[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0815532B2 - Exhaust gas treatment method - Google Patents

Exhaust gas treatment method

Info

Publication number
JPH0815532B2
JPH0815532B2 JP62122444A JP12244487A JPH0815532B2 JP H0815532 B2 JPH0815532 B2 JP H0815532B2 JP 62122444 A JP62122444 A JP 62122444A JP 12244487 A JP12244487 A JP 12244487A JP H0815532 B2 JPH0815532 B2 JP H0815532B2
Authority
JP
Japan
Prior art keywords
exhaust gas
gas
hydrogen radicals
gas treatment
treatment method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62122444A
Other languages
Japanese (ja)
Other versions
JPS63287534A (en
Inventor
哲哉 池田
洋 牧原
岩夫 佃
実 団野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP62122444A priority Critical patent/JPH0815532B2/en
Publication of JPS63287534A publication Critical patent/JPS63287534A/en
Publication of JPH0815532B2 publication Critical patent/JPH0815532B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、排ガス中に含まれるNOXおよびSOXを電磁波
あるいは電子ビームを利用して除去する方法に関する。
TECHNICAL FIELD The present invention relates to a method for removing NO X and SO X contained in exhaust gas by using an electromagnetic wave or an electron beam.

〔従来の技術〕[Conventional technology]

従来から燃焼排ガス中のNOX,SOX除去方法は多くの方
法が知られているが、なかでもNOXに対しては排ガス中
にアンモニアを注入し、触媒の存在下に接触還元を行う
方法等乾式の触媒による方法が主流を占めており、ま
た、SOXに対しては吸収液として石灰水溶液を用い副生
物として石こうを回収する石灰−石こう法による湿式法
等が主流を成している。
Conventionally, many methods are known for removing NO X and SO X in combustion exhaust gas, but among them, NO X is injected into the exhaust gas with ammonia and catalytic reduction is performed in the presence of a catalyst. The mainstream is the method using an iso-dry catalyst, and the mainstream is a wet method such as the lime-gypsum method for recovering gypsum as a byproduct using an aqueous lime solution as an absorbing liquid for SO X. .

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

このような従来の排ガス処理技術では、NOX,SOXの処
理はそれぞれ別々のプロセスで実施され、それぞれ固体
の脱硝触媒および吸収媒体としての石灰水溶液や固体吸
着剤等が必要であり、さらにまた脱硝と脱硫とを複数の
段階で行なうため、プロセスは複雑となり、したがっ
て、使用する機器の点数も多くなり、その結果、装置費
や運転費が多額になるという問題点があった。
In such a conventional exhaust gas treatment technology, NO X and SO X treatments are carried out in separate processes, respectively, and a solid denitration catalyst and a lime aqueous solution or a solid adsorbent as an absorption medium are required. Since denitration and desulfurization are carried out in a plurality of stages, the process becomes complicated, and therefore the number of equipments used increases, resulting in a large amount of equipment and operating costs.

本発明は、上記のような従来の排ガス処理方法の欠点
を改良した排ガスの処理方法すなわち排ガス中のNOX
よびSOXを処理するための触媒や吸収液および吸着剤等
を必要としないでNOXとSOXとを単一プロセスで一段階で
処理できる新規なNOXおよびSOXの除去方法を提供するこ
とを目的としたものである。
The present invention is a method for treating exhaust gas, which is an improvement of the drawbacks of the conventional exhaust gas treatment methods described above, that is, NO without the need for a catalyst, an absorbing liquid, an adsorbent, etc. for treating NO X and SO X in the exhaust gas. It is an object of the present invention to provide a novel NO X and SO X removal method capable of treating X and SO X in a single process in one step.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はNOXおよびSOXを含む排ガスの処理方法におい
て、水素ラジカルを発生する前駆体を含むガスに電磁波
あるいは電子ビームを照射して水素ラジカルを生成さ
せ、この水素ラジカルを含むガスを上記の排ガスに混合
して、NOXおよびSOXを同時に分解処理することを特徴と
する排ガスの処理方法を提案するものである。
In the method for treating exhaust gas containing NO X and SO X , the present invention irradiates an electromagnetic wave or an electron beam to a gas containing a precursor that generates hydrogen radicals to generate hydrogen radicals, and the gas containing the hydrogen radicals is treated as described above. The present invention proposes a method for treating exhaust gas, which is characterized in that NO X and SO X are simultaneously decomposed by mixing with exhaust gas.

〔作 用〕[Work]

アンモニア等の水素ラジカルを発生する前駆体を含む
ガスに、電磁波あるいは電子ビームを照射すると、前駆
体や共存する物質から水素ラジカル(H・)や酸素ラジ
カル(O・)が発生する。これらのラジアルを含むガス
を処理対象のNOXおよびSOXを含む排ガスに注入し混合す
るとたとえば次のような反応が生じる。
When a gas containing a precursor that generates hydrogen radicals such as ammonia is irradiated with an electromagnetic wave or an electron beam, hydrogen radicals (H.) and oxygen radicals (O.) are generated from the precursor and coexisting substances. When the gas containing these radials is injected into the exhaust gas containing NO X and SO X to be treated and mixed, the following reaction occurs, for example.

上記の(1),(2)式に示すようにNOは還元されて
N2に、SO2は還元されて単体イオウであるSに分解され
る。
NO is reduced as shown in equations (1) and (2) above.
SO 2 is reduced to N 2 and decomposed into S, which is elemental sulfur.

また、O・とSO2からSO3が発生し、更にこれが水およ
び水素ラジカルの前駆体として供給したアンモニアの残
余のアンモニアと反応して硫安が生成する。生成するN2
やH2Oは無害であり後処理の必要がないがSおよび(N
H42SO4は処理ガス中に固体状で含まれるので集塵器で
除去される。
Further, SO 3 is generated from O · and SO 2 , and this reacts with water and the residual ammonia supplied as a precursor of hydrogen radicals to form ammonium sulfate. Generate N 2
And H 2 O are harmless and require no post-treatment, but S and (N
H 4 ) 2 SO 4 is contained in the process gas in solid form and is removed by the dust collector.

〔実施例〕〔Example〕

本発明の方法で用いられる水素ラジカルを発生する前
駆体としては、アンモニア、アミン、ヒドラジン、アル
コール、ホルムアルデヒド等あるいはそれらの誘導体が
あげられる。
Examples of the hydrogen radical-generating precursor used in the method of the present invention include ammonia, amine, hydrazine, alcohol, formaldehyde and the like, or their derivatives.

また、本発明の方法では、電磁波としては紫外・可視
・赤外光およびマイクロ波が用いられるが、波長範囲が
150mm〜16μmの紫外・可視・赤外光としては、アルゴ
ン、CO2、エキサイマ等のガスレーザシステムおよびイ
ットリウム−アルミニウム−ガーネット(YAG)等の固
体レーザシステムを用いて出射されるレーザ光が用いら
れる。
Further, in the method of the present invention, ultraviolet / visible / infrared light and microwaves are used as electromagnetic waves, but the wavelength range is
As the UV / visible / infrared light of 150 mm to 16 μm, laser light emitted using a gas laser system such as argon, CO 2 , and excimer and a solid-state laser system such as yttrium-aluminum-garnet (YAG) is used.

さらにまた上記のマイクロ波を用いる場合は、水素ラ
ジカルを発生する前駆体を誘導した空洞共振器内で照射
する。
Furthermore, when the above microwave is used, irradiation is performed within a cavity in which a precursor that generates hydrogen radicals is induced.

なお、水素ラジカルを含むガスは、排ガスに対して、
排ガスが露点に致らない温度、すなわち50〜100℃の温
度範囲で水素ラジカルとNOX+SOXのモル比が3:1以下に
なるように混合される。
The gas containing hydrogen radicals is
The exhaust gas is mixed so that the molar ratio of hydrogen radical and NO X + SO X is 3: 1 or less at a temperature not exceeding the dew point, that is, in the temperature range of 50 to 100 ° C.

つぎに本発明の方法について 行なった実施例を第1図の説明図に基いて説明する。
NO、SO2、NH3、N2の試験ガスがそれぞれ別々に封入され
ている試験ガスボンベ1からガス流量調整器2により流
量を調整してNH3ガスN2ガスとを抜き出し混合してNH3
度が1%のNH3含有ガス3を調整した。ついでこのNH3
有ガス3をガス流量30cc/sで反応セル4に導入し、ArF
エキシマレーザーシステム5からの波長193nmのレーザ
ー光6を100Hzのパルス発振の条件(1〜100Hzで発振さ
せてもよい)で連続照射した。レーザー光の照射により
NH3は励起されH・ラジカルが生成する。
An embodiment of the method of the present invention will be described below with reference to the explanatory view of FIG.
From the test gas cylinder 1 in which the test gases of NO, SO 2 , NH 3 and N 2 are separately sealed, the flow rate is adjusted by the gas flow rate controller 2 and the NH 3 gas and N 2 gas are extracted and mixed to produce NH 3 NH 3 containing gas 3 having a concentration of 1% was prepared. Then, this NH 3 containing gas 3 was introduced into the reaction cell 4 at a gas flow rate of 30 cc / s, and ArF was added.
Laser light 6 having a wavelength of 193 nm from the excimer laser system 5 was continuously irradiated under the condition of pulse oscillation of 100 Hz (may be oscillated at 1 to 100 Hz). By irradiation of laser light
NH 3 is excited to generate H radicals.

一方、NH3含有ガスを調整する場合と同様な方法で、N
O、SO2およびN2ガスを試験ガスボンベ1から抜き出し混
合して、NO濃度100ppmSO2濃度600ppmの供試ガス7を調
整した。このようにして調整した供試ガス7をガス流量
30cc/sでガス混合器8に導き反応セル4からのH・ラジ
カルを含むガスと80℃で混合した。
On the other hand, in the same way as when adjusting the NH 3 -containing gas, N
O, SO 2 and N 2 gases were extracted from the test gas cylinder 1 and mixed to prepare a test gas 7 having a NO concentration of 100 ppm and a SO 2 concentration of 600 ppm. The gas flow rate of the sample gas 7 adjusted in this way
It was introduced into the gas mixer 8 at 30 cc / s and mixed with the gas containing H · radicals from the reaction cell 4 at 80 ° C.

混合すると同時に供試ガス7中に含まれているNOとSO
2はH・と反応して分解しN2とSに変換する。
NO and SO contained in test gas 7 at the same time as mixing
2 reacts with H., decomposes and transforms into N 2 and S.

反応後のガスをガス組成分析計9に導きガス組成を分
析しNOおよびSO2の分解率を求めた。その結果、NOおよ
びSO2の分解率は共に70%であった。この実験例から本
発明の方法は排ガス処理に有効であることを認めた。
The gas after the reaction was introduced into a gas composition analyzer 9 and the gas composition was analyzed to determine the decomposition rates of NO and SO 2 . As a result, the decomposition rates of NO and SO 2 were both 70%. From this experimental example, it was confirmed that the method of the present invention is effective for treating exhaust gas.

〔発明の効果〕〔The invention's effect〕

本発明の排ガスの処理方法によれば次のような効果を
奏する。
According to the exhaust gas treatment method of the present invention, the following effects can be obtained.

(1) NOXとSOXを別々のプロセスでかつ複数段階で処
理する必要がなく、単一プロセスで一段でNOXとSOXとを
同時に処理することができ、プロセスが単純となり、し
たがって必要とする機器点数も少なくなる。
(1) NO X and SO X need not be processed in separate processes and in multiple stages, but NO X and SO X can be simultaneously processed in a single stage in a single process, which simplifies the process and is therefore necessary. The number of equipment to be used also decreases.

(2) 従来のプロセスで必要とした触媒や吸収液、吸
着剤等を必要としない。
(2) The catalyst, the absorbing liquid, the adsorbent and the like which are required in the conventional process are not required.

(3) 排ガス中のNOXおよびSOXを処理するために、本
発明では処理すべき排ガス全体に電磁波あるいは電子ビ
ームを照射するのではなく、添加するガスにのみ電磁波
あるいは電子ビームを照射させるので、NOXおよびSOX
の反応性、反応効率が向上し、また、排ガスによる光学
系の汚染が防止され、排ガス中の不純物によるエネルギ
のロスを低減することが可能である。
(3) In order to treat NO X and SO X in exhaust gas, in the present invention, the entire exhaust gas to be treated is not irradiated with electromagnetic waves or electron beams, but only the gas to be added is irradiated with electromagnetic waves or electron beams. , NO X and SO X , the reactivity and reaction efficiency are improved, the optical system is prevented from being contaminated by exhaust gas, and the energy loss due to impurities in the exhaust gas can be reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実験例を説明するための説明図であ
る。 1……試料ガスボンベ,2……ガス流量調整器, 3……NH3含有ガス,4……反応セル, 5……ArFエキシマレーザーシステム, 6……レーザー光,7……供試ガス, 8……ガス混合器,9……ガス組成分析計。
FIG. 1 is an explanatory diagram for explaining an experimental example of the present invention. 1 …… Sample gas cylinder, 2 …… Gas flow regulator, 3 …… NH 3 containing gas, 4 …… Reaction cell, 5 …… ArF excimer laser system, 6 …… Laser light, 7 …… Test gas, 8 …… Gas mixer, 9 …… Gas composition analyzer.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/60 53/74 B01D 53/34 ZAB (72)発明者 団野 実 広島県広島市西区観音新町4丁目6番22号 三菱重工業株式会社広島研究所内 (56)参考文献 特開 昭60−71028(JP,A) 特開 昭53−125265(JP,A)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location B01D 53/60 53/74 B01D 53/34 ZAB (72) Inventor Minoru Danno Kannon, Nishi-ku, Hiroshima-shi, Hiroshima 4-6-22 Shinmachi Mitsubishi Heavy Industries Ltd. Hiroshima Research Laboratory (56) Reference JP-A-60-71028 (JP, A) JP-A-53-125265 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】NOXおよびSOXを含む排ガスの処理方法にお
いて、水素ラジカルを発生する前駆体を含むガスに電磁
波あるいは電子ビームを照射して水素ラジカルを生成さ
せ、この水素ラジカルを含むガスを上記の排ガスに混合
して、NOXおよびSOXを同時に分解処理することを特徴と
する排ガスの処理方法。
1. A method for treating an exhaust gas containing NO X and SO X , wherein a gas containing a precursor that generates hydrogen radicals is irradiated with an electromagnetic wave or an electron beam to generate hydrogen radicals, and the gas containing the hydrogen radicals is generated. A method for treating exhaust gas, which comprises mixing NO x and SO x at the same time by mixing with the above exhaust gas.
JP62122444A 1987-05-21 1987-05-21 Exhaust gas treatment method Expired - Lifetime JPH0815532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62122444A JPH0815532B2 (en) 1987-05-21 1987-05-21 Exhaust gas treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62122444A JPH0815532B2 (en) 1987-05-21 1987-05-21 Exhaust gas treatment method

Publications (2)

Publication Number Publication Date
JPS63287534A JPS63287534A (en) 1988-11-24
JPH0815532B2 true JPH0815532B2 (en) 1996-02-21

Family

ID=14836000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62122444A Expired - Lifetime JPH0815532B2 (en) 1987-05-21 1987-05-21 Exhaust gas treatment method

Country Status (1)

Country Link
JP (1) JPH0815532B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6411628A (en) * 1987-07-03 1989-01-17 Mitsubishi Heavy Ind Ltd Removing method of nox
JP2607548B2 (en) * 1987-10-09 1997-05-07 三菱重工業株式会社 Exhaust gas treatment method
US5171554A (en) * 1990-09-20 1992-12-15 Molecular Technology Corporation Conversion of formaldehyde and nitrogen to a gaseous product and use of gaseous product in reduction of nitrogen oxide in effluent gases
JP2010058009A (en) * 2008-09-01 2010-03-18 Landmark Technology:Kk Method of decomposing nitrogen trifluoride and device using this method
JP5865583B2 (en) * 2010-10-04 2016-02-17 ウシオ電機株式会社 Non-catalytic denitration method and apparatus for exhaust gas
US9353665B2 (en) * 2014-09-15 2016-05-31 Cummins Emission Solutions, Inc. Ammonia generation system for an SCR system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1550834A (en) * 1975-07-24 1979-08-22 Telcon Metals Ltd Semiconductor devices
JPS58884A (en) * 1981-06-24 1983-01-06 Nakano Vinegar Co Ltd Preparation of adlay vinegar
JPS6168126A (en) * 1984-09-10 1986-04-08 Ishikawajima Harima Heavy Ind Co Ltd Wet method for desulfurizing and denitrating stack gas
JPS62250933A (en) * 1986-04-24 1987-10-31 Ebara Corp Exhaust gas treatment method and device using electron beam irradiation

Also Published As

Publication number Publication date
JPS63287534A (en) 1988-11-24

Similar Documents

Publication Publication Date Title
RU2139753C1 (en) Method for radiation by electron beams
US7998445B2 (en) Method and apparatus for the treatment of nitrogen oxides using an ozone and catalyst hybrid system
KR0147687B1 (en) Method and apparatus for treating exhaust gas by multi-stage irradiation with electron beam
US4146450A (en) Method for removing nitrogen oxides from nitrogen oxide-containing gases
ATE105730T1 (en) PROCESS AND DEVICE FOR DENITRIATION.
ATE140163T1 (en) METHOD FOR MINIMIZING THE CONCENTRATION OF POLLUTANTS IN COMBUSTION GASES
JP2607548B2 (en) Exhaust gas treatment method
JPH0815532B2 (en) Exhaust gas treatment method
WO2014017336A1 (en) Gas treatment method and gas treatment device
JPH08155264A (en) Desulfurization and denitration of flue gas and apparatus therefor
KR100304080B1 (en) Desulfurization / denitrification treatment method and apparatus for flue gas
KR970020150A (en) Removal method of harmful components in incinerator flue gas and device
JPH0714462B2 (en) Decomposition method of nitrous oxide in gas mixture
KR19990018050A (en) Neutralizer injection method and apparatus for flue gas treatment by electron beam irradiation
JPS62213825A (en) Method for simultaneously performing desulfurizing and denitrating treatment of combustion flue gas and drainage treatment
KR19990018051A (en) Flue gas treatment method by electron beam irradiation
JPS63267423A (en) Decomposition method for nitrogen oxide in gas mixture containing nitrogen oxide
JPH09299762A (en) Waste gas treating system
JP2578131B2 (en) SOx removal method
JPS60251917A (en) Desulfurization and denitration of waste gas
KR19990071259A (en) Flue gas recycling method and device
RU2146168C1 (en) Method of cleaning effluent gases from nitrogen oxides
JPH0275326A (en) Denitrification process
JPH0442054B2 (en)
JPH0651097B2 (en) Method for decomposing and removing nitrous oxide in gas mixture