[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2578131B2 - SOx removal method - Google Patents

SOx removal method

Info

Publication number
JP2578131B2
JP2578131B2 JP62250003A JP25000387A JP2578131B2 JP 2578131 B2 JP2578131 B2 JP 2578131B2 JP 62250003 A JP62250003 A JP 62250003A JP 25000387 A JP25000387 A JP 25000387A JP 2578131 B2 JP2578131 B2 JP 2578131B2
Authority
JP
Japan
Prior art keywords
sox
ultraviolet light
exhaust gas
present
desulfurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62250003A
Other languages
Japanese (ja)
Other versions
JPH0194918A (en
Inventor
哲哉 池田
実 団野
洋 牧原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP62250003A priority Critical patent/JP2578131B2/en
Publication of JPH0194918A publication Critical patent/JPH0194918A/en
Application granted granted Critical
Publication of JP2578131B2 publication Critical patent/JP2578131B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は燃焼排ガス中に含まれるSOxの固形吸収剤や
触媒を必要としない除去方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for removing SOx contained in combustion exhaust gas without requiring a solid absorbent or a catalyst.

〔従来の技術〕[Conventional technology]

燃焼排ガス中のSOxの除去方法(以下脱硫法と呼ぶ)
については、現在、石灰−石こう法による湿式脱硫法が
主流をなしているが、プロセスの簡素化、処理コストの
低減化に対する技術改善策がもはや飽和に達したとの評
価から、排ガスの温度が低下せず、排水を必要としない
乾式脱硫法に対する関心が近年急激に高まつている。乾
式脱硫法は湿式脱硫法と同じく古くからプロセスの開発
が推進されてきたが、活性炭や石灰などの固形吸収剤を
用いる方法が一般的な乾式脱硫法である。
SOx removal method from combustion exhaust gas (hereinafter referred to as desulfurization method)
At present, the wet desulfurization method based on the lime-gypsum method is currently the mainstream, but from the evaluation that technical improvement measures for simplifying the process and reducing the processing cost have reached saturation, the temperature of Interest in a dry desulfurization process that does not decrease and does not require drainage has increased rapidly in recent years. The dry desulfurization process has been promoted for a long time as the wet desulfurization process, but a method using a solid absorbent such as activated carbon or lime is a general dry desulfurization process.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

従来の乾式脱硫法には次のような基本的な問題点があ
るため、ほとんど実操業されていないのが現状である。
Since the conventional dry desulfurization method has the following basic problems, it is hardly actually operated at present.

(1)固形の吸収材はSOxを表面のみに吸着し、内部ま
で浸透させない。したがつて、脱硫率を上げるには多量
の吸収剤を必要とするため処理コストが高価になる。
(1) The solid absorbent adsorbs SOx only on the surface and does not penetrate into the interior. Therefore, to increase the desulfurization rate, a large amount of absorbent is required, so that the processing cost becomes high.

(2)吸収剤として石灰は安価であるが、乾式ではSOx
の吸収率が低い。また、活性炭は高価であり、再生して
繰り返し使用する必要があるが、再生工程が複雑である
ことから更に高価となる。
(2) Lime is cheap as an absorbent, but dry
Low absorption rate. Activated carbon is expensive, and it is necessary to regenerate and use it repeatedly. However, since the regeneration process is complicated, the cost is further increased.

本発明はかかる現状に鑑みなされたものでSOx吸収剤
に係る問題点を解消し、固形の吸収剤や触媒を全く必要
とせず、簡単に処理できる新規なSOx除去方法を提供す
ることを目的としたものである。
An object of the present invention is to solve the problems related to SOx absorbents in view of the current situation, and to provide a novel SOx removal method that can be easily treated without requiring any solid absorbent or catalyst. It was done.

〔問題点を解決するための手段〕[Means for solving the problem]

本発明は排ガスにNH3を混合するとともに、該排ガス
に紫外光の波長範囲190〜210nmのうち、少なくとも1つ
の波長を含む紫外光を照射し、排ガス中のSOxをイオウ
に転化することを特徴とするSOxの除去方法を提案する
ものである。
With the present invention is mixed with NH 3 in the exhaust gas, out of the wavelength range 190~210nm ultraviolet light to exhaust gas, characterized in that ultraviolet light comprising at least one wavelength, to convert the SOx in the exhaust gas to sulfur The SOx removal method is proposed.

〔作用〕[Action]

本発明の方法において、紫外線照射による光励起・ラ
ジカル形成反応は次のように表わされる。
In the method of the present invention, the photoexcitation / radical formation reaction by ultraviolet irradiation is represented as follows.

NH3→NH2+H (1) 反応(1),(2)においてラジカル形成は非常に速
く、その逆過程は遅いため、生成したラジカルNH2によ
りSO2を例にとると次の反応が誘起され、SO2はSに転化
する。
NH 3 → NH 2 + H (1) In reactions (1) and (2), radical formation is very fast, and the reverse process is slow, so the following reaction is induced by the generated radical NH 2 , taking SO 2 as an example, and SO 2 is converted to S. .

SO2+2NH2→S+N2+2H2O (3) このように排ガス中にNH3を混合し紫外光を照射する
とNH2が生成しこれがSOxと反応しSに転化する。
SO 2 + 2NH 2 → S + N 2 + 2H 2 O (3) When NH 3 is mixed into the exhaust gas and irradiated with ultraviolet light, NH 2 is generated and reacts with SOx to be converted to S.

本発明はこのように、NH3を直接光励起することによ
り反応が開始されるため、排ガスに照射する紫外光は第
1図に示すNH3及びSO2の吸収スペクトルから明らかなよ
うに、波長範囲190〜210nmのうち少なくとも1つの波長
を含む紫外光を用いることが効率の良いラジカルの形成
をもたらし高い脱硫率が得られる。
As described above, in the present invention, the reaction is started by directly photo-exciting NH 3 , so that the ultraviolet light irradiated to the exhaust gas has a wavelength range as apparent from the absorption spectra of NH 3 and SO 2 shown in FIG. Use of ultraviolet light containing at least one wavelength from 190 to 210 nm leads to efficient radical formation and a high desulfurization rate.

〔実施例〕〔Example〕

以下、本発明の一実施例について説明する。第1図は
この方法を実施するために用いた実験装置の説明図であ
る。第1図においてガス流量調整器4により任意な流量
に調節されたSO2,NO,N2,CO2,O2,NH3などの試験ガス
は、ガス混合器5で均一に混合され、両端に合成石英の
照射窓3を有するリアクター2に導入される。リアクタ
ー2から出た試験ガスは反応生成物の捕集を目的とした
フイルター7を通過し、記録計6を装備したSO2分析計
9へと導かれてSO2濃度が計測されたあと、大気中へ放
出される。ガス混合器5、リアクター2などは恒温槽8
に収納されており、任意の温度に昇温・保持することが
できる。紫外線の光源はエキシマレーザー1で、発振チ
ヤンバに封入するガス媒体によつて照射する紫外光の波
長を選択することができる。第1表は実験に用いた供給
ガスの組成を示し、第2表は実験に用いた紫外光の波長
と、その時のガス媒体を示す。また第3表及び第4表は
本発明の効果を説明するための実験結果を示している。
Hereinafter, an embodiment of the present invention will be described. FIG. 1 is an explanatory view of an experimental apparatus used to carry out this method. In FIG. 1, test gases such as SO 2 , NO, N 2 , CO 2 , O 2 , and NH 3 adjusted to an arbitrary flow rate by a gas flow rate controller 4 are uniformly mixed by a gas mixer 5, and both ends are mixed. Is introduced into a reactor 2 having an irradiation window 3 made of synthetic quartz. The test gas discharged from the reactor 2 passes through a filter 7 for collecting reaction products, and is led to an SO 2 analyzer 9 equipped with a recorder 6, where the SO 2 concentration is measured. Released inside. Gas mixer 5, reactor 2, etc. are thermostat 8
And can be heated and maintained at an arbitrary temperature. The ultraviolet light source is an excimer laser 1, which can select the wavelength of ultraviolet light to be irradiated by a gas medium sealed in the oscillation chamber. Table 1 shows the composition of the supply gas used in the experiment, and Table 2 shows the wavelength of the ultraviolet light used in the experiment and the gas medium at that time. Tables 3 and 4 show experimental results for explaining the effects of the present invention.

実験例1 照射する紫外光の波長と脱硫率との関係を確認するた
め、第1表に示すIの供給ガスを、リアクター2に空間
速度3000h-1で流通させた状態で、第2表に示すAから
Dの波長のレーザー光をそれぞれ単独で照射した。この
時、リアクター2は約150℃に加熱・保持した。
Experimental Example 1 In order to confirm the relationship between the wavelength of the ultraviolet light to be irradiated and the desulfurization rate, the supply gas of I shown in Table 1 was passed through the reactor 2 at a space velocity of 3000 h -1 and the results were shown in Table 2. Each of the laser beams having the wavelengths A to D shown was independently irradiated. At this time, the reactor 2 was heated and maintained at about 150 ° C.

第3表の結果から明らかなように、波長範囲190〜210
nmの紫外領域の光照射は脱硫に有効であること、そし
て、照射する波長と脱硫率の関係はA>C>B>Dの傾
向のあることが確認された。この事実は、第2図に示す
SO2及びNH3の吸収帯の強さと対応しており、本発明の主
反応がNH3あるいはSO2の光励起により開始されることを
裏付けるものである。なお、フイルター7より採取した
反応生成物はいずれもイオウであることが認められた。
As is clear from the results in Table 3, the wavelength range from 190 to 210
It was confirmed that light irradiation in the ultraviolet region of nm was effective for desulfurization, and that the relationship between the irradiation wavelength and the desulfurization rate tended to be A>C>B> D. This fact is illustrated in FIG.
This corresponds to the intensity of the absorption bands of SO 2 and NH 3 , and supports that the main reaction of the present invention is initiated by photoexcitation of NH 3 or SO 2 . In addition, it was recognized that all the reaction products collected from the filter 7 were sulfur.

実験例2 NOが共存した場合の脱硫性能の影響を確認するため、
第2表のAの紫外光を第2表のIIとIIIの供給ガスにそ
れぞれ照射した。この時の空間速度及びリアクターの温
度は実験例1と同一にした。
Experimental Example 2 To confirm the effect of desulfurization performance when NO coexisted,
The ultraviolet light of A in Table 2 was applied to the supply gases II and III in Table 2, respectively. At this time, the space velocity and the reactor temperature were the same as those in Experimental Example 1.

第4表の結果から明らかなように、NOが共存しても脱
硫率はいずれも95%以上であり、NOはSOx分解に対して
何ら妨害しない事実を確認した。またこの時の反応生成
物はイオウであることが認められた。
As is evident from the results in Table 4, the desulfurization rate was 95% or more even in the presence of NO, confirming the fact that NO did not hinder SOx decomposition at all. The reaction product at this time was found to be sulfur.

本発明の方法をボイラーの排ガスに適用し排ガスにNH
3を注入し(SOxの約3倍量)150℃で、3000h-1の空間速
度で193nmのエキシマレーザーの紫外光を照射した結果9
6%の脱硫率が得られた。
Applying the method of the present invention to boiler exhaust gas
Injection 3 (about 3 times the amount of SOx) at 150 ° C and irradiation with ultraviolet light of a 193 nm excimer laser at a space velocity of 3000 h -1 9
A desulfurization rate of 6% was obtained.

〔発明の効果〕〔The invention's effect〕

以上、詳述したように、本発明の方法によれば各種燃
料の燃焼により発生する排ガスから、固形吸収剤や触媒
などを用いることなく、またNOの妨害を受けることなく
効果的にSOxを除去することができる。
As described in detail above, according to the method of the present invention, SOx can be effectively removed from exhaust gas generated by combustion of various fuels without using a solid absorbent or a catalyst and without being hindered by NO. can do.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明を実施するために用いた実験装置の説明
図、第2図はNH3とSO2の吸収スペクトルである。 1……エキシマレーザー、2……リアクター、3……照
射窓、4……ガス流量調整器、5……ガス混合器、6…
…記録計、7……フイルター、8……恒温槽、9……SO
2分析計。
FIG. 1 is an explanatory view of an experimental apparatus used for carrying out the present invention, and FIG. 2 is an absorption spectrum of NH 3 and SO 2 . 1 ... Excimer laser, 2 ... Reactor, 3 ... Irradiation window, 4 ... Gas flow regulator, 5 ... Gas mixer, 6 ...
… Recorder, 7… filter, 8… constant temperature bath, 9… SO
2 analyzer.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−267423(JP,A) 特開 昭61−174924(JP,A) 特開 昭60−71028(JP,A) 特開 昭63−287534(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-63-267423 (JP, A) JP-A-61-174924 (JP, A) JP-A-60-71028 (JP, A) JP-A-63-267 287534 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】排ガスにNH3を混合するとともに、該排ガ
スに紫外光の波長範囲190〜210nmのうち、少なくとも1
つの波長を含む紫外光を照射し、排ガス中のSOxをイオ
ウに転化することを特徴とするSOxの除去方法。
An exhaust gas is mixed with NH 3, and the exhaust gas has at least one of ultraviolet light in a wavelength range of 190 to 210 nm.
A method for removing SOx, comprising irradiating ultraviolet light containing two wavelengths to convert SOx in exhaust gas to sulfur.
JP62250003A 1987-10-05 1987-10-05 SOx removal method Expired - Lifetime JP2578131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62250003A JP2578131B2 (en) 1987-10-05 1987-10-05 SOx removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62250003A JP2578131B2 (en) 1987-10-05 1987-10-05 SOx removal method

Publications (2)

Publication Number Publication Date
JPH0194918A JPH0194918A (en) 1989-04-13
JP2578131B2 true JP2578131B2 (en) 1997-02-05

Family

ID=17201401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62250003A Expired - Lifetime JP2578131B2 (en) 1987-10-05 1987-10-05 SOx removal method

Country Status (1)

Country Link
JP (1) JP2578131B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6071028A (en) * 1983-09-27 1985-04-22 コンコ−ド サイエンテイフイツク コ−ポレ−シヨン Removal of so2 and nox in exhaust gas

Also Published As

Publication number Publication date
JPH0194918A (en) 1989-04-13

Similar Documents

Publication Publication Date Title
JP4110427B2 (en) Absorber regeneration
US3887683A (en) Method for removing nitrogen oxides from waste gases
US4146450A (en) Method for removing nitrogen oxides from nitrogen oxide-containing gases
US4097349A (en) Photochemical process for fossil fuel combustion products recovery and utilization
ATE105730T1 (en) PROCESS AND DEVICE FOR DENITRIATION.
NO890439L (en) PROCEDURE FOR REMOVAL OF AMMONIA FROM A GAS MIXTURE.
JP2578131B2 (en) SOx removal method
JP2607548B2 (en) Exhaust gas treatment method
JPH0660007B2 (en) Method for hydrolyzing COS and CS2 compounds contained in industrial gas to H2S
JPS5539257A (en) Removing method of malodor
DE69201915D1 (en) Exhaust gas desulfurization process.
CN207493496U (en) The experiment test system of NO and Hg in catalysis ozone simultaneous oxidation flue gas
RU95113142A (en) Catalyst for treatment gases containing sulfur compounds and a method of treatment of the indicated gas
ATE349265T1 (en) METHOD AND DEVICE FOR REGENERATING CATALYSTS
JPH0815532B2 (en) Exhaust gas treatment method
JPH06228573A (en) Treatment of tail gas in coal gasification plant
ATE83755T1 (en) PROCESS FOR THE HETEROGENOUS CATALYTIC PHOTODECOMPOSITION OF POLLUTANTS.
JPS63162027A (en) Removing method for sox
JPH0442054B2 (en)
JPH0714462B2 (en) Decomposition method of nitrous oxide in gas mixture
JPH0275326A (en) Denitrification process
JPH0352624A (en) Dry simultaneous desulfurization and denitrification
EP0134359B1 (en) Process for the reduction of the content of so2 and/or nox in flue gas
JPS6366277B2 (en)
SU1685491A1 (en) Method for purifying hydrogen chloride off-gas to obtain hydrochloric acid