[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0791238B2 - Method for producing tertiary amine - Google Patents

Method for producing tertiary amine

Info

Publication number
JPH0791238B2
JPH0791238B2 JP5025241A JP2524193A JPH0791238B2 JP H0791238 B2 JPH0791238 B2 JP H0791238B2 JP 5025241 A JP5025241 A JP 5025241A JP 2524193 A JP2524193 A JP 2524193A JP H0791238 B2 JPH0791238 B2 JP H0791238B2
Authority
JP
Japan
Prior art keywords
catalyst
amine
reaction
added
tertiary amine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5025241A
Other languages
Japanese (ja)
Other versions
JPH06239809A (en
Inventor
孝四郎 外谷
博昭 北山
英樹 谷口
裕 安倍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP5025241A priority Critical patent/JPH0791238B2/en
Publication of JPH06239809A publication Critical patent/JPH06239809A/en
Publication of JPH0791238B2 publication Critical patent/JPH0791238B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は第3級アミンの製造方法
に関し、更に詳しくは、種々の第1級アミンまたは第2
級アミン類とホルムアルデヒドを、特定の方法で調製し
たPd触媒を用いて水素圧下で反応させることによって、
N−メチル化し対応する第3級アミンを高収率で製造す
る方法に関するものである。本発明によって製造される
第3級アミンは、乳化剤、分散剤、防錆剤、殺菌剤、均
染剤、帯電防止剤などの第4級アンモニウム塩や、両性
活性剤の中間体として、あるいはそれ自身でもウレタン
フォーム用触媒等種々の用途を持つ有用な物質である。
FIELD OF THE INVENTION The present invention relates to a method for producing a tertiary amine, and more specifically, various primary amines or secondary amines.
By reacting primary amines with formaldehyde under hydrogen pressure using a Pd catalyst prepared by a specific method,
The present invention relates to a method for producing a corresponding tertiary amine in a high yield by N-methylation. The tertiary amine produced by the present invention is a quaternary ammonium salt such as an emulsifier, a dispersant, a rust preventive, a bactericide, a leveling agent and an antistatic agent, or an intermediate of an amphoteric activator, or It is a useful substance which has various uses such as a catalyst for urethane foam.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来か
ら、長鎖脂肪族第1級及び第2級アミンを水素化触媒の
存在下でホルムアルデヒド及び水素と反応させて第3級
アミンを得ることは良く知られている。具体的には、特
公昭39−17905 号及び特開昭55−9019号公報に記載の方
法がある。前者の方法では、好ましくない副生物の生成
を防ぐために、反応系に低級カルボン酸を追加触媒とし
て添加している。しかし、この実施例によれば、第1級
アミンまたは第2級アミンを出発原料とし、触媒として
ラネーNiを用い、追加触媒として酢酸等の低級カルボン
酸を添加したとしても、第3級アミンの収率は最高で83
%であり、副生物が10%以上生成している。従ってこの
方法は、追加触媒を添加しているにもかかわらず副生物
の抑制が不完全で、且つアミン種によって触媒の選択性
が異なるという欠点を有している。また、この方法では
反応系に異物を添加することが避けられずそのため分離
精製が必要となり、つまり不要な工程が必要となり操作
上からも好ましくない。
2. Description of the Related Art Conventionally, a long-chain aliphatic primary and secondary amine is reacted with formaldehyde and hydrogen in the presence of a hydrogenation catalyst to obtain a tertiary amine. Is well known. Specifically, there are methods described in JP-B-39-17905 and JP-A-55-9019. In the former method, a lower carboxylic acid is added as an additional catalyst to the reaction system in order to prevent the production of undesired by-products. However, according to this example, even if a primary amine or secondary amine is used as a starting material, Raney Ni is used as a catalyst, and a lower carboxylic acid such as acetic acid is added as an additional catalyst, Yield up to 83
%, And 10% or more of by-products are produced. Therefore, this method has the drawback that the suppression of by-products is incomplete despite the addition of an additional catalyst and the selectivity of the catalyst differs depending on the amine species. Further, in this method, it is unavoidable to add a foreign substance to the reaction system, so that separation and purification are required, that is, an unnecessary step is required, which is not preferable in terms of operation.

【0003】一方、後者の公報には一般的なNi系水素化
触媒を用いる技術が開示されており、特に担体に担持さ
れたNi触媒が有効であるとしている。しかしながら、こ
の公報の実施例4,5に記載されている長鎖第2級アミ
ンを出発原料とする例のように、このNi系触媒は、水素
化による N−メチル化反応を実施する前に、予め水素と
接触させて 180〜230 ℃の高温で触媒を活性化させる操
作を必要としている。また、水素を連続的に流通させ反
応系内の水を連続的に排出させる操作も必要としてい
る。このように、この方法では、使用される担持Ni触媒
の特性に由来する欠点、即ち予め水素下、高温の条件で
触媒を活性化させる付随的操作が必要であり、また、反
応系内の水を連続的に系外に排出させる必要があって煩
雑であるという欠点を有している。
On the other hand, the latter publication discloses a technique using a general Ni-based hydrogenation catalyst, and it is said that a Ni catalyst supported on a carrier is particularly effective. However, as in the examples starting from long-chain secondary amines described in Examples 4 and 5 of this publication, this Ni-based catalyst is used before the N-methylation reaction by hydrogenation. It is necessary to contact with hydrogen beforehand to activate the catalyst at a high temperature of 180 to 230 ° C. Further, it is also necessary to perform an operation of continuously circulating hydrogen to continuously discharge water in the reaction system. Thus, this method has a drawback derived from the characteristics of the supported Ni catalyst used, that is, an additional operation of previously activating the catalyst under hydrogen and at high temperature is required, and water in the reaction system is also required. Has the drawback that it is complicated because it must be continuously discharged out of the system.

【0004】また、特開昭60−112734号公報には、長鎖
脂肪族アミンを水素とホルムアルデヒドを用いてメチル
化するに際し、反応温度80〜250 ℃、水素圧2kg/cm2
(ゲージ圧)以上の条件下に、粉末あるいは粒状炭素に
Co,Ni,Rh,PdまたはPtをイオン交換の調製方法で 0.1
〜10重量%担持させた水素化触媒をアミンに対して5〜
5000ppm 加えホルムアルデヒドを連続的に添加しながら
反応させて、収率・純度共良好な第3級アミンを得る方
法が開示されている。しかしながら、本発明者らがこの
発明の説明に開示されている触媒の調製法、即ち、アド
バンシズ キャタリシス(Advances Catalysis), 第20
巻, 第112頁(1969年)に書かれているイオン交換法に
て触媒を調製し本反応を実施してみたが、副生物が多く
前記した方法に比べ改善はされているものの、まだ不十
分であった(本発明の比較例として下記に記載した)。
Further, in JP-A-60-112734, when methylating a long-chain aliphatic amine with hydrogen and formaldehyde, a reaction temperature of 80 to 250 ° C., a hydrogen pressure of 2 kg / cm 2
(Gauge pressure) Under the above conditions, powder or granular carbon
Co, Ni, Rh, Pd or Pt can be prepared by ion exchange method of 0.1.
〜10wt% carried hydrogenation catalyst to amine 5〜
Disclosed is a method of obtaining a tertiary amine having good yield and purity by reacting while adding 5000 ppm of added formaldehyde continuously. However, we have prepared a method of preparing the catalyst disclosed in the description of this invention, namely Advances Catalysis, 20th.
Vol. 112, p. 112 (1969), the catalyst was prepared by the ion exchange method and the reaction was carried out. Sufficient (described below as a comparative example of the invention).

【0005】[0005]

【課題を解決するための手段】そこで、本発明者らは従
来法に見られる問題点を解決し、また原料アミン種が限
定されることなく、高選択性をもって、目的とする第3
級アミンを高収率で得る方法を開発すべく鋭意研究を重
ねた結果、特定の方法で調製された触媒を用いることに
よって、反応条件面及び出発原料種などに限定されるこ
となく高収率で目的とする第3級アミンを製造する方法
を見いだし、本発明を完成するに至った。
Therefore, the present inventors have solved the problems found in the conventional method, and have a high selectivity with no limitation on the starting amine species.
As a result of intensive studies to develop a method for obtaining a primary amine in a high yield, a high yield can be obtained by using a catalyst prepared by a specific method without being limited by reaction conditions and starting material species. In the present invention, a method for producing the intended tertiary amine was found, and the present invention was completed.

【0006】即ち、本発明者らは本発明に至るにあたっ
て、従来の一般的な水素化触媒を用いて、本反応の反応
機構の解析及び副反応の生成物の解析を行ってきた。そ
の結果、従来公知のラネーNiまたは担持Ni触媒では本反
応機構における水素化分解反応(水素化脱水)に大きく
関与する触媒活性と選択性が不十分であり、副反応が起
こりやすくなり、アミン及びホルムアルデヒドの分解ガ
スが触媒への吸着、触媒表面の変質を引き起こしやすく
なることが確認された。特に1級アミン又は低級アミン
又はポリアミン類を原料とする場合、このような現象が
起こりやすく、このような副反応を抑制するためには、
添加物を加えたり、触媒を安定化するための操作、反応
条件の限定が必要となる。しかし、このような対応をし
ても、ある程度の効果はあるが副反応の起こりやすいア
ミンに対しては対応がとれない。この原因は、Ni系触媒
を用いる場合、本反応で触媒に要求される水素化分解特
性(活性・選択性)が劣るため、触媒添加量が多く必要
となり好ましくない副反応物を生成しやすいからであ
り、即ち、触媒が、本反応における選択性に限界を有す
ることに起因している。これら公知の触媒を用いた検討
から、高活性・高選択性を示す触媒が本発明には不可欠
であるとの結論に達し、鋭意検討した結果、特定の方法
で調製したPd触媒が、本反応に要求される水素化分解特
性に対し極めて少量で(触媒金属としてアミンに対し10
〜500ppm) 作用することを見いだし本発明の完成に至っ
たのである。
That is, the present inventors have conducted the analysis of the reaction mechanism of this reaction and the products of side reactions using a conventional general hydrogenation catalyst before reaching the present invention. As a result, in the conventionally known Raney Ni or supported Ni catalyst, the catalytic activity and selectivity, which are greatly involved in the hydrocracking reaction (hydrodehydration) in this reaction mechanism, are insufficient, side reactions easily occur, and amine and It was confirmed that the decomposition gas of formaldehyde is likely to be adsorbed on the catalyst and cause deterioration of the catalyst surface. Especially when a primary amine or lower amine or polyamines is used as a raw material, such a phenomenon is likely to occur, and in order to suppress such a side reaction,
It is necessary to add additives, stabilize the catalyst, and limit the reaction conditions. However, even if such measures are taken, there is some effect, but it cannot be taken for amines that are prone to side reactions. The reason for this is that when Ni-based catalysts are used, the hydrogenolysis characteristics (activity / selectivity) required for the catalysts in this reaction are inferior, so a large amount of catalyst is required and undesired side reaction products are easily generated. That is, the catalyst has a limit in the selectivity in this reaction. From the study using these known catalysts, it was concluded that a catalyst exhibiting high activity and high selectivity is indispensable for the present invention, and as a result of diligent study, a Pd catalyst prepared by a specific method is the present reaction. The amount required for hydrocracking is extremely small (10% for amine as catalyst metal).
It was found that it works, and the present invention has been completed.

【0007】即ち、本発明は、第1級アミンまたは第2
級アミンに、水素圧下、好ましくは3〜50kg/cm2 (ゲ
ージ圧)の水素圧下でホルムアルデヒドを反応させ、対
応する第3級アミンを製造する方法において、触媒とし
て、粉末あるいは粒状炭素に下記(a) または(b) の方法
で0.1 〜10重量%のPdを担持させたPd触媒を用いること
を特徴とする第3級アミンの製造方法を提供するもので
ある。 (a) 塩酸を含む塩化パラジウム又は硝酸パラジウム水溶
液に所定量の活性炭を加え減圧下で水及び塩酸を除去
後、空気中で乾燥・焼成する。 (b) 塩酸を含む塩化パラジウム又は硝酸パラジウム水溶
液に所定量の活性炭を加え減圧下で水及び塩酸を除去
後、水素雰囲気下で還元処理する。
That is, the present invention is directed to primary amines or secondary amines.
In the method of producing a corresponding tertiary amine by reacting a primary amine with formaldehyde under hydrogen pressure, preferably under hydrogen pressure of 3 to 50 kg / cm 2 (gauge pressure), powder or granular carbon is used as a catalyst in the following ( A method for producing a tertiary amine, characterized by using a Pd catalyst supporting 0.1 to 10% by weight of Pd by the method of a) or (b). (a) A predetermined amount of activated carbon is added to a palladium chloride or palladium nitrate aqueous solution containing hydrochloric acid to remove water and hydrochloric acid under reduced pressure, and then dried and calcined in air. (b) A predetermined amount of activated carbon is added to a palladium chloride or palladium nitrate aqueous solution containing hydrochloric acid, water and hydrochloric acid are removed under reduced pressure, and then reduction treatment is performed in a hydrogen atmosphere.

【0008】本発明の方法は、前述したように従来公知
の触媒では困難な第1級アミン、第2級アミン、ポリア
ミン類を出発原料とし、特定の方法で調製したPd触媒を
用いて、初めて高収率、高純度の種々の対応する第3級
アミンを得ることを可能としたものである。
As described above, the method of the present invention is the first to use a Pd catalyst prepared by a specific method using a primary amine, a secondary amine, or a polyamine as a starting material, which is difficult with a conventionally known catalyst. It is possible to obtain various corresponding tertiary amines with high yield and high purity.

【0009】本発明の方法によれば、目的とする第3級
アミンを、原料に対し定量的に得ることができる。ま
た、従来法では副反応物が生成し易い第1級アミン、ジ
アミン、ポリアミン類を原料とした場合にも、対応する
第3級アミンが95%以上の高収率で得られる。また、触
媒の性能が優れているため、選択性や収率を上げるため
の助触媒あるいは添加物を加える必要もなく、触媒活性
を上げるための特別な操作も必要とせず、且つ、触媒の
使用量も非常に少なくて、短時間で反応を完結できる。
According to the method of the present invention, the desired tertiary amine can be quantitatively obtained from the raw material. In the conventional method, the corresponding tertiary amine can be obtained in a high yield of 95% or more even when a primary amine, a diamine or a polyamine which easily produces a side reaction product is used as a raw material. Moreover, since the catalyst has excellent performance, it is not necessary to add a co-catalyst or an additive for increasing the selectivity or yield, and no special operation is required for increasing the catalytic activity, and the use of the catalyst The amount is very small and the reaction can be completed in a short time.

【0010】本発明の反応に用いられるPd触媒は、上記
(a) 及び(b) 以外の方法で調製したPd触媒に比べて極め
て活性が高く、更にラネーNiや担持Niに比べ金属単位重
量当たりの活性は数十倍以上である。そのため、触媒金
属の添加量が、出発原料アミンに対して、数10ppm から
数100ppmで十分である。本発明で使用するPd触媒は、他
の金属に比べて高価であるが、上記のように極めて少量
の添加で十分に目的を達することができ、更に触媒の耐
久性が優れているため、数回の使用でも触媒の活性はほ
とんど低下しない。
The Pd catalyst used in the reaction of the present invention is as described above.
The activity is extremely higher than that of Pd catalysts prepared by methods other than (a) and (b), and the activity per unit weight of metal is several tens of times higher than that of Raney Ni or supported Ni. Therefore, it is sufficient that the amount of the catalyst metal added is several tens to several hundreds of ppm with respect to the starting material amine. The Pd catalyst used in the present invention is more expensive than other metals, but as described above, addition of an extremely small amount can sufficiently achieve the purpose, and the durability of the catalyst is excellent. Even after repeated use, the activity of the catalyst is hardly reduced.

【0011】本発明に使用するPd触媒は、粉末状あるい
は粒状炭素にPd金属を上記(a) または(b) の方法によっ
て 0.1〜10重量%担持させて調製する。一般に、固体触
媒の調製法としては、その過程の操作法によって含浸
法、沈着法、混練法、イオン交換法、共沈法、溶融法な
どに分けることができる(「化学工業の進歩 第15集触
媒設計」槙書店発行;35頁参照)。本発明者らは、Pd触
媒のこれら調製法による活性・選択性の違いと、担体種
の選択を鋭意検討した結果、粉末状あるいは粒状炭素に
上記(a) または(b) の方法によってPdを担持させて調製
した触媒のみが本発明の目的に合致し、高収率、高選択
性の反応を行なえることを発見し、本発明を完成するに
至ったのである。
The Pd catalyst used in the present invention is prepared by loading Pd metal on powdery or granular carbon by the method (a) or (b) above in an amount of 0.1 to 10% by weight. Generally, the solid catalyst preparation method can be divided into an impregnation method, a deposition method, a kneading method, an ion exchange method, a coprecipitation method, a melting method, and the like depending on the operation method of the process (see “Progress of Chemical Industry, Vol. 15 "Catalyst design" published by Maki Shoten; see page 35). As a result of intensive studies on the difference in activity / selectivity of these Pd catalysts by these preparation methods and the selection of the carrier species, the present inventors have found that Pd can be added to powdery or granular carbon by the method (a) or (b) above. The inventors have found that only the catalyst prepared by supporting the catalyst meets the object of the present invention and can carry out a reaction with high yield and high selectivity, and completed the present invention.

【0012】本発明に使用するPd触媒の調製方法は、上
記(a) 又は(b) のいずれかの方法であるが、具体的には
塩化パラジウムまたは硝酸パラジウムの所定量、及び少
量の濃塩酸または希塩酸を水に溶解し、そこにPdの担持
率が 0.1〜10重量%になるように活性炭を加え、十分に
攪拌したのち、減圧下1〜200torr の減圧下で加熱処理
し、更に50〜150 ℃にて乾燥し活性炭担持Pd触媒の前駆
体を得、その後、空気中、1〜5時間、 200〜400 ℃
で乾燥・焼成するか、あるいは水素雰囲気下、1〜5
時間、80〜300 ℃で還元処理することにより活性炭担持
Pd触媒を得る。なお、本発明のPd触媒の調製法は以下に
示す実施例で詳細に説明する。
The method for preparing the Pd catalyst used in the present invention is either the above method (a) or (b). Specifically, a specific amount of palladium chloride or palladium nitrate and a small amount of concentrated hydrochloric acid are used. Alternatively, dilute hydrochloric acid is dissolved in water, activated carbon is added thereto so that the Pd loading rate becomes 0.1 to 10% by weight, and after sufficiently stirring, heat treatment under reduced pressure of 1 to 200 torr and further 50 to It is dried at 150 ° C to obtain a precursor of an activated carbon-supported Pd catalyst, and then in air for 1 to 5 hours at 200 to 400 ° C.
1 ~ 5 under hydrogen atmosphere
Activated carbon supported by reduction treatment at 80-300 ℃ for a long time
Obtain the Pd catalyst. The method for preparing the Pd catalyst of the present invention will be described in detail in the examples below.

【0013】次に本発明の方法の反応実施概要を説明す
る。反応容器に後述する種々の第1級アミンまたは第2
級アミン類の少なくとも1種を仕込み、本発明のPd触媒
を仕込んだのち、内容物を攪拌しながら水素を反応容器
内に導入する。水素圧を好ましくは3〜50kg/cm2 (ゲ
ージ圧)、更に好ましくは3〜20kg/cm2 (ゲージ圧)
に設定し、所定の反応温度、好ましくは80〜180 ℃に到
達後、ホルムアルデヒドを反応系に添加する。添加は、
一括でもあるいは連続的でも可能であるが、連続的に行
う方法が好ましい。
Next, the outline of the reaction of the method of the present invention will be described. Various primary amines or secondary amines, which will be described later, are added to the reaction vessel.
After charging at least one of the primary amines and the Pd catalyst of the present invention, hydrogen is introduced into the reaction vessel while stirring the content. Hydrogen pressure is preferably 3 to 50 kg / cm 2 (gauge pressure), more preferably 3 to 20 kg / cm 2 (gauge pressure).
After reaching a predetermined reaction temperature, preferably 80 to 180 ° C., formaldehyde is added to the reaction system. The addition is
Although it is possible to carry out all at once or continuously, a method of carrying out continuously is preferred.

【0014】本発明に使用するホルムアルデヒドは、ホ
ルマリン又はホルムアルデヒドのメタノール溶液であっ
ても良い。ホルムアルデヒド濃度としては30〜60%のも
のが良く、好ましくは35〜37%ホルマリン水が良い。ホ
ルムアルデヒドの使用量は、原料アミンのアミノ基の持
つ活性水素基1個に対し 1.0ないし 1.2当量倍の範囲で
使用する。反応時間は、触媒添加量とホルムアルデヒド
の供給速度及びアミンの活性水素基数で任意に決められ
るが、通常は2〜10時間である。触媒添加量は、アミン
に対し触媒金属のPd金属として10〜500ppmの範囲で使用
するのが好ましい。これ以上添加しても良いが、通常は
この範囲で十分に目的を達成する。また触媒の耐久性が
良いため、繰り返し使用が可能で1回当たりの使用量は
さらに少なくなる。
The formaldehyde used in the present invention may be formalin or a methanol solution of formaldehyde. The formaldehyde concentration is preferably 30 to 60%, preferably 35 to 37% formalin water. The amount of formaldehyde used is 1.0 to 1.2 equivalent times per active hydrogen group of the amino group of the starting amine. The reaction time is arbitrarily determined depending on the amount of catalyst added, the supply rate of formaldehyde and the number of active hydrogen groups of amine, but it is usually 2 to 10 hours. The amount of the catalyst added is preferably within the range of 10 to 500 ppm as the Pd metal of the catalyst metal with respect to the amine. More than this amount may be added, but normally the target is sufficiently achieved within this range. Further, since the catalyst has good durability, it can be used repeatedly and the amount used per one time is further reduced.

【0015】反応中の反応器は水素圧で密閉する系でも
良く、生成水、ホルマリン水等がアミンと共存していて
も、触媒活性には影響なく、また過剰にホルムアルデヒ
ドが存在するような場合、その過剰分を排出させるため
に、あるいは原料に由来する低級ガスなどを排出させる
ため、水素圧下で連続的に少量のガスを排気する系であ
ってもよい。この様にして反応が完了した後、反応物を
そのまま蒸留するか、あるいは触媒を濾過後に蒸留する
か又はそのまま触媒を濾過するのみで極めて高純度、高
品質の第3級アミンを得ることが出来る。
The reactor during the reaction may be a system which is closed by hydrogen pressure, and when the produced water, formalin water and the like coexist with the amine, the catalytic activity is not affected and excess formaldehyde is present. Alternatively, a system may be used in which a small amount of gas is continuously discharged under hydrogen pressure in order to discharge the excess amount thereof or to discharge a low-grade gas derived from the raw material. After the reaction is completed in this way, an extremely high-purity and high-quality tertiary amine can be obtained by distilling the reaction product as it is, or distilling the catalyst after filtering or just filtering the catalyst as it is. .

【0016】例えば、一般式 R1R2NH (式中、R1,R2
同じか又は異なっても良い、炭素数8〜22の直鎖又は分
岐鎖を有する飽和又は不飽和炭化水素基を示す)で表さ
れる長鎖脂肪族第2級アミンと、ホルムアルデヒドとの
反応では、本発明のPd触媒(担持量5%)をアミンに対
し0.05重量%(アミンに対しPd金属として25ppm)添加し
て、反応温度 140℃、水素圧15kg/cm2 (ゲージ圧)
で、アミンに対し当モル量のホルマリンを4時間で添加
した後、 0.5時間熟成する条件で、生成物は純分99%以
上の第3級アミンが得られた。本来、この反応によって
得られるジ長鎖脂肪族アルキル3級アミンは、高沸点の
ため蒸留による精製が工業的に難しいため、反応後使用
した触媒を濾過除去するのみで使用することが必要であ
り、このため反応終了時すでに高純度を維持しているこ
とが必要とされるが、これらの要求に対し、本発明によ
る方法は充分対応できるものである。
For example, a general formula R 1 R 2 NH (in the formula, R 1 and R 2 may be the same or different, and is a saturated or unsaturated hydrocarbon group having a straight or branched chain having 8 to 22 carbon atoms. In a reaction of a long-chain aliphatic secondary amine represented by the formula (5) with formaldehyde, the Pd catalyst of the present invention (loading amount: 5%) is 0.05% by weight with respect to the amine (25 ppm as Pd metal based on the amine). Addition, reaction temperature 140 ℃, hydrogen pressure 15kg / cm 2 (gauge pressure)
Then, a tertiary amine having a purity of 99% or more was obtained as a product under the condition of adding an equimolar amount of formalin to the amine for 4 hours and aging for 0.5 hour. Originally, the di-long-chain aliphatic alkyl tertiary amine obtained by this reaction is industrially difficult to purify by distillation due to its high boiling point, and therefore it is necessary to use only by removing the catalyst used after the reaction by filtration. Therefore, it is necessary to maintain high purity at the end of the reaction, but the method according to the present invention can sufficiently meet these requirements.

【0017】一方、一般式 RNH2 (式中、R は炭素数8
〜22の直鎖又は分岐鎖を有する飽和又は不飽和の炭化水
素基を示す)で表される長鎖脂肪族第1級アミンとホル
ムアルデヒドとの反応では、一般的に使用されているNi
系水素化触媒では副反応が起こりやすく、これを抑制す
るためにカルボン酸などを添加している。しかし、この
方法では触媒の選択性を改良する効果はなく、特公昭39
−17905 号の実施例にも開示されているように、目的と
するモノ長鎖アルキルジメチル第3級アミンの収率は最
大でも88%前後になっている。これは約10%の副反応物
を含有しており、目的とする第3級アミンを高純度に得
るためには蒸留精製が必要となり、その結果得られる収
率は当然さらに低下する。
On the other hand, the general formula RNH 2 (wherein R is a carbon number 8
22 represents a saturated or unsaturated hydrocarbon group having a straight chain or a branched chain of 22), and a long-chain aliphatic primary amine represented by
The side reaction is likely to occur in the hydrogenation catalyst, and carboxylic acid or the like is added to suppress it. However, this method does not have the effect of improving the selectivity of the catalyst.
As disclosed in the example of -17905, the yield of the intended mono-long-chain alkyldimethyl tertiary amine is about 88% at the maximum. It contains about 10% by-products and requires distillation purification in order to obtain the desired tertiary amine in high purity, which naturally lowers the yield obtained.

【0018】これに対し、本発明の触媒を用いた場合、
一般式 RNH2 (式中 Rは前記の意味を示す)で表される
長鎖脂肪族第1級アミンとホルムアルデヒド及び水素と
の反応では、本発明の例えばPd触媒(担持量5%)をア
ミンに対し 0.1重量%(Pd金属としてはアミンに対し50
ppm)添加し、反応温度 120℃、水素圧15kg/cm2 (ゲー
ジ圧)で、アミンに対し2倍モルのホルマリンを4時間
で添加し、 0.5時間熟成したところ、目的とするモノ長
鎖アルキルジメチル3級アミンが純分98%以上で得られ
た。
On the other hand, when the catalyst of the present invention is used,
In the reaction of a long-chain aliphatic primary amine represented by the general formula RNH 2 (wherein R has the above meaning) with formaldehyde and hydrogen, for example, a Pd catalyst (support amount: 5%) of the present invention is used as an amine. 0.1% by weight (50% for amine as Pd metal)
ppm), the reaction temperature was 120 ° C., the hydrogen pressure was 15 kg / cm 2 (gauge pressure), and formalin was added in an amount of 2 times the amount of amine over 4 hours and aged for 0.5 hours. Dimethyl tertiary amine was obtained with a purity of 98% or more.

【0019】このように本発明の方法によると、副反応
の起こりやすい第1級アミンからの反応においても、高
選択性で第3級アミンを得ることができるため、純度の
高い1級アミンを用い本発明の触媒を使用すれば、反応
後使用した触媒を濾過除去するだけで、蒸留なしで高品
質な第3級アミンを得ることも可能である。
As described above, according to the method of the present invention, it is possible to obtain a tertiary amine with high selectivity even in a reaction from a primary amine in which a side reaction is likely to occur. When the catalyst of the present invention is used, it is possible to obtain a high-quality tertiary amine without distillation simply by removing the used catalyst by filtration after the reaction.

【0020】従来公知のNi系触媒を用いてこれらの反応
を行う場合、長鎖脂肪族第1級アミンからは、前述のよ
うに副反応が起こりやすく、目的とする第3級アミンの
収率は低下する。更に、低級の第1級アミン、又は第1
級アミノ基又は第2級アミノ基又はそれらを混合して有
するジアミン、トリアミン等のポリアミン類を出発原料
とする場合には、さらに副反応は多くなり第3級アミン
の収率は低下する。これに対し、このような副反応の起
こりやすいアミン類を出発原料として用いた場合におい
ても、本発明の方法で調製したPd触媒を使用すれば従来
の触媒に比べて高収率で目的とする第3級アミンを製造
することができる。
When these reactions are carried out using a conventionally known Ni-based catalyst, side reactions are likely to occur from the long-chain aliphatic primary amine as described above, and the yield of the target tertiary amine is increased. Will fall. Furthermore, lower primary amines, or primary
When a starting material is a polyamine such as a diamine or a triamine having a primary amino group or a secondary amino group or a mixture thereof, the side reaction further increases and the yield of the tertiary amine decreases. On the other hand, even when such amines that are prone to side reactions are used as the starting material, the use of the Pd catalyst prepared by the method of the present invention leads to a higher yield than the conventional catalyst. Tertiary amines can be produced.

【0021】本発明に使用されうる原料アミンとして
は、次のようなものが挙げられる。一般式 RNH2 (式
中、R は前記の意味を示す)で表される長鎖脂肪族第1
級アミン、例えば2−エチルヘキシルアミン、オクチル
アミン、デシルアミン、ドデシルアミン、トリデシルア
ミン、テトラデシルアミン、ペンタデシルアミン、ヘキ
サデシルアミン、ヘプタデシルアミン、オクタデシルア
ミン、エイコシルアミン、オレイルアミンなど、あるい
はこれらの混合物等;一般式 R1R2NH (式中、R1, R2
前記の意味を示す)で表される長鎖脂肪族第2級アミ
ン、例えばジオクチルアミン、ジデシルアミン、ジドデ
シルアミン、ジオクタデシルアミン、ジオレイルアミ
ン、ステアリル−オレイルアミン、ジエイコシルアミン
など、あるいはこれらの混合物等;一般式 R1O(CH2)3NH
2 (式中、R1は前記の意味を示す)で表される第1級ア
ミン、例えば3−(2−エチルヘキシロキシ)プロピル
アミン、3−オクチロキシプロピルアミン、3−デシロ
キシプロピルアミン、3−ドデシロキシプロピルアミ
ン、3−オクタデシロキシプロピルアミンなど;一般式
(R1O(CH2)3)2−NH(式中、R1は前記の意味を示す)で
表される第2級アミン、例えばジ(3−(2−エチルヘ
キシロキシ)プロピル)アミン、ジ(3−オクチロキシ
プロピル)アミン、ジ(3−デシロキシプロピル)アミ
ン、ジ(3−ドデシロキシプロピル)アミン、ジ(3−
オクタデシロキシプロピル)アミンなど;一般式 H2N−
(R3)−NH2 (式中、R3は炭素数2〜12の直鎖又は分岐鎖
のアルキレン基を示す)で表される第1級アミノ基を有
するポリアミン、例えばエチレンジアミン、 1,3−ブタ
ンジアミン、ペンタメチレンジアミン、ヘキサメチレン
ジアミン、オクタメチレンジアミンなど;一般式 H2NR4
(NHR5)nNH2(式中、R4、R5は同じか又は異なっても良
い、炭素数2〜12の直鎖又は分岐鎖のアルキレン基、n
は1〜10の数を示す)で表される第1級及び第2級アミ
ノ基を有するポリアミン、例えばジエチレントリアミ
ン、トリエチレンテトラミン、テトラエチレンペンタミ
ンなど;一般式 (CH3)2N〔CH2)3NH〕m−H(式中、m は
1〜5の数を示す)で表されるポリアミン、例えばN,N
−ジメチルプロピレンジアミン、 N,N−ジメチルジプロ
ピレントリアミンなど;芳香族基を有する芳香族第1級
又は第2級アミン、例えばアニリン、ベンジルアミン、
キシレンジアミンなど;炭素数4〜6の脂環を有する脂
環式第1級又は第2級アミン、例えばシクロブチルアミ
ン、シクロペンチルアミン、シクロヘキシルアミンな
ど;ヘテロ環を有する環状の第1級又は第2級アミン、
例えばモルホリン、ピペリジン、ピペラジン、ピペラジ
ンエタンアミン、ピロリジンなど;1価又は2価のヒド
ロキシル基を有するアミノアルコールである第1級又は
第2級アミン、例えばモノエタノールアミン、イソプロ
パノールアミン、ジエタノールアミン、ジイソプロパノ
ールアミンなどが挙げられる。
The starting amines that can be used in the present invention include the following. A long-chain aliphatic primary represented by the general formula RNH 2 (wherein R has the above meaning)
Secondary amines such as 2-ethylhexylamine, octylamine, decylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexadecylamine, heptadecylamine, octadecylamine, eicosylamine, oleylamine, etc. Mixtures and the like; long-chain aliphatic secondary amines represented by the general formula R 1 R 2 NH (wherein R 1 and R 2 have the above-mentioned meanings), for example, dioctylamine, didecylamine, didodecylamine, di Octadecylamine, dioleylamine, stearyl-oleylamine, dieicosylamine, etc., or a mixture thereof; general formula R 1 O (CH 2 ) 3 NH
Primary amine represented by 2 (in the formula, R 1 has the above meaning), for example, 3- (2-ethylhexyloxy) propylamine, 3-octyloxypropylamine, 3-decyloxypropylamine, 3-dodecyloxypropylamine, 3-octadecyloxypropylamine, etc .; general formula
A secondary amine represented by (R 1 O (CH 2 ) 3 ) 2 —NH (wherein R 1 has the above-mentioned meaning), for example, di (3- (2-ethylhexyloxy) propyl) amine. , Di (3-octyloxypropyl) amine, di (3-decyloxypropyl) amine, di (3-dodecyloxypropyl) amine, di (3-
Octadecyloxypropyl) amine, etc .; general formula H 2 N−
(R 3 ) —NH 2 (wherein R 3 represents a linear or branched alkylene group having 2 to 12 carbon atoms) and has a primary amino group, for example, ethylenediamine, 1,3 -Butanediamine, pentamethylenediamine, hexamethylenediamine, octamethylenediamine, etc .; general formula H 2 NR 4
(NHR 5 ) n NH 2 (In the formula, R 4 and R 5 may be the same or different, and are a linear or branched alkylene group having 2 to 12 carbon atoms, n
Represents a number from 1 to 10) and has a primary and secondary amino group, such as polyamines such as diethylenetriamine, triethylenetetramine, and tetraethylenepentamine; general formula (CH 3 ) 2 N [CH 2 ) 3 NH] m -H (wherein m represents a number from 1 to 5), such as N, N
-Dimethylpropylenediamine, N, N-dimethyldipropylenetriamine, etc .; aromatic primary or secondary amines having an aromatic group, such as aniline, benzylamine,
Xylylenediamine and the like; alicyclic primary or secondary amines having an alicycle having 4 to 6 carbon atoms, such as cyclobutylamine, cyclopentylamine, cyclohexylamine and the like; cyclic primary or secondary having a heterocycle Amine,
For example, morpholine, piperidine, piperazine, piperazineethaneamine, pyrrolidine, etc .; primary or secondary amines which are amino alcohols having a monovalent or divalent hydroxyl group, such as monoethanolamine, isopropanolamine, diethanolamine, diisopropanolamine. And so on.

【0022】[0022]

【実施例】次に本発明を実施例によって更に詳細に説明
するが、本発明はこれらの実施例に限定されるものでは
ない。尚、例中の%は特記しない限り重量基準である。
また実施例及び比較例で用いた触媒は以下の方法で調製
した。
EXAMPLES The present invention will now be described in more detail with reference to examples, but the present invention is not limited to these examples. In the examples,% is based on weight unless otherwise specified.
The catalysts used in Examples and Comparative Examples were prepared by the following method.

【0023】触媒A:塩化パラジウム(0.42g)及び濃
塩酸(1ml)を水(15ml)に加え塩化パラジウム水溶液
を調製した。次いで、この水溶液に活性炭(4.6 g)を
加え、十分に攪拌し、減圧下で加熱することにより水及
び塩酸を除去し、更に 100℃、空気中で一晩乾燥した。
その後、空気中で2時間、 400℃で焼成し、5%活性炭
担持Pd触媒(触媒A)を得た。
Catalyst A : Palladium chloride (0.42 g) and concentrated hydrochloric acid (1 ml) were added to water (15 ml) to prepare an aqueous palladium chloride solution. Next, activated carbon (4.6 g) was added to this aqueous solution, stirred sufficiently, and heated under reduced pressure to remove water and hydrochloric acid, and further dried at 100 ° C. in air overnight.
Then, it was calcined in air at 400 ° C. for 2 hours to obtain a 5% activated carbon-supported Pd catalyst (catalyst A).

【0024】触媒B:塩化パラジウム(0.42g)及び濃
塩酸(1ml)を水(15ml)に加え塩化パラジウム水溶液
を調製した。次いで、この水溶液に活性炭(4.6 g)を
加え、十分に攪拌し、減圧下で加熱することにより水及
び塩酸を除去し、更に 100℃、空気中で一晩乾燥した。
その後、水素雰囲気下で 200℃、2時間還元処理し、5
%活性炭担持Pd触媒(触媒B)を得た。
Catalyst B : Palladium chloride (0.42 g) and concentrated hydrochloric acid (1 ml) were added to water (15 ml) to prepare an aqueous palladium chloride solution. Next, activated carbon (4.6 g) was added to this aqueous solution, stirred sufficiently, and heated under reduced pressure to remove water and hydrochloric acid, and further dried at 100 ° C. in air overnight.
After that, reduction treatment is performed in a hydrogen atmosphere at 200 ° C. for 2 hours, and then 5
% Active carbon-supported Pd catalyst (Catalyst B) was obtained.

【0025】比較触媒A,B:塩化パラジウム(0.42
g)及び濃塩酸(1ml)を水(15ml)に加え塩化パラジ
ウム水溶液を調製した。次いで、この水溶液にシリカあ
るいはシリカ/アルミナ(4.6 g)を加え、十分に攪拌
し、減圧下で加熱することにより水及び塩酸を除去し、
更に 100℃、空気中で一晩乾燥した。その後、空気中で
2時間、 400℃で焼成し、5%シリカ担持Pd触媒(比較
触媒A)あるいは5%シリカ/アルミナ担持Pd触媒(比
較触媒B)を得た。
Comparative catalysts A and B : Palladium chloride (0.42
g) and concentrated hydrochloric acid (1 ml) were added to water (15 ml) to prepare an aqueous palladium chloride solution. Then, silica or silica / alumina (4.6 g) was added to this aqueous solution, stirred sufficiently, and heated under reduced pressure to remove water and hydrochloric acid,
It was further dried in air at 100 ° C overnight. Then, it was calcined in air at 400 ° C. for 2 hours to obtain a 5% silica-supported Pd catalyst (comparative catalyst A) or a 5% silica / alumina-supported Pd catalyst (comparative catalyst B).

【0026】比較触媒C:塩化パラジウム(0.42g)及
び濃塩酸(0.6ml)を水(20ml)に加え塩化パラジウム水
溶液を調製した。次いで、この水溶液に活性炭(4.6g)
を加え、十分に攪拌した。その後、60℃にて10%NaH 水
溶液(4.2g)を徐々に加えた。そして更に炭酸水素ナト
リウム(0.09g)を加え、12時間攪拌した。濾過/水洗
後、空気中で一晩 100℃で乾燥し、5%活性炭担持Pd触
媒(比較触媒C;沈着法)を得た。
Comparative catalyst C : Palladium chloride (0.42 g) and concentrated hydrochloric acid (0.6 ml) were added to water (20 ml) to prepare a palladium chloride aqueous solution. Then, activated carbon (4.6 g) was added to this aqueous solution.
Was added and stirred well. Then, 10% NaH aqueous solution (4.2 g) was gradually added at 60 ° C. Then, sodium hydrogen carbonate (0.09 g) was further added, and the mixture was stirred for 12 hours. After filtration / washing with water, it was dried in air at 100 ° C. overnight to obtain a 5% activated carbon-supported Pd catalyst (comparative catalyst C; deposition method).

【0027】比較触媒D:硝酸処理を行った活性炭(1.9
g)を水(5ml)に懸濁し、0.02 mol/リットル塩化テ
トラアンミンパラジウム(47ml) を1時間で滴下した。
2日間室温にて放置後、濾過、水洗、乾燥(150℃、一
晩)し、更に 300℃、4時間水素処理後、5%活性炭担
持Pd触媒(比較触媒D;イオン交換法)を得た。
Comparative catalyst D : Activated carbon treated with nitric acid (1.9
g) was suspended in water (5 ml), and 0.02 mol / liter tetraamminepalladium chloride (47 ml) was added dropwise over 1 hour.
After leaving it at room temperature for 2 days, it was filtered, washed with water, dried (150 ° C., overnight), and further hydrogenated at 300 ° C. for 4 hours to obtain a 5% activated carbon-supported Pd catalyst (comparative catalyst D; ion exchange method). .

【0028】実施例1 ドデシルアミン 300g(純度99%)及び触媒A 0.3gを
1リットルのオートクレーブ内に仕込み、水素圧15kg/
cm2(ゲージ圧)まで水素を封入し、温度を120℃とし
た。その後、この水素圧を保ちつつ、水素を5リットル
/hrの速度で導入し、同時に37%ホルムアルデヒド水溶
液を(アミンに対し 2.2倍モル)4時間で圧入した。
0.5時間熟成後、触媒を濾過にて除去し、 N,N−ジメチ
ルドデシルアミンを得た。反応終了品の組成を表1に示
す。
Example 1 300 g of dodecylamine (purity 99%) and 0.3 g of catalyst A were charged in an autoclave of 1 liter and hydrogen pressure was 15 kg /
Hydrogen was filled up to cm 2 (gauge pressure), and the temperature was set to 120 ° C. Then, while maintaining this hydrogen pressure, hydrogen was introduced at a rate of 5 liters / hr, and at the same time, a 37% aqueous formaldehyde solution (2.2 times mole to amine) was injected for 4 hours.
After aging for 0.5 hour, the catalyst was removed by filtration to obtain N, N-dimethyldodecylamine. The composition of the finished product is shown in Table 1.

【0029】実施例2,比較例1〜4 触媒Aの代わりに、触媒B、比較触媒A〜Dを用いる以
外は実施例1と同様にして N,N−ジメチルドデシルアミ
ンを得た。反応終了品の組成を表1に示す。
Example 2, Comparative Examples 1 to 4 N, N-dimethyldodecylamine was obtained in the same manner as in Example 1 except that catalyst B and comparative catalysts A to D were used instead of catalyst A. The composition of the finished product is shown in Table 1.

【0030】[0030]

【表1】 [Table 1]

【0031】表1に示す結果から、従来の触媒に比べ、
本発明触媒を用いた場合、高収率で目的とする第3級ア
ミンが得られることがわかる。
From the results shown in Table 1, as compared with the conventional catalyst,
It can be seen that the target tertiary amine can be obtained in high yield when the catalyst of the present invention is used.

【0032】実施例3〜6 出発原料として、ジオクタデシルアミン(実施例3)、
ヘキサメチレンジアミン(実施例4)、ジ(3−オクチ
ロキシプロピル)アミン(実施例5)、及びジエタノー
ルアミン(実施例6)を用いて、また触媒として触媒A
を用いて、対応する第3級アミンの合成を行った。な
お、反応条件は実施例1と同様である。得られた反応終
了品の組成を表2に示す。
Examples 3 to 6 As starting materials, dioctadecylamine (Example 3),
Hexamethylenediamine (Example 4), di (3-octyloxypropyl) amine (Example 5), and diethanolamine (Example 6) were used, and also catalyst A as catalyst.
Was used to synthesize the corresponding tertiary amine. The reaction conditions are the same as in Example 1. Table 2 shows the composition of the obtained reaction-completed product.

【0033】[0033]

【表2】 [Table 2]

【0034】表2に示す結果から、本発明触媒は、多種
のアミンに対して有用であることがわかる。
From the results shown in Table 2, it can be seen that the catalyst of the present invention is useful for various amines.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C07C 217/08 7457−4H // C07B 61/00 300 Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location C07C 217/08 7457-4H // C07B 61/00 300

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 第1級アミンまたは第2級アミンに、水
素圧下、ホルムアルデヒドを反応させ、対応する第3級
アミンを製造する方法において、触媒として、粉末ある
いは粒状炭素に下記(a) または(b) の方法で0.1 〜10重
量%のPdを担持させたPd触媒を用いることを特徴とする
第3級アミンの製造方法。 (a) 塩酸を含む塩化パラジウム又は硝酸パラジウム水溶
液に所定量の活性炭を加え減圧下で水及び塩酸を除去
後、空気中で乾燥・焼成する。 (b) 塩酸を含む塩化パラジウム又は硝酸パラジウム水溶
液に所定量の活性炭を加え減圧下で水及び塩酸を除去
後、水素雰囲気下で還元処理する。
1. In a method for producing a corresponding tertiary amine by reacting a primary amine or a secondary amine with formaldehyde under hydrogen pressure, a powder or granular carbon is used as a catalyst in the following (a) or ( A method for producing a tertiary amine, which comprises using a Pd catalyst supporting 0.1 to 10% by weight of Pd by the method of b). (a) A predetermined amount of activated carbon is added to a palladium chloride or palladium nitrate aqueous solution containing hydrochloric acid to remove water and hydrochloric acid under reduced pressure, and then dried and calcined in air. (b) A predetermined amount of activated carbon is added to a palladium chloride or palladium nitrate aqueous solution containing hydrochloric acid, water and hydrochloric acid are removed under reduced pressure, and then reduction treatment is performed in a hydrogen atmosphere.
JP5025241A 1993-02-15 1993-02-15 Method for producing tertiary amine Expired - Lifetime JPH0791238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5025241A JPH0791238B2 (en) 1993-02-15 1993-02-15 Method for producing tertiary amine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5025241A JPH0791238B2 (en) 1993-02-15 1993-02-15 Method for producing tertiary amine

Publications (2)

Publication Number Publication Date
JPH06239809A JPH06239809A (en) 1994-08-30
JPH0791238B2 true JPH0791238B2 (en) 1995-10-04

Family

ID=12160492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5025241A Expired - Lifetime JPH0791238B2 (en) 1993-02-15 1993-02-15 Method for producing tertiary amine

Country Status (1)

Country Link
JP (1) JPH0791238B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5646235A (en) * 1995-03-27 1997-07-08 Huntsman Petrochemical Corporation Reductive alkylation of polyamines
KR100352551B1 (en) * 1995-12-27 2003-04-21 주식회사 코오롱 Process for preparing tertiary amines
JP4879585B2 (en) * 2005-12-28 2012-02-22 花王株式会社 Production method of tertiary amine
JP5071796B2 (en) * 2007-12-10 2012-11-14 独立行政法人産業技術総合研究所 Method for regioselective deuteration of aromatic rings of aromatic compounds
JP4938125B2 (en) * 2009-12-22 2012-05-23 花王株式会社 Method for producing tertiary amine

Also Published As

Publication number Publication date
JPH06239809A (en) 1994-08-30

Similar Documents

Publication Publication Date Title
US4757144A (en) Preparing tertiary amine from formaldehyde and primary and/or secondary amine
JP4979877B2 (en) Process for the production of diethylenetriamine and higher polyethylene polyamines
JP4664914B2 (en) Method for producing ethyleneamine
EP2344445B1 (en) A process to selectively manufacture diethylenetriamine (deta) or other desirable ethylenamines via continuous transamination of ethylenediamine (eda), and other ethyleneamines over a heterogeneous catalyst system
JP3832878B2 (en) Amine production method
JPH0229066B2 (en)
JPH051779B2 (en)
EP0913388A1 (en) Hydrogenation of nitriles to produce amines
JPH0347156A (en) Reductive amination of carbonitrile and analogous compound
JPS6233211B2 (en)
EP0526851A2 (en) Process and catalyst for producing an ethylenamine
EP2638003B1 (en) Transamination of nitrogen-containing compounds to high molecular weight polyalkyleneamines
EP0618895B1 (en) Process for the preparation of an aminonitrile by partial hydrogenation of a nitrile compound with two or more nitrile groups
EP2638020B1 (en) Transamination of nitrogen-containing compounds to make cyclic and cyclic/acyclic polyamine mixtures
JPH0791238B2 (en) Method for producing tertiary amine
EP1094058B1 (en) Selective reductive amination of nitriles
JPH0838901A (en) Copper oxide/zirconium oxide catalyst and its preparation
JPH0480018B2 (en)
US4539403A (en) Process for the preparation of a 2-alkyl-4-amino-5-aminomethylpyrimidine
JPS6210047A (en) Production of tertiary amine
KR20200007050A (en) Process for preparing cyclic urea adducts of ethyleneamine compounds
EP0698009B1 (en) Method for the selective hydrogenation of a dinitrile compound
JPH10506386A (en) Method for increasing the hydrogenation rate of aromatic amines
JPH061758A (en) Production of amino compound
JP4210795B2 (en) 2-Imidazoline production method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071004

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081004

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101004

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111004

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121004

Year of fee payment: 17