JP4210795B2 - 2-Imidazoline production method - Google Patents
2-Imidazoline production method Download PDFInfo
- Publication number
- JP4210795B2 JP4210795B2 JP09873997A JP9873997A JP4210795B2 JP 4210795 B2 JP4210795 B2 JP 4210795B2 JP 09873997 A JP09873997 A JP 09873997A JP 9873997 A JP9873997 A JP 9873997A JP 4210795 B2 JP4210795 B2 JP 4210795B2
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- production method
- ethylenediamine
- formula
- imidazolines
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、2−イミダゾリン類の製造法に関する。一般に、2−イミダゾリン類は、各種農薬、医薬又は染料中間体として極めて有用な化合物である。
【0002】
【従来の技術】
ポリアミン及びニトリル化合物を原料とする2−イミダゾリン類の製造としては、以下の方法が知られている。
【0003】
特公昭39−24965号公報には、硫黄の存在下で反応させる方法が記載されている。硫黄を触媒とする方法は、反応中に極めて毒性の高い硫化水素が副生するほか、イミダゾリンからイミダゾールを製造する場合、残存する硫黄が脱水素触媒を被毒し、反応を阻害する等の問題があった。
【0004】
この問題を解決するために、特公平5−39943号公報には、酢酸銅、塩化銅等の銅塩触媒、特開昭62−195369号公報には、酢酸亜鉛、塩化亜鉛等の亜鉛塩を触媒とする方法が記載されている。銅塩触媒、亜鉛塩触媒を使うと、硫化水素の副生はみられないものの、銅イオン、亜鉛イオン等の不純物が反応系に入るため、生成物がイミダゾリンの金属錯体となり、精製を必要とする。また、イミダゾリンからイミダゾールを製造する場合、残存する金属イオンが脱水素触媒を被毒し、収率が低下する等の問題があった。
【0005】
【発明が解決しようとする課題】
上記したように従来の方法では、硫化水素が副生する、残存する硫黄が反応を阻害する、生成物がイミダゾリンの金属錯体となり精製を必要とする等の問題があり、イミダゾリンを効率よく製造するには十分ではない。したがって、これらの欠点を解消した方法、すなわち、分離、精製が必要となる硫黄、金属塩を触媒とせず、硫化水素を副生しない方法の開発が望まれていた。
【0006】
【課題を解決するための手段】
本発明者らは、イミダゾリン類の製造法について鋭意検討をした結果、触媒としてアンモニウム塩を使用することによって、硫化水素の発生もなく、分離、精製を必要としないイミダゾリン類の製造が可能であるという新規な事実を見出し、本発明を完成するに至った。
【0007】
すなわち、本発明は、ポリアミンとニトリル化合物を反応させて2−イミダゾリン類を製造する際に、塩化アンモニウム及び/又はアミンの塩酸塩の存在下で反応を行うことを特徴とする2−イミダゾリン類の製造法である。
【0008】
以下に本発明を詳細に説明する。
【0009】
本発明の方法において使用される触媒は、塩化アンモニウム及び/又はアミンの塩酸塩である。
【0010】
アミンとしては特に制限はないが、あえて例示すると、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン等の脂肪族アミン類、ピペリジン、ピロリジン、シクロヘキシルアミン等の脂環式アミン類、ピリジン、アニリン等の芳香族アミン類、エチレンジアミン、ジエチレントリアミン、プロパンジアミン等のポリアミン類等が挙げられる。
【0011】
本発明の方法においては、反応原料としてポリアミンを使用するので、反応中に塩化水素等を添加してアンモニウム塩としても良いし、また反応中にアンモニアが発生するため、反応系中に塩化水素を添加して反応しても良い。
【0012】
本発明の方法において、使用される触媒の量は、触媒の種類によって異なるため明示することは困難ではあるが、通常ポリアミンに対して0.01重量部〜100重量部の範囲である。例えば、触媒として塩化アンモニウムを用いた場合、好ましくは0.05重量部〜50重量部の範囲、さらに好ましくは0.1重量部〜20重量部の範囲である。0.01重量部以下では反応の進行が遅いため実用的ではなく、100重量部を越えて過剰に加えても触媒を増やした効果は小さい。
【0013】
本発明の方法において、使用される原料は、ポリアミンとニトリル化合物である。ポリアミンは下記式(1)
H2NCHR1CHR2NHR3 (1)
(式中、R1、R2、R3は各々独立して水素、脂肪族、芳香脂肪族又は芳香族の基を意味し、それらは官能基を含んでいても良い。)
で示される化合物であり、ニトリル化合物は下記式(2)
R4CN (2)
(式中、R4は水素、脂肪族、芳香脂肪族又は芳香族の基を意味する。)
で示される化合物である。
【0014】
ポリアミンとしては、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン等のエチレンアミン類、プロピレンジアミン、ブチレンジアミン、ペンチレンジアミン、ヘキサレンジアミン、オクチレンジアミン、ノニレンジアミン、デシレンジアミン、シクロヘキシルエチレンジアミン、ベンジルエチレンジアミン、フェニルエチレンジアミン、メトキシフェニルエチレンジアミン、ジメチルフェニルエチレンジアミン、トリルエチレンジアミン、N−ブチルエチレンジアミン、N−イソブチルエチレンジアミン、N−メチルエチレンジアミン、N−エチルエチレンジアミン、N−シクロヘキシルエチレンジアミン、N−ベンジルエチレンジアミン、N−フェニルエチレンジアミン、N−メトキシフェニルエチレンジアミン、N−ジメチルフェニルエチレンジアミン、N−トリルエチレンジアミン等が例示される。
【0015】
また、ニトリル化合物としては、アセトニトリル、プロピオニトリル、イソブチロニトリル、2−エチルヘキシロニトリル、ラウロニトリル、ステアロニトリル、シクロヘキシルニトリル、フェニルアセトニトリル、フェニルプロピオニトリル、ベンゾニトリル、メチルベンゾニトリル、ジメチルベンゾニトリル、メトキシベンゾニトリル、ジメトキシベンゾニトリル、ナフトニトリル、シアノピリジン、マロンニトリル、アジポニトリル、フタロニトリル、ジシアノジフェニル、1,4−ジシアノブタン等が例示される。
【0016】
本発明の方法において、ポリアミンとニトリル化合物は化学当量又は一方の過剰で反応を行うことができる。
【0017】
本発明の方法において、反応温度は通常100〜300℃の範囲であるが、150〜250℃で行うことが好ましい。100℃未満の反応温度では、反応速度は非常に遅いため実用的でなく、300℃を越える反応温度では、原料の分解が生じ、イミダゾリン類の収率が低下する場合がある。
【0018】
本発明の方法は、通常液相で実施する。
【0019】
本発明の方法において、反応は、原料を液状に保てればよく、常圧,加圧又は減圧下で行うことができる。この反応では、反応中にアンモニアが生成するため反応圧力が上昇するが、このアンモニアは反応途中で除去することもできるし、反応が終了してから除去することもできる。反応温度が原料の沸点を越えている場合は、加圧下で反応を実施する、凝縮器を設け原料を液化する、又は原料を少しずつ供給する等の方法をとることができる。
【0020】
本発明の方法において、溶媒を使用してもしなくても良い。溶媒としては、反応条件に不活性なものであれば特に制限はなく、水等、イミダゾリン類を分解するものの使用は好ましくない。
【0021】
本発明の方法は、連続反応で実施しても、回分反応、半回分反応で実施しても良い。また、固定床でも懸濁床でも反応できる。
【0022】
本発明の方法において、反応生成物のイミダゾリン類は、精製しても、精製せずに脱水素してイミダゾール類としても良い。イミダゾリン類の精製方法は、蒸留、再結晶等の種々の方法が知られているが、どの方法を用いても一向に差し支えない。
【0023】
【発明の効果】
本発明によれば、硫化水素の発生もなく、また分離、精製が必要な金属イオンを生成しないイミダゾリン類を効率よく製造することができるため、工業上極めて有意義である。
【0024】
【実施例】
以下、本発明の方法を実施例により説明するが、本発明はこれらに限定されるものではない。
【0025】
実施例1
200mlのステンレス製オートクレーブにエチレンジアミン48.5g(0.81モル)、アセトニトリル36.8g、塩化アンモニウム2.4g及びメタノール34.7gを入れ、窒素置換した後、180℃に加熱した。反応圧力が2.5MPa以上になったら脱圧を行い、圧力を下げ、6時間反応した。反応終了後、室温まで冷却し、ガスクロマトグラフィーで分析したところ、エチレンジアミンの転化率98%,2−メチルイミダゾリンの選択率は98%であった。
【0026】
実施例2
200mlのステンレス製オートクレーブにエチレンジアミン48.1g(0.80モル)、アセトニトリル36.1g、塩化アンモニウム2.4g及びメタノール34.5gを入れ、窒素置換した後、200℃に加熱した。反応圧力が2.5MPa以上になったら脱圧を行い、圧力を下げ、3時間反応した。反応終了後、室温まで冷却し、ガスクロマトグラフィーで分析したところ、エチレンジアミンの転化率100%,2−メチルイミダゾリンの選択率は96%であった。
【0027】
実施例3
200mlのステンレス製オートクレーブにエチレンジアミン48.1g(0.80モル)、アセトニトリル36.1g、エチレンジアミンの塩酸塩4.3g及びメタノール35.7gを入れ、窒素置換した後、180℃に加熱した。反応圧力が2.5MPa以上になったら脱圧を行い、圧力を下げ、6時間反応した。反応終了後、室温まで冷却し、ガスクロマトグラフィーで分析したところ、エチレンジアミンの転化率97%,2−メチルイミダゾリンの選択率は96%であった。
【0028】
実施例4
200mlのステンレス製オートクレーブにプロピレンジアミン50.0g(0.67モル)、プロピオニトリル33.5g、塩化アンモニウム2.0g及びメタノール37.0gを入れ、窒素置換した後、180℃に加熱した。反応圧力が2.5MPa以上になったら脱圧を行い、圧力を下げ、6時間反応した。反応終了後、室温まで冷却し、ガスクロマトグラフィーで分析したところ、プロピレンジアミンの転化率90%,2−エチル−4(5)−メチルイミダゾリンの選択率は98%であった。
【0029】
実施例5
200mlのステンレス製オートクレーブにプロピレンジアミン50.0g(0.67モル)、プロピオニトリル33.5g、塩化アンモニウム2.0g及びメタノール37.0gを入れ、窒素置換した後、200℃に加熱した。反応圧力が2.5MPa以上になったら脱圧を行い、圧力を下げ、3時間反応した。反応終了後、室温まで冷却し、ガスクロマトグラフィーで分析したところ、プロピレンジアミンの転化率95%,2−エチル−4(5)−メチルイミダゾリンの選択率は97%であった。
【0030】
参考例
200mlのステンレス製オートクレーブにエチレンジアミン30.1g(0.50モル)、ベンゾニトリル46.9g、塩化アンモニウム3.0g及びメタノール31.9gを入れ、窒素置換した後、180℃に加熱した。反応圧力が2.5MPa以上になったら脱圧を行い、圧力を下げ、7時間反応した。反応終了後、室温まで冷却し、ガスクロマトグラフィーで分析したところ、エチレンジアミンの転化率98%,2−フェニルイミダゾリンの選択率は98%であった。
【0031】
実施例7
200mlのステンレス製オートクレーブにエチレンジアミン30.1g(0.50モル)、ベンゾニトリル46.9g、塩化アンモニウム3.0g及びメタノール35.3gを入れ、窒素置換した後、200℃に加熱した。反応圧力が2.5MPa以上になったら脱圧を行い、圧力を下げ、5時間反応した。反応終了後、室温まで冷却し、ガスクロマトグラフィーで分析したところ、エチレンジアミンの転化率99%,2−フェニルイミダゾリンの選択率は97%であった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a process for producing 2-imidazolines. In general, 2-imidazolines are extremely useful compounds as various agricultural chemicals, pharmaceuticals, or dye intermediates.
[0002]
[Prior art]
The following methods are known for producing 2-imidazolines using polyamines and nitrile compounds as raw materials.
[0003]
Japanese Examined Patent Publication No. 39-24965 describes a method of reacting in the presence of sulfur. In the method using sulfur as a catalyst, highly toxic hydrogen sulfide is produced as a by-product during the reaction, and when imidazole is produced from imidazoline, the remaining sulfur poisons the dehydrogenation catalyst and inhibits the reaction. was there.
[0004]
In order to solve this problem, Japanese Patent Publication No. 5-39943 discloses copper salt catalysts such as copper acetate and copper chloride, and Japanese Patent Laid-Open No. 62-195369 discloses zinc salts such as zinc acetate and zinc chloride. A method of making a catalyst is described. When copper salt catalyst or zinc salt catalyst is used, hydrogen sulfide by-product is not seen, but impurities such as copper ion and zinc ion enter the reaction system, so the product becomes a metal complex of imidazoline and requires purification. To do. Further, when imidazole is produced from imidazoline, there are problems such that the remaining metal ions poison the dehydrogenation catalyst and the yield decreases.
[0005]
[Problems to be solved by the invention]
As described above, in the conventional method, there are problems that hydrogen sulfide is produced as a by-product, the remaining sulfur inhibits the reaction, the product becomes a metal complex of imidazoline and needs to be purified, and imidazoline is efficiently produced. Is not enough. Therefore, it has been desired to develop a method that eliminates these drawbacks, that is, a method that does not use sulfur and metal salts that require separation and purification as catalysts and does not produce hydrogen sulfide as a by-product.
[0006]
[Means for Solving the Problems]
As a result of intensive studies on a method for producing imidazolines, the present inventors can produce imidazolines that do not require separation and purification without the generation of hydrogen sulfide by using an ammonium salt as a catalyst. The present inventors have found a new fact that the present invention has been completed.
[0007]
That is, in the present invention, when 2-imidazolines are produced by reacting a polyamine and a nitrile compound, the reaction is performed in the presence of ammonium chloride and / or amine hydrochloride. It is a manufacturing method.
[0008]
The present invention is described in detail below.
[0009]
The catalyst used in the process of the present invention is ammonium chloride and / or amine hydrochloride.
[0010]
The amine is not particularly limited, but for example, aliphatic amines such as methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine and triethylamine, alicyclic amines such as piperidine, pyrrolidine and cyclohexylamine, pyridine and aniline And polyamines such as ethylenediamine, diethylenetriamine and propanediamine.
[0011]
In the method of the present invention, since polyamine is used as a reaction raw material, hydrogen chloride or the like may be added during the reaction to form an ammonium salt, and ammonia is generated during the reaction. You may add and react.
[0012]
In the method of the present invention, the amount of the catalyst used varies depending on the type of catalyst and is difficult to specify, but is usually in the range of 0.01 to 100 parts by weight with respect to the polyamine. For example, when ammonium chloride is used as the catalyst, it is preferably in the range of 0.05 to 50 parts by weight, more preferably in the range of 0.1 to 20 parts by weight. If the amount is 0.01 parts by weight or less, the progress of the reaction is slow, which is not practical. Even if the amount exceeds 100 parts by weight, the effect of increasing the catalyst is small.
[0013]
In the method of the present invention, the raw materials used are a polyamine and a nitrile compound. The polyamine is represented by the following formula (1)
H 2 NCHR 1 CHR 2 NHR 3 (1)
(In the formula, R 1 , R 2 and R 3 each independently represent hydrogen, aliphatic, araliphatic or aromatic groups, which may contain a functional group.)
The nitrile compound is a compound represented by the following formula (2):
R 4 CN (2)
(In the formula, R 4 represents hydrogen, aliphatic, araliphatic or aromatic group.)
It is a compound shown by these.
[0014]
Polyamines include ethyleneamines such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, propylenediamine, butylenediamine, pentylenediamine, hexadieneamine, octylenediamine, nonylenediamine, decylenediamine. Amine, cyclohexylethylenediamine, benzylethylenediamine, phenylethylenediamine, methoxyphenylethylenediamine, dimethylphenylethylenediamine, tolylethylenediamine, N-butylethylenediamine, N-isobutylethylenediamine, N-methylethylenediamine, N-ethylethylenediamine, N-cyclohexylethylenediamine, N-benzyl Ethylenediamine, N-phenylethylene Diamine, N- methoxyphenyl ethylenediamine, N- dimethyl-phenyl diamine, N- tolyl ethylenediamine and the like.
[0015]
As nitrile compounds, acetonitrile, propionitrile, isobutyronitrile, 2-ethylhexonitrile, lauronitrile, stearonitrile, cyclohexylnitrile, phenylacetonitrile, phenylpropionitrile, benzonitrile, methylbenzonitrile, dimethyl Examples include benzonitrile, methoxybenzonitrile, dimethoxybenzonitrile, naphthonitrile, cyanopyridine, malonnitrile, adiponitrile, phthalonitrile, dicyanodiphenyl, 1,4-dicyanobutane and the like.
[0016]
In the method of the present invention, the polyamine and the nitrile compound can be reacted with a chemical equivalent or an excess of one.
[0017]
In the method of the present invention, the reaction temperature is usually in the range of 100 to 300 ° C, but it is preferably performed at 150 to 250 ° C. If the reaction temperature is less than 100 ° C., the reaction rate is very slow, which is not practical. If the reaction temperature exceeds 300 ° C., decomposition of the raw material may occur, and the yield of imidazolines may decrease.
[0018]
The process according to the invention is usually carried out in the liquid phase.
[0019]
In the method of the present invention, the reaction may be carried out under normal pressure, increased pressure or reduced pressure as long as the raw material is kept in a liquid state. In this reaction, ammonia is generated during the reaction, and thus the reaction pressure rises. This ammonia can be removed during the reaction, or can be removed after the reaction is completed. When the reaction temperature exceeds the boiling point of the raw material, the reaction can be carried out under pressure, a condenser is provided to liquefy the raw material, or the raw material is supplied little by little.
[0020]
In the method of the present invention, a solvent may or may not be used. The solvent is not particularly limited as long as it is inert to the reaction conditions, and use of a solvent that decomposes imidazolines, such as water, is not preferable.
[0021]
The method of the present invention may be carried out by a continuous reaction, a batch reaction or a semi-batch reaction. The reaction can be carried out in a fixed bed or a suspension bed.
[0022]
In the method of the present invention, the imidazolines as reaction products may be purified or dehydrogenated without purification to imidazoles. Various methods such as distillation and recrystallization are known as methods for purifying imidazolines, but any method can be used.
[0023]
【The invention's effect】
According to the present invention, imidazolines that do not generate hydrogen sulfide and that do not generate metal ions that need to be separated and purified can be efficiently produced.
[0024]
【Example】
Hereinafter, the method of the present invention will be described with reference to examples, but the present invention is not limited thereto.
[0025]
Example 1
A 200 ml stainless steel autoclave was charged with 48.5 g (0.81 mol) of ethylenediamine, 36.8 g of acetonitrile, 2.4 g of ammonium chloride and 34.7 g of methanol, purged with nitrogen, and heated to 180 ° C. When the reaction pressure became 2.5 MPa or more, depressurization was performed, the pressure was lowered, and the reaction was performed for 6 hours. After completion of the reaction, the reaction mixture was cooled to room temperature and analyzed by gas chromatography. As a result, the conversion of ethylenediamine was 98%, and the selectivity for 2-methylimidazoline was 98%.
[0026]
Example 2
A 200 ml stainless steel autoclave was charged with 48.1 g (0.80 mol) of ethylenediamine, 36.1 g of acetonitrile, 2.4 g of ammonium chloride, and 34.5 g of methanol, purged with nitrogen, and heated to 200 ° C. When the reaction pressure became 2.5 MPa or more, depressurization was performed, the pressure was lowered, and the reaction was performed for 3 hours. After completion of the reaction, the reaction mixture was cooled to room temperature and analyzed by gas chromatography. As a result, the ethylenediamine conversion rate was 100% and the 2-methylimidazoline selectivity was 96%.
[0027]
Example 3
A 200 ml stainless steel autoclave was charged with 48.1 g (0.80 mol) of ethylenediamine, 36.1 g of acetonitrile, 4.3 g of ethylenediamine hydrochloride and 35.7 g of methanol, purged with nitrogen, and heated to 180 ° C. When the reaction pressure became 2.5 MPa or more, depressurization was performed, the pressure was lowered, and the reaction was performed for 6 hours. After completion of the reaction, the reaction mixture was cooled to room temperature and analyzed by gas chromatography. As a result, the conversion of ethylenediamine was 97% and the selectivity for 2-methylimidazoline was 96%.
[0028]
Example 4
A 200 ml stainless steel autoclave was charged with 50.0 g (0.67 mol) of propylenediamine, 33.5 g of propionitrile, 2.0 g of ammonium chloride, and 37.0 g of methanol. After purging with nitrogen, the mixture was heated to 180 ° C. When the reaction pressure became 2.5 MPa or more, depressurization was performed, the pressure was lowered, and the reaction was performed for 6 hours. After completion of the reaction, the reaction mixture was cooled to room temperature and analyzed by gas chromatography. As a result, the conversion of propylenediamine was 90%, and the selectivity for 2-ethyl-4 (5) -methylimidazoline was 98%.
[0029]
Example 5
A 200 ml stainless steel autoclave was charged with 50.0 g (0.67 mol) of propylenediamine, 33.5 g of propionitrile, 2.0 g of ammonium chloride, and 37.0 g of methanol. After purging with nitrogen, the mixture was heated to 200 ° C. When the reaction pressure became 2.5 MPa or more, depressurization was performed, the pressure was lowered, and the reaction was performed for 3 hours. After completion of the reaction, the reaction mixture was cooled to room temperature and analyzed by gas chromatography. As a result, the conversion of propylenediamine was 95%, and the selectivity for 2-ethyl-4 (5) -methylimidazoline was 97%.
[0030]
Reference Example 30.1 g (0.50 mol) of ethylenediamine, 46.9 g of benzonitrile, 3.0 g of ammonium chloride, and 31.9 g of methanol were placed in a 200 ml stainless steel autoclave. After purging with nitrogen, the mixture was heated to 180 ° C. When the reaction pressure reached 2.5 MPa or higher, the pressure was released, the pressure was lowered, and the reaction was carried out for 7 hours. After completion of the reaction, the reaction mixture was cooled to room temperature and analyzed by gas chromatography. As a result, the conversion of ethylenediamine was 98% and the selectivity for 2-phenylimidazoline was 98%.
[0031]
Example 7
A 200 ml stainless steel autoclave was charged with 30.1 g (0.50 mol) of ethylenediamine, 46.9 g of benzonitrile, 3.0 g of ammonium chloride, and 35.3 g of methanol. After purging with nitrogen, the mixture was heated to 200 ° C. When the reaction pressure became 2.5 MPa or more, depressurization was performed, the pressure was lowered, and the reaction was performed for 5 hours. After completion of the reaction, the reaction mixture was cooled to room temperature and analyzed by gas chromatography. As a result, the conversion of ethylenediamine was 99% and the selectivity for 2-phenylimidazoline was 97%.
Claims (6)
H2NCHR1CHR2NHR3 (1)
(式中、R1、R2、R3は各々独立して水素、脂肪族、芳香脂肪族又は芳香族の基を意味し、それらは官能基を含んでいても良い。)The production method according to claim 1, wherein the polyamine is a compound represented by the following formula (1).
H 2 NCHR 1 CHR 2 NHR 3 (1)
(In the formula, R 1 , R 2 and R 3 each independently represent hydrogen, aliphatic, araliphatic or aromatic groups, and they may contain a functional group.)
R4CN (2)
(式中、R4は水素、脂肪族、芳香脂肪族又は芳香族の基を意味する。)The method according to any one of claims 1 to 4, wherein the nitrile compound is a compound represented by the following formula (2).
R 4 CN (2)
(In the formula, R 4 represents hydrogen, an aliphatic group, an araliphatic group or an aromatic group.)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09873997A JP4210795B2 (en) | 1997-04-16 | 1997-04-16 | 2-Imidazoline production method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09873997A JP4210795B2 (en) | 1997-04-16 | 1997-04-16 | 2-Imidazoline production method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10287656A JPH10287656A (en) | 1998-10-27 |
JP4210795B2 true JP4210795B2 (en) | 2009-01-21 |
Family
ID=14227870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09873997A Expired - Fee Related JP4210795B2 (en) | 1997-04-16 | 1997-04-16 | 2-Imidazoline production method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4210795B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003313172A (en) * | 2002-04-23 | 2003-11-06 | Tosoh Corp | Method for producing n-substituted imidazole |
CN104402820A (en) * | 2014-12-02 | 2015-03-11 | 千辉药业(安徽)有限责任公司 | Synthesis method of 1-ethyl-2-methylimidazoline |
-
1997
- 1997-04-16 JP JP09873997A patent/JP4210795B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10287656A (en) | 1998-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4664914B2 (en) | Method for producing ethyleneamine | |
JPH0229066B2 (en) | ||
US4463193A (en) | Production of noncyclic polyalkylene polyamines | |
JP5377335B2 (en) | Method for producing tetraethylenepentamine | |
JP2659040B2 (en) | Method for producing aliphatic polyamine | |
JPH0347156A (en) | Reductive amination of carbonitrile and analogous compound | |
JPS6233211B2 (en) | ||
JP2020527554A (en) | Process for making higher ethylene amines | |
JPS60169448A (en) | Manufacture of mainly non-cyclic polyalkylene polyamine | |
EP0382508B1 (en) | The preparation of polyamines | |
EP0618895B1 (en) | Process for the preparation of an aminonitrile by partial hydrogenation of a nitrile compound with two or more nitrile groups | |
EP3350154A1 (en) | An improved process for preparation of trientine dihydrochloride | |
JP3001685B2 (en) | Diamine production method | |
JP4210795B2 (en) | 2-Imidazoline production method | |
US4845297A (en) | Process for producing polyamines | |
US5097072A (en) | Preparation of polyamines | |
JP3849157B2 (en) | 2-Imidazoline production method | |
JP3849149B2 (en) | 2-Imidazoline production method | |
JP3544701B2 (en) | Method for producing N, N-disubstituted benzylamine | |
US20020128513A1 (en) | Preparation of secondary amines from nitriles | |
JPS62187437A (en) | Production of polyethylenepolyamine | |
JP3644184B2 (en) | Method for producing polyvinyl imidazoline | |
JPH0791238B2 (en) | Method for producing tertiary amine | |
JP3224922B2 (en) | Method for producing N- [3-amino-propyl] amine | |
US5149877A (en) | Process for producing alkylenamine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040415 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071120 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080117 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080125 |
|
A072 | Dismissal of procedure [no reply to invitation to correct request for examination] |
Free format text: JAPANESE INTERMEDIATE CODE: A072 Effective date: 20080520 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080930 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081013 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111107 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111107 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111107 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121107 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131107 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |