorbing portion according to any one of claims 1 to 6 is formed of ultra-low yield point steel, low yield point steel or stainless steel. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29765894A JP3451328B2 (en) | 1994-11-30 | 1994-11-30 | Beam-to-column connection with energy absorption mechanism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29765894A JP3451328B2 (en) | 1994-11-30 | 1994-11-30 | Beam-to-column connection with energy absorption mechanism |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08151686A true JPH08151686A (en) | 1996-06-11 |
JP3451328B2 JP3451328B2 (en) | 2003-09-29 |
Family
ID=17849453
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29765894A Expired - Fee Related JP3451328B2 (en) | 1994-11-30 | 1994-11-30 | Beam-to-column connection with energy absorption mechanism |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3451328B2 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002173977A (en) * | 2000-12-08 | 2002-06-21 | Takenaka Komuten Co Ltd | Steel framed column-beam joint part equipped with earthquake control mechanism |
KR100360377B1 (en) * | 1998-12-17 | 2002-12-18 | 재단법인 포항산업과학연구원 | Steel structure with damper joint |
US6739099B2 (en) | 2001-06-06 | 2004-05-25 | Nippon Steel Corporation | Column-and-beam join structure |
JP2006207268A (en) * | 2005-01-28 | 2006-08-10 | Takenaka Komuten Co Ltd | Joint structure of column and beam |
US7497054B2 (en) | 2001-06-06 | 2009-03-03 | Nippon Steel Corporation | Column-and-beam join structure |
KR100888231B1 (en) * | 2007-10-11 | 2009-03-11 | 이상섭 | Beam, structure, parking structure having the beam, method of manufacturing the beam and method of manufacturing structure without column |
KR101149034B1 (en) * | 2011-12-06 | 2012-05-25 | 채일수 | Prefab building connecting materials which improved bending stress of beam |
CN104018496A (en) * | 2014-05-13 | 2014-09-03 | 中冶集团武汉勘察研究院有限公司 | Round-section slide-resistant pile with pile body provided with horizontal haunched beam and construction method of round-section slide-resistant pile |
KR101518446B1 (en) * | 2013-12-02 | 2015-05-15 | 컨베스트 주식회사 | Manufacturing mehto d of beam and column attacting special reinforce structure considering moment magnitude and steel structure manufacturing method and steel suructure having the same |
JP2018104995A (en) * | 2016-12-27 | 2018-07-05 | 株式会社竹中工務店 | Building structure and reinforcement method of existing column beam frame |
KR102077751B1 (en) * | 2019-06-14 | 2020-02-14 | (주)삼우종합건축사사무소 | Connection sructure between steel column and long span steel girder |
CN111270758A (en) * | 2020-03-30 | 2020-06-12 | 上海鹄鸫重工股份有限公司 | General steel-concrete building system and pouring method thereof |
CN111288845A (en) * | 2020-02-24 | 2020-06-16 | 北京中科宇航技术有限公司 | Transfer erecting frame |
CN113153073A (en) * | 2021-04-19 | 2021-07-23 | 福建厚德节能科技发展有限公司 | Evaporate and press waterproof windowsill of aerated concrete |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103711221B (en) * | 2013-12-30 | 2016-01-13 | 北京工业大学 | The anti-buckling spacing energy-consumption supporting member of a kind of I-shaped variable-cross-sectisteel steel core of channel-section steel open flume type |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH041373A (en) * | 1990-04-19 | 1992-01-06 | Taisei Corp | Steel structure |
JPH05156839A (en) * | 1991-12-04 | 1993-06-22 | Fujita Corp | Vibration-restraint frame structure |
JPH0573170U (en) * | 1992-03-05 | 1993-10-05 | 新日本製鐵株式会社 | Vibration suppression beams for steel structures |
-
1994
- 1994-11-30 JP JP29765894A patent/JP3451328B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH041373A (en) * | 1990-04-19 | 1992-01-06 | Taisei Corp | Steel structure |
JPH05156839A (en) * | 1991-12-04 | 1993-06-22 | Fujita Corp | Vibration-restraint frame structure |
JPH0573170U (en) * | 1992-03-05 | 1993-10-05 | 新日本製鐵株式会社 | Vibration suppression beams for steel structures |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100360377B1 (en) * | 1998-12-17 | 2002-12-18 | 재단법인 포항산업과학연구원 | Steel structure with damper joint |
JP4664484B2 (en) * | 2000-12-08 | 2011-04-06 | 株式会社竹中工務店 | Steel beam-to-column connection with vibration control mechanism |
JP2002173977A (en) * | 2000-12-08 | 2002-06-21 | Takenaka Komuten Co Ltd | Steel framed column-beam joint part equipped with earthquake control mechanism |
US6739099B2 (en) | 2001-06-06 | 2004-05-25 | Nippon Steel Corporation | Column-and-beam join structure |
US7497054B2 (en) | 2001-06-06 | 2009-03-03 | Nippon Steel Corporation | Column-and-beam join structure |
JP2006207268A (en) * | 2005-01-28 | 2006-08-10 | Takenaka Komuten Co Ltd | Joint structure of column and beam |
KR100888231B1 (en) * | 2007-10-11 | 2009-03-11 | 이상섭 | Beam, structure, parking structure having the beam, method of manufacturing the beam and method of manufacturing structure without column |
KR101149034B1 (en) * | 2011-12-06 | 2012-05-25 | 채일수 | Prefab building connecting materials which improved bending stress of beam |
KR101518446B1 (en) * | 2013-12-02 | 2015-05-15 | 컨베스트 주식회사 | Manufacturing mehto d of beam and column attacting special reinforce structure considering moment magnitude and steel structure manufacturing method and steel suructure having the same |
CN104018496A (en) * | 2014-05-13 | 2014-09-03 | 中冶集团武汉勘察研究院有限公司 | Round-section slide-resistant pile with pile body provided with horizontal haunched beam and construction method of round-section slide-resistant pile |
CN104018496B (en) * | 2014-05-13 | 2017-01-04 | 中冶集团武汉勘察研究院有限公司 | A kind of pile body arranges circular cross-section friction pile and the construction method thereof of Horizontal hunche beam |
JP2018104995A (en) * | 2016-12-27 | 2018-07-05 | 株式会社竹中工務店 | Building structure and reinforcement method of existing column beam frame |
KR102077751B1 (en) * | 2019-06-14 | 2020-02-14 | (주)삼우종합건축사사무소 | Connection sructure between steel column and long span steel girder |
CN111288845A (en) * | 2020-02-24 | 2020-06-16 | 北京中科宇航技术有限公司 | Transfer erecting frame |
CN111270758A (en) * | 2020-03-30 | 2020-06-12 | 上海鹄鸫重工股份有限公司 | General steel-concrete building system and pouring method thereof |
CN113153073A (en) * | 2021-04-19 | 2021-07-23 | 福建厚德节能科技发展有限公司 | Evaporate and press waterproof windowsill of aerated concrete |
Also Published As
Publication number | Publication date |
---|---|
JP3451328B2 (en) | 2003-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101263078B1 (en) | Connection metal fitting and building with the same | |
JP3451328B2 (en) | Beam-to-column connection with energy absorption mechanism | |
JP6786224B2 (en) | Column-beam structure with anti-vibration structure | |
JP3016634B2 (en) | Damping structure | |
JPH10140873A (en) | Vibration damping structure of building | |
JP2000045560A (en) | Vibration damping device and octagonal panel type damper | |
JP5654060B2 (en) | Damper brace and damping structure | |
JP4698054B2 (en) | Damping stud and its construction method | |
JPH11350778A (en) | Vibration damper and vibration-damping structure | |
JP2006226054A (en) | Aseismic reinforcing method for existing reinforced concrete building with rigid frame structure | |
JP3493495B2 (en) | Beam-to-column connection with energy absorption mechanism | |
JPH11152929A (en) | Earthquake resistant reinforcing method for building of steel frame construction | |
JPH10280725A (en) | Damping skeleton construction | |
JP4923641B2 (en) | Column-beam joints, steel frames and steel structures with excellent seismic performance | |
JP2973787B2 (en) | Eccentric brace structure with vibration suppression function | |
JP3215633U (en) | Brace mounting structure | |
JP5292881B2 (en) | Vibration control panel | |
JPH09228473A (en) | Mechanism for resisting horizontal force in structure | |
JP2662617B2 (en) | Structural members of earthquake-resistant building structures | |
JPH0733685B2 (en) | Brace type flexible mixed structure with seismic energy absorption function | |
JP2964328B2 (en) | Seismic reinforcement structure | |
JP2961220B2 (en) | Extension method for existing structures | |
JPH11293930A (en) | Earthquake-resistive reinforcing member and earthquake-resistive reinforcing construction | |
JPH07317370A (en) | Damping device | |
JP2005282229A (en) | Vibration-control structure of building |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080718 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080718 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090718 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090718 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100718 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110718 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110718 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120718 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120718 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130718 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |