[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH05156839A - Vibration-restraint frame structure - Google Patents

Vibration-restraint frame structure

Info

Publication number
JPH05156839A
JPH05156839A JP32055891A JP32055891A JPH05156839A JP H05156839 A JPH05156839 A JP H05156839A JP 32055891 A JP32055891 A JP 32055891A JP 32055891 A JP32055891 A JP 32055891A JP H05156839 A JPH05156839 A JP H05156839A
Authority
JP
Japan
Prior art keywords
vibration
steel
point steel
frame structure
yield point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32055891A
Other languages
Japanese (ja)
Other versions
JP2669740B2 (en
Inventor
Takashi Miyama
剛史 三山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP32055891A priority Critical patent/JP2669740B2/en
Publication of JPH05156839A publication Critical patent/JPH05156839A/en
Application granted granted Critical
Publication of JP2669740B2 publication Critical patent/JP2669740B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

PURPOSE:To provide vibration-restraint frame structure which has a high design freedom degree and acts effectively even against vibration whose vibration number is large, in low frequency and has no need of being provided with a wall for restraining vibration. CONSTITUTION:Pieces of low yielding point steel acting as damper materials 2 are attached in layer to the flanges 1a of steel frame members 1 constituting beams B and pillars A. And pressing plates 3 that restrain surface outside deformation generated when the plasticity of the low yielding point steel is conducted on a pulling side and then distortion is going to return to a compression side, are attached in layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は鉄骨構造、鉄骨鉄筋コン
クリート構造の骨組の梁柱部材に適用され、地震、風そ
の他による振動を低減させる制振骨組構造に係るもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applied to a beam column member of a frame of a steel frame structure or a steel frame reinforced concrete structure, and relates to a vibration control frame structure for reducing vibration due to earthquake, wind or the like.

【0002】[0002]

【従来の技術】従来この種の構造においては、図8に示
すように壁aの上部と梁bとの間に間隔を設け、同間隔
に摩擦ダンパーや鉛ダンパー等のダンパーcを介装し
て、建物の層間変形を主に壁a上部と梁bとの間に生起
させ、その変形を摩擦ダンパーや鉛ダンパーによって減
衰エネルギーとして吸収させる構造、あるいは梁b、柱
d等に制振材を貼着するか、または梁b、柱d等に制振
鋼板を用いた構造が多い。
2. Description of the Related Art Conventionally, in this type of structure, as shown in FIG. 8, a space is provided between the upper part of a wall a and a beam b, and a damper c such as a friction damper or a lead damper is interposed at the same space. Then, the interlayer deformation of the building is caused mainly between the upper part of the wall a and the beam b, and the deformation is absorbed as damping energy by a friction damper or a lead damper, or a damping material is applied to the beam b, the pillar d, etc. In many cases, they are attached or vibration damping steel plates are used for the beams b, columns d and the like.

【0003】[0003]

【発明が解決しようとする課題】しかしながら前者の方
法では壁を適切に配設する必要があり、そのため、設計
上の制約を受ける。また後者においては制振材や制振鋼
板の材料特性として減衰性を生している。例えば粘弾性
体の制振材を用いる場合、その粘性によって生じる減衰
エネルギーとして振動エネルギーを吸収する。この減衰
性は音のように周波数の高い振動に対して有効であるこ
とが多く、地震や風のように周波数の低い振動に対して
は有効でないことが多い。
However, in the former method, it is necessary to properly dispose the wall, and therefore, there are design restrictions. Further, in the latter, damping property is produced as a material property of the damping material and the damping steel plate. For example, when a viscoelastic damping material is used, vibration energy is absorbed as damping energy generated by its viscosity. This damping property is often effective for high-frequency vibrations such as sound, and is often not effective for low-frequency vibrations such as earthquakes and winds.

【0004】本発明は前記従来技術の有する問題点に鑑
みて提案されたもので、その目的とする処は、低い周波
数で振幅の大きい振動に対しても有効に作用し、制振の
ための壁を設ける必要がなく、設計自由度の高い制振骨
組構造を提供する点にある。
The present invention has been proposed in view of the above-mentioned problems of the prior art. The object of the present invention is to effectively act on vibrations of large amplitude at low frequencies and to suppress vibrations. The point is to provide a damping frame structure that does not require a wall and has a high degree of freedom in design.

【0005】[0005]

【課題を解決するための手段】前記の目的を達成するた
め、本発明に係る制振骨組構造は、梁、柱のフランジに
ダンパー材として低降伏点鋼を層着し、同低降伏点鋼上
に、同低降伏点鋼が引張側で塑性化した後に圧縮側に歪
が戻ろうとしたときに生起する面外変形を拘束する押え
板を層着して構成されている。
In order to achieve the above-mentioned object, a damping frame structure according to the present invention comprises a low yield point steel layered on a flange of a beam or a column as a damper material. The low-yield-point steel is formed by layering a pressing plate that restrains out-of-plane deformation that occurs when strain is returned to the compression side after the low yield point steel is plasticized on the tensile side.

【0006】[0006]

【作用】本発明に係る制振骨組構造は前記したように、
壁、柱のフランジにダンパー材として層着された低降伏
点鋼は小さい歪で降伏し、その後塑性変形する。従って
梁や、柱が地震や風で振動する場合、梁や柱が弾性変形
内で振動していても、ダンパー材としての低降伏点鋼は
塑性変形を繰返し、その履歴エネルギーによって建物の
振動エネルギーを吸収し、建物の振動を小さくする。前
記梁、柱が塑性域に至るまで変形した場合でも、同梁、
柱に層着された低降伏点鋼が塑性化して同様な効果を示
す。
The damping frame structure according to the present invention, as described above,
The low-yield-point steel, which is layered as a damper material on the flanges of walls and columns, yields with a small strain and then plastically deforms. Therefore, when a beam or column vibrates due to an earthquake or wind, even if the beam or column vibrates within the elastic deformation, the low yield point steel as a damper material repeats plastic deformation, and its hysteresis energy causes the vibration energy of the building to rise. To reduce building vibration. Even if the beam or column is deformed to the plastic region, the same beam,
The low-yield-point steel layered on the columns becomes plastic and exhibits the same effect.

【0007】而して前記低降伏点鋼上に押え板が層着さ
れていない場合、低降伏点鋼が引張側で塑性化した後に
圧縮側に歪が戻ろうとしたとき、面外に変形が出る可能
性があるが、本発明によれば、前記したように前記低降
伏点鋼上に押え板が層着されていることによって、同押
え板によって前記低降伏点鋼の変形が拘束されるもので
ある。
Thus, when the holding plate is not layered on the low yield point steel, when the low yield point steel is plasticized on the tensile side and then the strain is returned to the compression side, the deformation occurs out of plane. According to the present invention, since the holding plate is layered on the low yield point steel as described above, the holding plate constrains the deformation of the low yield point steel. It is a thing.

【0008】[0008]

【実施例】以下本発明を図示の実施例について説明す
る。図2はH型断面の鉄骨部材1のフランジ1aに、ダ
ンパー材2としての低降伏点鋼及び同低降伏点鋼よりな
るダンパー材2が後述の如き大変形を生じた場合、面外
変形が生起しないようにするための高張力鋼よりなる押
え板3が層着され、ボルト4で固着されている。
The present invention will be described below with reference to the illustrated embodiments. FIG. 2 shows that when the low yield point steel as the damper material 2 and the damper material 2 made of the same low yield point steel undergo a large deformation as described later on the flange 1a of the steel member 1 having the H-shaped cross section, the out-of-plane deformation is caused. A holding plate 3 made of high-tensile steel for preventing the occurrence of the occurrence is layered and fixed by bolts 4.

【0009】図3はボックス鋼5の外周面にダンパー材
2としての低降伏点鋼及び同低降伏点鋼が後述の如き大
変形を生起した場合、同低降伏点鋼の面外変形を抑制す
るための高張力鋼よりなる押え板3が層着され、ボルト
4で固着されている。図4はボックス鋼5の内周面に、
ダンパー材2としての低降伏点鋼及び同低降伏点鋼が後
述の如き大変形を生起した場合、面外変形が生起しない
ようにするための高張力鋼よりなる押え板3が重層さ
れ、溶接wされている。
FIG. 3 shows that when the low yield point steel as the damper material 2 and the low yield point steel on the outer peripheral surface of the box steel 5 undergo a large deformation as described below, the out-of-plane deformation of the low yield point steel is suppressed. A pressing plate 3 made of high-strength steel is layered and secured with bolts 4. Figure 4 shows the inner surface of the box steel 5.
When the low-yield-point steel as the damper material 2 and the low-yield-point steel cause a large deformation as described below, a holding plate 3 made of high-tensile steel is laminated to prevent out-of-plane deformation, and welding is performed. It has been w.

【0010】図1は本発明に係る制振骨組構造の一実施
例を示し、鉄骨造3階建の各層の柱Aを構成するH型材
1の上側と下側のフランジ1aに、低降伏点鋼よりなる
ダンパー材2が貼着され、同ダンパー材2上に高張力鋼
よりなる押え板3が層着されている。図中Bは梁であ
る。図5は曲げモーメントMが加った場合の変形状態を
示し、建物が地震や風で振動すると柱Aを構成するH型
材1に曲げ変形を生じ、図5(イ)に示すように上部フ
ランジ1aに曲げモーメントMが加えられ、ある程度変
形を生じた場合、図5(ロ)に示すように上部フランジ
1aは弾性変形するが、上部フランジ1aのダンパー材
2は塑性変形する。而して前記押え板3がない場合、図
6(ロ)に示すように上部フランジ1aは塑性変形を
し、押え板3がない場合、図6(イ)に示すように上部
フランジA1 が圧縮側になるとダンパー材2は面外に変
形し、図6(ロ)に示すように圧縮力が大きくならない
ことがある。
FIG. 1 shows an embodiment of a vibration-damping frame structure according to the present invention, which has a low yield point on the upper and lower flanges 1a of an H-shaped member 1 which constitutes a column A of each layer of a three-story steel frame structure. A damper material 2 made of steel is attached, and a holding plate 3 made of high-tensile steel is layered on the damper material 2. B in the figure is a beam. FIG. 5 shows a deformed state when a bending moment M is applied. When the building vibrates due to an earthquake or wind, bending deformation occurs in the H-shaped member 1 forming the pillar A, and the upper flange as shown in FIG. When a bending moment M is applied to 1a to cause deformation to some extent, the upper flange 1a elastically deforms as shown in FIG. 5B, but the damper material 2 of the upper flange 1a plastically deforms. If the holding plate 3 is not provided, the upper flange 1a is plastically deformed as shown in FIG. 6B, and if the holding plate 3 is not provided, the upper flange A 1 is On the compression side, the damper material 2 may be deformed out of the plane, and the compression force may not increase as shown in FIG.

【0011】しかしながら押え板3がダンパー材2に層
着されていると、同ダンパー材2は面外に変形しないで
安定した履歴ループを描く。正負の繰返し曲げを受ける
場合、正負の塑性変形が生じ、この塑性変形によって履
歴吸収エネルギーとし吸収され、建物の振動は小さくな
る。
However, when the pressing plate 3 is layered on the damper material 2, the damper material 2 draws a stable hysteresis loop without being deformed out of plane. When subjected to positive and negative repeated bending, positive and negative plastic deformation occurs, and this plastic deformation absorbs as hysteretic absorption energy, which reduces building vibration.

【0012】[0012]

【発明の効果】本発明によれば前記したように、梁、柱
のフランジにダンパー材として低降伏点鋼を層着し、同
低降伏点鋼を降伏させることによって、建物の振動を履
歴吸収エネルギーとして吸収し、建物の振動を低減させ
るものであって、本発明によれば、梁、柱の構造部材に
ダンパー材として低降伏点鋼を取付けることによって、
平面計画上、制振のための壁を設ける必要がなく、設計
自由度が高くなる。またダンパー材を構成する低降伏点
鋼の量を調整することによって、風、地震等の低い周波
数で振幅の大きい振動に対しても有効に制振効果を発揮
させることができる。
As described above, according to the present invention, the low yield point steel is layered on the flanges of beams and columns as a damper material, and the low yield point steel is yielded to absorb the vibration of the building. It absorbs as energy and reduces the vibration of the building. According to the present invention, by attaching a low yield point steel as a damper material to the structural members of the beam and the pillar,
There is no need to install a vibration control wall in the plan, which increases the degree of freedom in design. Further, by adjusting the amount of the low yield point steel constituting the damper material, it is possible to effectively exhibit the vibration damping effect even for vibrations of large amplitude at low frequencies such as wind and earthquake.

【0013】更に本発明によれば前記したように、前記
低降伏点鋼に押え板を層着することによって、前記低降
伏点鋼が引張側で塑性化したときに生起する面外変形を
拘束し、ダンパー材が安定した履歴ループを描く。正負
の繰返し曲げを受ける場合、正負の塑性変形を生じる
が、この塑性変形によって履歴吸収エネルギーとして吸
収され、建物の振動は小さくなる。
Further, according to the present invention, as described above, by layering the holding plate on the low yield point steel, the out-of-plane deformation that occurs when the low yield point steel is plasticized on the tensile side is restrained. Then, the damper material draws a stable history loop. When subjected to repeated positive and negative bending, positive and negative plastic deformation occurs, but due to this plastic deformation, it is absorbed as hysteresis absorption energy, and the vibration of the building becomes small.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る制振骨組構造の一実施例を示す正
面図である。
FIG. 1 is a front view showing an embodiment of a damping frame structure according to the present invention.

【図2】本発明の骨組構造に使用されるH型断面鋼の一
実施例を示す縦断面図である。
FIG. 2 is a vertical cross-sectional view showing an example of H-section steel used in the frame structure of the present invention.

【図3】本発明の骨組構造に使用されるボックス鋼の一
実施例を示す縦断面図である。
FIG. 3 is a longitudinal sectional view showing an example of a box steel used in the frame structure of the present invention.

【図4】前記ボックス鋼の他の実施例を示す縦断面図で
ある。
FIG. 4 is a vertical sectional view showing another embodiment of the box steel.

【図5】(イ)(ロ)は夫々H型断面材の上部フランジ
が曲げモーメントを加えられ、ある程度変形を生じた場
合を示す正面図、並にその際における上部フランジ及び
上側ダンパー材の応力−変形図である。
5 (a) and (b) are front views showing a case where the upper flange of the H-shaped cross-section material is subjected to a bending moment and is deformed to some extent, and in addition, the stress of the upper flange and the upper damper material at that time. FIG.

【図6】(イ)(ロ)は夫々前記H型断面材の上部フラ
ンジ側が圧縮変形を生じ、上側ダンパー材が面外変形を
生じた場合を示す正面図並に上部フランジ及び上側ダン
パー材の応力−変形図である。
6 (a) and 6 (b) are front views showing the case where the upper flange side of the H-shaped cross-section material undergoes compressive deformation and the upper damper material undergoes out-of-plane deformation. It is a stress-deformation figure.

【図7】押え板を具えたH型断面材の変形を示す正面図
である。
FIG. 7 is a front view showing a modification of an H-shaped cross-section member including a pressing plate.

【図8】従来の制振骨組を示す正面図である。FIG. 8 is a front view showing a conventional damping frame.

【符号の説明】[Explanation of symbols]

A 柱 B 梁 1 鉄骨部材 1a フランジ 2 ダンパー材 3 押え板 4 ボルト 5 ボックス鋼 w 溶接 A Pillar B Beam 1 Steel frame member 1a Flange 2 Damper material 3 Holding plate 4 Bolt 5 Box steel w Welding

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 梁、柱のフランジにダンパー材として低
降伏点鋼を層着し、同低降伏点鋼上に、同低降伏点鋼が
引張側で塑性化した後に圧縮側に歪が戻ろうとしたとき
に生起する面外変形を拘束する押え板を層着してなるこ
とを特徴とする制振骨組構造。
1. A low yield point steel is layered as a damper material on a flange of a beam or a column, and the strain is returned to the compression side after the low yield point steel is plasticized on the tensile side. A vibration-damping frame structure characterized in that it is formed by layering a holding plate for restraining out-of-plane deformation that occurs when an attempt is made.
JP32055891A 1991-12-04 1991-12-04 Damping frame structure Expired - Fee Related JP2669740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32055891A JP2669740B2 (en) 1991-12-04 1991-12-04 Damping frame structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32055891A JP2669740B2 (en) 1991-12-04 1991-12-04 Damping frame structure

Publications (2)

Publication Number Publication Date
JPH05156839A true JPH05156839A (en) 1993-06-22
JP2669740B2 JP2669740B2 (en) 1997-10-29

Family

ID=18122773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32055891A Expired - Fee Related JP2669740B2 (en) 1991-12-04 1991-12-04 Damping frame structure

Country Status (1)

Country Link
JP (1) JP2669740B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08151686A (en) * 1994-11-30 1996-06-11 Takenaka Komuten Co Ltd Pillar/beam connecting part provided with energy absorbing mechanism
JPH09221853A (en) * 1996-02-20 1997-08-26 Shimizu Corp Earthquake energy absorbing structure of building
JPH10252308A (en) * 1997-03-11 1998-09-22 Shimizu Corp Vibration damping structure of building
JP2001214637A (en) * 2000-01-31 2001-08-10 Tokyo Tekko Co Ltd Vibration control structure of building structure
JP2002201819A (en) * 2000-12-28 2002-07-19 Yasui Kenchiku Sekkei Jimusho:Kk Earthquake control structure
JP2003129565A (en) * 2001-10-22 2003-05-08 Tokyo Electric Power Co Inc:The Vibration-control structure for rigid frame
JP2006283467A (en) * 2005-04-04 2006-10-19 Mitsubishi Heavy Ind Ltd Damping structural material
JP2018162618A (en) * 2017-03-27 2018-10-18 三菱日立パワーシステムズ株式会社 Vibration control structure and vibration control method of structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008013957A (en) * 2006-07-04 2008-01-24 Fujita Corp Seismic strengthening structure of steel structure

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08151686A (en) * 1994-11-30 1996-06-11 Takenaka Komuten Co Ltd Pillar/beam connecting part provided with energy absorbing mechanism
JPH09221853A (en) * 1996-02-20 1997-08-26 Shimizu Corp Earthquake energy absorbing structure of building
JPH10252308A (en) * 1997-03-11 1998-09-22 Shimizu Corp Vibration damping structure of building
JP2001214637A (en) * 2000-01-31 2001-08-10 Tokyo Tekko Co Ltd Vibration control structure of building structure
JP2002201819A (en) * 2000-12-28 2002-07-19 Yasui Kenchiku Sekkei Jimusho:Kk Earthquake control structure
JP4552320B2 (en) * 2000-12-28 2010-09-29 株式会社安井建築設計事務所 Damping structure
JP2003129565A (en) * 2001-10-22 2003-05-08 Tokyo Electric Power Co Inc:The Vibration-control structure for rigid frame
JP2006283467A (en) * 2005-04-04 2006-10-19 Mitsubishi Heavy Ind Ltd Damping structural material
JP2018162618A (en) * 2017-03-27 2018-10-18 三菱日立パワーシステムズ株式会社 Vibration control structure and vibration control method of structure

Also Published As

Publication number Publication date
JP2669740B2 (en) 1997-10-29

Similar Documents

Publication Publication Date Title
KR101263078B1 (en) Connection metal fitting and building with the same
US5349794A (en) Wall for damping vibration
JP2669740B2 (en) Damping frame structure
JP2000204788A (en) Steel earthquake damper and damping device using the same
JPH03199581A (en) Vibration suppressing device for building
JP2602888Y2 (en) Elasto-plastic damper
JPH09296625A (en) Building structure having earthquake-resistant construction
JP2000027483A (en) Vibration damping brace
JPH03247870A (en) Vibration control for structure and vibration-isolated support frame
JP4703971B2 (en) Energy absorbing brace damping device and energy absorbing device
JPH11350778A (en) Vibration damper and vibration-damping structure
JPH0522029B2 (en)
JPH08312719A (en) Base isolation structure
JP3511045B2 (en) Steel bar vibration control device for buildings
JP2937983B2 (en) Vertical shock-absorbing laminated rubber bearing
JP3260473B2 (en) Mega structure brace frame damping structure incorporating damper unit
JP6882071B2 (en) Damper
JP4112728B2 (en) Elastic-plastic damper and earthquake-resistant structure
JPH0777232A (en) Vibro-energy absorber for structure
JPH07317370A (en) Damping device
JP3358512B2 (en) Steel structural members with high damping characteristics
JPH1113302A (en) Elastoplastic damper
JP2991031B2 (en) Composite elasto-plastic damper
JP3156061B2 (en) High-rise building damping structure
JP2715710B2 (en) Eccentric brace structure with vibration suppression function

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees