JPH079104A - Method for continuously casting steel - Google Patents
Method for continuously casting steelInfo
- Publication number
- JPH079104A JPH079104A JP17583493A JP17583493A JPH079104A JP H079104 A JPH079104 A JP H079104A JP 17583493 A JP17583493 A JP 17583493A JP 17583493 A JP17583493 A JP 17583493A JP H079104 A JPH079104 A JP H079104A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- powder
- stroke
- slab
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Continuous Casting (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は製鉄における連続鋳造法
に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting method in iron making.
【0002】[0002]
【従来の技術】鋼の連続鋳造は省工程、省エネルギーの
観点から、製鋼/圧延間の無手入れ熱片搬送が重要な造
り込み上の課題である。2. Description of the Related Art In continuous casting of steel, from the viewpoint of process saving and energy saving, it is an important manufacturing problem that uncarried hot strip transfer between steel making / rolling is important.
【0003】直近、鋳片内清浄性要求レベルは日増しに
高まる傾向にあり、その観点からモールドパウダー捲き
込みが原因である製品での内部欠陥を防止するため、モ
ールドパウダーの高粘性化が必要となってきた。Recently, the required level of cleanliness in cast slabs tends to increase day by day. From this viewpoint, in order to prevent internal defects in products caused by the inclusion of mold powder, it is necessary to increase the viscosity of the mold powder. Has become.
【0004】更に連続鋳造における生産性向上及び高温
鋳片搬送の目的から、鋳造速度の高速化ニーズも高まっ
てきており、以上の点から、高速鋳造と高粘性パウダー
使用は製造条件のひとつのパッケージとして取り扱われ
つつある。Further, there is an increasing need for a higher casting speed for the purpose of improving productivity in the continuous casting and conveying high-temperature slabs. From the above points, high-speed casting and use of high-viscosity powder are one of the manufacturing conditions. Is being treated as.
【0005】その際に鋳片表面縦割れ疵抑制技術はスラ
ブ無手入れ熱片搬送を実現する上で極めて重要な意義を
もつ。At this time, the technique for suppressing vertical cracks on the surface of the cast slab has an extremely important meaning in realizing the slab-free maintenance of the hot slab.
【0006】従来より上記の対策として、モールドパウ
ダー物性値(粘性、融点、凝固点、表面張力等)、鋳造
速度及びモールド振動条件(ネガティブストリップ率、
ストローク等)などの指標より、モールドパウダーの潤
滑性能や消費量及び摩擦抵抗を示すことにより、縦割れ
抑制を図った例は多数示されているが、パウダーの流入
不均一性を数値化しパウダー物性あるいはモールド振動
条件と連関することにより整理した例はない。Conventionally, as the above measures, physical properties of mold powder (viscosity, melting point, freezing point, surface tension, etc.), casting speed and vibration conditions of mold (negative strip rate,
There are many examples in which vertical cracking is suppressed by indicating the lubrication performance, consumption amount, and frictional resistance of mold powder from indicators such as stroke). Alternatively, there is no example in which it is arranged by linking with mold vibration conditions.
【0007】縦割れは鋼のもつ熱間強度を越える外力を
発生させないことにより防止可能であり、それは単にモ
ールドパウダー原単位を確保(多くの場合、原単位確保
を潤滑性能指標としている)するのみでなく、パウダー
の流入変動を極力小さくすることにより実現される。Longitudinal cracks can be prevented by not generating an external force exceeding the hot strength of steel, and it is only necessary to secure the mold powder basic unit (in many cases, the basic unit is used as a lubricating performance index). Instead, it is realized by minimizing the fluctuation of powder inflow.
【0008】[0008]
【発明が解決しようとする課題】本発明は、鋳型/鋳片
間にモールドパウダーを均一に流入させるための鋳型振
動条件を定める手段を提供するものである。SUMMARY OF THE INVENTION The present invention provides a means for defining mold vibration conditions for allowing mold powder to flow uniformly between a mold and a slab.
【0009】[0009]
【課題を解決するための手段】1300℃における粘性
が2〜8poise及び凝固温度が1000〜1300
℃のモールドパウダーを使用する際、鋳型の振動及び、
または振動ストロークをパウダー原単位偏差DPを指標
にとり、以下に示す範囲にそれを調整することを特徴と
する鋼の連続鋳造方法。Means for Solving the Problems Viscosity at 1300 ° C. is 2 to 8 poise and solidification temperature is 1000 to 1300.
When using mold powder at ℃, vibration of the mold and
Alternatively, a continuous casting method for steel, characterized in that the vibration stroke is used as an index for the powder unit deviation DP and is adjusted within the following range.
【0010】パウダー原単位偏差DP;モールド1スト
ローク中にモールドパウダーが鋳型と鋳片間へ流入する
最大値と最少値の差。Powder unit deviation DP: difference between the maximum value and the minimum value of the mold powder flowing between the mold and the slab during one stroke of the mold.
【0011】[0011]
【数2】 〔C〕<8×10-2% Dp≦0.28 8≦〔C〕≦18×10-2% Dp≦0.15〜0.28[C] <8 × 10 −2 % Dp ≦ 0.28 8 ≦ [C] ≦ 18 × 10 −2 % Dp ≦ 0.15 to 0.28
【0012】[0012]
(1)パウダー流入性指標について 鋳型/鋳片間のモールドパウダー潤滑を示す式として、
新日鉄の安斎らが式を提出している(製鉄研究/19
87・No324)。(1) About powder inflow index As an expression showing the mold powder lubrication between the mold and the slab,
Nippon Steel's Ansai et al. Have submitted the ceremony (Steelmaking Research / 19
87, No. 324).
【0013】[0013]
【数3】 [Equation 3]
【0014】ここで、図14に示す如く、 η;パウダー粘性 ρ;パウダー密度 p0;圧力の境界条件 g;重量加速度 V;ストランド速度 U;鋳型振動速度 hi;パウダーフィルム諸元(流入路厚み) li;パウダーフィルム諸元(流入路長さ) σi;パウダーフィルム諸元(流入路勾配) ai;パウダーフィルム諸元(接片) Q;パウダー流入量As shown in FIG. 14, η; powder viscosity ρ; powder density p 0 ; pressure boundary condition g; weight acceleration V; strand velocity U; mold vibration velocity h i ; powder film specifications (inflow path) Thickness) l i ; Powder film specifications (inflow path length) σ i ; Powder film specifications (inflow path gradient) a i ; Powder film specifications (contact piece) Q; Powder inflow amount
【0015】式からモールド1ストローク振動する間
のパウダーの最大流入量と最小流入量の差を計算し、そ
れをパウダー原単位偏差(以下Dpと記す)と定義す
る。From the equation, the difference between the maximum inflow amount and the minimum inflow amount of the powder during one stroke of the mold is calculated, which is defined as the powder unit deviation (hereinafter referred to as Dp).
【0016】Dpのポジティブストリップ時間(Tp)
の影響をパウダーの1300℃における粘性をパラメー
ターにとり、整理すると図1が得られる。Positive strip time (Tp) of Dp
Fig. 1 is obtained by rearranging the influence of the above with the viscosity of the powder at 1300 ° C as a parameter.
【0017】ここで、Dpが大きいことはパウダー流入
が不均一であることを示す。図1より、パウダー粘性が
高いほど、Tpが短いほど不均一流入が起こりやすいこ
とが分かる。Here, a large Dp indicates that the powder inflow is non-uniform. From FIG. 1, it can be seen that the higher the powder viscosity and the shorter the Tp, the more likely the uneven flow will occur.
【0018】(2)許容パウダー原単位について Dpは小さいほどのぞましいが、縦割れ発生の有無を指
標にとった場合、適正範囲があるはずである。そこで、
Dpについて鋼側からどこまでが適正範囲であるかを検
証する。(2) Permissible powder basic unit It is desirable that Dp is smaller, but there is a proper range when the presence or absence of vertical cracks is used as an index. Therefore,
Verify that the Dp is within the proper range from the steel side.
【0019】i)割れに至る不均一凝固度の推定 縦割れはモールド内初期凝固過程において鋳片の不均一
部で発生する。それを簡単にモデル化すると、図2のよ
うになる。I) Estimation of the degree of non-uniform solidification leading to cracks Vertical cracks occur in the non-uniform portion of the slab during the initial solidification process in the mold. A simple model of it is as shown in FIG.
【0020】あるくびれをもった材料が両側から引張力
を受けることを仮定する。ここで、引張力は鋼の凝固過
程での熱応力とし、それがくびれ部に集中するとする。
熱応力、応力集中は各々、式で示される。It is assumed that a material with a waist is subjected to tensile forces from both sides. Here, the tensile force is a thermal stress in the solidification process of steel, and it is assumed that it is concentrated in the constricted part.
Thermal stress and stress concentration are each expressed by an equation.
【0021】[0021]
【数4】σ 0=α(T1−T0)E ・・・ ε0=α(T1−T0)[Formula 4] σ 0= Α (T1-T0) E ... ε0= Α (T1-T0)
【0022】[0022]
【数5】αε0=εMAX<εCRIT=0.5% ・・・[Equation 5] α ε 0 = ε MAX <ε CRIT = 0.5% ...
【0023】ここで、 α;形状係数 T1−T0;温度差(=200℃とした) E;縦弾性係数 εMAX,εCRIT;歪み くびれ部が破断しないための限界歪(εCRIT)は0.5
%とおいた。Here, α: shape factor T 1 -T 0 ; temperature difference (= 200 ° C.) E: longitudinal elastic modulus ε MAX , ε CRIT ; strain critical strain (ε CRIT ) for not breaking the constricted portion Is 0.5
%
【0024】以上より、破断に至る不均一凝固度(図2
にてb/aで示される)は図3から0.87と計算でき
る。From the above, the degree of non-uniform solidification leading to fracture (Fig. 2
B / a) can be calculated from FIG. 3 to be 0.87.
【0025】従って、不均一凝固が発生した場合、健全
部(図2のaの位置)に対し、凝固遅れ部(図2のbの
位置)が断面比で13%以上差が生じた場合、破断する
と推定できる。Therefore, when uneven solidification occurs, when the solidification delay portion (position b in FIG. 2) has a cross-sectional ratio difference of 13% or more with respect to the sound portion (position a in FIG. 2), It can be presumed to break.
【0026】ii)割れに至るエアギャップ量推定 次に、13%の凝固遅れが生じるため、部分的に鋳型/
溶鋼間の総括熱伝達が低下しなければならない。それを
エアギャップ量で評価する。Ii) Estimation of air gap amount leading to cracking Next, a solidification delay of 13% occurs, so that the mold / part is partially
The overall heat transfer between the molten steels must be reduced. It is evaluated by the air gap amount.
【0027】溶鋼から鋳型への熱伝達は、式によっ
て示される。The heat transfer from the molten steel to the mold is given by the equation.
【0028】[0028]
【数6】Q=U(TL−TW) ・・・[Equation 6] Q = U (T L −T W ) ...
【0029】[0029]
【数7】 U=(dc/λc+dp/λp+1/hgap+dm/λm+1/hw)-1 ・ ・・## EQU00007 ## U = (dc / .lamda.c + dp / .lamda.p + 1 / h gap + dm / .lamda.m + 1 / hw) -1 ...
【0030】ここで、 Q;伝熱量 TL−TW;温度 U;総括熱伝達係数 dc/λc等;熱抵抗 dc/λc;鋳片の熱抵抗 dc/λp;パウダーの熱抵抗 1/hgap;エアギャップの熱抵抗 dm/λm;モールドの熱抵抗 1/hw;冷却水の熱抵抗[0030] Here, Q; heat transfer amount T L -T W; Temperature U; overall heat transfer coefficient dc / [lambda] c, etc .; heat resistance dc / [lambda] c; slab thermal resistance dc / .lambda.p; thermal resistance of powder 1 / h gap ; thermal resistance of air gap dm / λm; thermal resistance of mold 1 / hw; thermal resistance of cooling water
【0031】、式より、全くエアギャップがない場
合から、凝固遅れ部にエアギャップが生じたことによる
総括熱伝達量の低下を計算すると、予想されるエアギャ
ップ量は図4より約0.015mmと推定される。From the equation, from the case where there is no air gap at all, calculating the decrease in the overall heat transfer amount due to the air gap in the solidification delay portion, the expected air gap amount is about 0.015 mm from FIG. It is estimated to be.
【0032】iii)割れに至るDpの推定 パウダーの流入不均一が発生したときに(パウダーが流
入しないあるいはしにくくなった際)そこにエアギャッ
プが生成すると仮定する。その結果、ii)、iii)
に示す理由により、初期凝固鋳片に不均一凝固が発生
し、割れに至るとする。そのときのDpは式で与えら
れる。Iii) Estimation of Dp leading to cracks It is assumed that an air gap is generated when the inflow of the powder becomes uneven (when the powder does not flow or when it becomes difficult). As a result, ii), iii)
For the reason shown in (1), the initially solidified slab is unevenly solidified and cracks. Dp at that time is given by an equation.
【0033】[0033]
【数8】 18.7cm3/s/mm×0.015mm=0.28cm3/s ・・・[Equation 8] 18.7cm 3 /s/mm×0.015mm=0.28cm 3 / s ···
【0034】ここで、 18.7c m3/s/mm;実操業データより算出(パ
ウダー原単位)Here, 18.7c m3/ S / mm; calculated from actual operation data
Uder basic unit)
【0035】〔C〕<8×10-2%の鋼ではDp>0.
28cm3/sで割れに至ると考えられる。[C] <8 × 10 -2 % steel has Dp> 0.
It is considered that cracking occurs at 28 cm 3 / s.
【0036】従って、0.28cm3/sという数値は
限界パウダー原単位偏差(DpCRIT)と定義される。Therefore, the numerical value of 0.28 cm 3 / s is defined as the limit unit deviation of powder (Dp CRIT ).
【0037】[0037]
【実施例】上記の結果を実操業に適用した例を3例ほど
次の(1)、(2)、(3)に示す。EXAMPLE Three examples in which the above results are applied to actual operation are shown in the following (1), (2) and (3).
【0038】 (1)第1表、図5、図6 条件(図中矢印) A B ポジティブストリップ時間 0.25 0.31(秒) ネガティブストリップ率 71 64 (%) 振動数 155 130 (cpm) 振動ストローク 6 6 (mm)(1) Table 1, FIG. 5 and FIG. 6 Conditions (arrow in the figure) A B Positive strip time 0.25 0.31 (seconds) Negative strip rate 71 64 (%) Frequency 155 130 (cpm) Vibration stroke 6 6 (mm)
【0039】 (2)第2表、図7、図8 条件(図中矢印) A B ポジティブストリップ時間 0.25 0.29(秒) ネガティブストリップ率 71 74 (%) 振動数 155 130 (cpm) 振動ストローク 6 8 (mm)(2) Table 2, FIG. 7, FIG. 8 Conditions (arrow in the figure) AB Positive strip time 0.25 0.29 (seconds) Negative strip rate 71 74 (%) Frequency 155 130 (cpm) Vibration stroke 68 (mm)
【0040】 (3)第3表、図9、図10 条件(図中矢印) A B ポジティブストリップ時間 0.30 0.41(秒) ネガティブストリップ率 70 70 (%) 振動数 130 95 (cpm) 振動ストローク 6 8 (mm)(3) Table 3, FIG. 9, FIG. 10 Conditions (arrow in the figure) A B Positive strip time 0.30 0.41 (seconds) Negative strip rate 70 70 (%) Frequency 130 95 (cpm) Vibration stroke 68 (mm)
【0041】DpCRITで縦割れ疵の発生状況が整理でき
ることがわかる。It can be seen that the occurrence of vertical cracks can be sorted out with Dp CRIT .
【0042】振動ストロークを大きくしポジティブスト
リップ時間を長くすることにより、パウダー原単位が向
上することが従来より報告されており、その結果として
縦割れ疵は低減すると一般に整理されている。It has been reported so far that the powder basic unit is improved by increasing the vibration stroke and lengthening the positive strip time, and as a result, it is generally arranged that vertical cracks are reduced.
【0043】ここで、特に注目すべき点は、(1)、
(2)、(3)に示すように、ネガティブストリップ率
をほぼ同一とし、振動ストロークを振って試験した結果
では、上記のような縦割れ改善効果は認められない。む
しろ、増加傾向が認められる。Here, the points to be particularly noted are (1),
As shown in (2) and (3), the negative strip ratio was made almost the same, and the results of the test conducted by shaking the vibration stroke did not show the above-mentioned effect of improving vertical cracking. Rather, there is an increasing trend.
【0044】確かにロングストローク化はポジティブス
トリップ時間を長くするが、それと同時にDpが増加す
るため(Dp曲線が上方へシフトするため)、結果的に
縦割れを改善するに至らなかったと判断でき、本発明で
以上の機構が明確に説明できる。Although it is true that the longer stroke lengthens the positive strip time, at the same time, since Dp increases (Dp curve shifts upward), it can be judged that the vertical crack was not improved as a result. The above mechanism can be clearly explained in the present invention.
【0045】鋼の連続鋳造においては、使用するパウダ
ー粘性に応じて鋳型振動条件を設定することが重要であ
り、そのポイントはパウダー原単位偏差(Dp)という
パウダー不均一流入性指標によってコントロールするこ
とにある(図6、8、10の縦割れ指数とは、縦割れ発
生スラブ枚数比率を示す)。In continuous casting of steel, it is important to set mold vibration conditions according to the powder viscosity to be used, and the point should be controlled by the powder non-uniformity inflow index, which is the powder unit deviation (Dp). (The vertical crack index in FIGS. 6, 8 and 10 indicates the ratio of the number of vertical crack occurrence slabs).
【0046】パウダー高凝固点化の影響 パウダーの凝固温度を高温化することにより、縦割れが
抑制できるという報告があるが、それも本発明で説明で
きる。Effect of Higher Freezing Point of Powder It has been reported that vertical cracking can be suppressed by raising the solidification temperature of the powder, which can be explained by the present invention.
【0047】図11、図12に示すようにパウダーの高
凝固温度化は鋳型/鋳片間のパウダー層内固相率を増加
させる役割をもつ。As shown in FIGS. 11 and 12, increasing the solidification temperature of the powder has a role of increasing the solid phase ratio in the powder layer between the mold and the slab.
【0048】固相率増加により、緩冷却効果向上が一般
的に言われているが、Dpから検証すると例えば図13
のようになる(図11、図12でh’=0.9hとす
る)。It is generally said that the slow cooling effect is improved by increasing the solid fraction, but when verified from Dp, for example, FIG.
(H '= 0.9h in FIGS. 11 and 12).
【0049】同じ、Tp値で見たときにDpは低めにシ
フトし、実質上、安定域が拡大する。従って、同じ振動
条件であっても縦割れは抑制される。At the same Tp value, Dp shifts to a lower level, and the stable range is substantially expanded. Therefore, vertical cracking is suppressed even under the same vibration condition.
【0050】また、パウダーに凝固温度を付与すること
によって、部分的な過剰流入を抑制することが可能であ
る。低凝固温度であることにより、パウダーは鋳型と鋳
片の間を液体潤滑し、鋳型短片あるいは短片近傍にて過
剰流入しやすくなる(該当部は凝固収縮が大きく鋳型/
鋳片隙間ができやすい)傾向があり、その結果、鋳片縦
割れ発生頻度の高い鋳型広面側の潤滑が不足する、ある
いは強冷却による初期凝固鋳片の不均一度を助長すると
考えられるからである。Further, by giving the powder a solidification temperature, it is possible to suppress a partial excess inflow. Due to the low solidification temperature, the powder is liquid-lubricated between the mold and the slab, making it easy for the powder to excessively flow into the mold short piece or in the vicinity of the short piece.
It is considered that there is a tendency for slab gaps to form easily, and as a result, insufficient lubrication on the wide surface side of the mold, where slab vertical cracking occurs frequently, or to promote non-uniformity of the initially solidified slab due to strong cooling. is there.
【0051】包晶領域鋼種の考え方 (2)―i)では、初期凝固鋳片の破断を発生させる外
力は熱応力のみを考慮したが包晶領域鋼種(〔C〕=8
〜18×10-2%)ではそれに相変態時に発生する力も
加わる。In the concept (2) -i) of the peritectic zone steel type, only the thermal stress was taken into consideration as the external force for causing the fracture of the initially solidified slab, but the peritectic zone steel type ([C] = 8)
-18 × 10 -2 %), the force generated during the phase transformation is added to it.
【0052】その領域では、(2)―i)〜iii)よ
り限界パウダー原単位(DpCRIT)は下方へシフトする
ため、縦割れ発生危険領域が拡大することになる。In that region, the critical powder basic unit (Dp CRIT ) shifts downward from (2) -i) to iii), so that the vertical crack occurrence risk region expands.
【0053】相変態歪(δ―γ変態)の見積りは明確に
なっていないが、経験的に包晶領域鋼種ではDpCRIT=
0.15〜0.28で変化する。Although the estimation of the phase transformation strain (δ-γ transformation) has not been clarified, empirically, Dp CRIT =
It varies from 0.15 to 0.28.
【0054】[0054]
【表1】 [Table 1]
【0055】[0055]
【表2】 [Table 2]
【0056】[0056]
【表3】 [Table 3]
【0057】[0057]
【発明の効果】本発明により鋳型/鋳片間にモールドパ
ウダーを均一に流入させるための鋳型振動条件を定める
手段が得られた。EFFECTS OF THE INVENTION The present invention has provided means for determining the mold vibration conditions for uniformly injecting mold powder between a mold and a slab.
【図1】Dpとポジティブストリップ時間との関係図。FIG. 1 is a relationship diagram between Dp and positive strip time.
【図2】縦割れが鋳片の不均一部で発生することをモデ
ル化した説明図。FIG. 2 is an explanatory diagram that models that vertical cracks occur in a non-uniform portion of a slab.
【図3】ε0とb/aとの関係図。FIG. 3 is a relationship diagram between ε 0 and b / a.
【図4】総括熱伝達係数とエアギャップ量との関係図。FIG. 4 is a diagram showing the relationship between the overall heat transfer coefficient and the air gap amount.
【図5】Dpとポジティブストリップ時間との関係図。FIG. 5 is a relationship diagram between Dp and positive strip time.
【図6】縦割れ指数の変化を示す図。FIG. 6 is a diagram showing changes in vertical cracking index.
【図7】Dpとポジティブストリップ時間との関係図。FIG. 7 is a relationship diagram between Dp and positive strip time.
【図8】縦割れ指数の変化を示す図。FIG. 8 is a diagram showing changes in vertical cracking index.
【図9】Dpとポジティブストリップ時間との関係図。FIG. 9 is a relationship diagram between Dp and positive strip time.
【図10】縦割れ指数の変化を示す図。FIG. 10 is a view showing changes in vertical cracking index.
【図11】低凝固温度パウダー使用時の説明図。FIG. 11 is an explanatory diagram when a low freezing temperature powder is used.
【図12】高凝固温度パウダー使用時の説明図。FIG. 12 is an explanatory view when using a powder having a high solidification temperature.
【図13】Dpとポジティブストリップ時間の関係図。FIG. 13 is a relationship diagram between Dp and positive strip time.
【図14】モールドパウダー潤滑を説明する図。FIG. 14 is a diagram illustrating mold powder lubrication.
Claims (1)
se及び凝固温度が1000〜1300℃のモールドパ
ウダーを使用する際、鋳型の振動及び、または振動スト
ロークをパウダー原単位偏差DPを指標にとり、以下に
示す範囲にそれを調整することを特徴とする鋼の連続鋳
造方法。 パウダー原単位偏差DP;モールド1ストローク中にモ
ールドパウダーが鋳型と鋳片間へ流入する最大値と最少
値の差。 【数1】 〔C〕<8×10-2% Dp≦0.28 8≦〔C〕≦18×10-2% Dp≦0.15〜0.281. The viscosity at 1300 ° C. is 2 to 8 poi.
When using a mold powder having a se and a solidification temperature of 1000 to 1300 ° C., the steel is characterized by adjusting the vibration and / or the vibration stroke of the mold with the powder unit deviation DP as an index, and adjusting it within the following range. Continuous casting method. Powder unit deviation DP: The difference between the maximum value and the minimum value of the mold powder flowing between the mold and the slab during one stroke of the mold. [C] <8 × 10 −2 % Dp ≦ 0.28 8 ≦ [C] ≦ 18 × 10 −2 % Dp ≦ 0.15 to 0.28
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05175834A JP3128676B2 (en) | 1993-06-24 | 1993-06-24 | Continuous casting of steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05175834A JP3128676B2 (en) | 1993-06-24 | 1993-06-24 | Continuous casting of steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH079104A true JPH079104A (en) | 1995-01-13 |
JP3128676B2 JP3128676B2 (en) | 2001-01-29 |
Family
ID=16003037
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05175834A Expired - Fee Related JP3128676B2 (en) | 1993-06-24 | 1993-06-24 | Continuous casting of steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3128676B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001205405A (en) * | 2000-01-28 | 2001-07-31 | Sumitomo Metal Ind Ltd | Initial solidification control method for steel |
JP2003094155A (en) * | 2001-09-21 | 2003-04-02 | Kawasaki Steel Corp | Continuous casting method for steel |
-
1993
- 1993-06-24 JP JP05175834A patent/JP3128676B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001205405A (en) * | 2000-01-28 | 2001-07-31 | Sumitomo Metal Ind Ltd | Initial solidification control method for steel |
JP2003094155A (en) * | 2001-09-21 | 2003-04-02 | Kawasaki Steel Corp | Continuous casting method for steel |
Also Published As
Publication number | Publication date |
---|---|
JP3128676B2 (en) | 2001-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007533459A (en) | Nonferrous metal and light metal belt casting method and apparatus therefor | |
JPH079104A (en) | Method for continuously casting steel | |
JP6947737B2 (en) | Continuous steel casting method | |
JP6365604B2 (en) | Steel continuous casting method | |
CN109689247B (en) | Method for continuously casting steel | |
JP2005211936A (en) | Method for continuously casting steel slab | |
JPH09276994A (en) | Mold for continuous casting | |
JP2019171435A (en) | Method of continuous casting | |
JPS61162256A (en) | Improvement of surface characteristic of continuous casting steel ingot | |
JPS6123559A (en) | Oscillating method of mold for continuous casting of steel | |
JP4654554B2 (en) | Steel continuous casting method | |
JPH1080752A (en) | Mold for continuous casting | |
JP5652362B2 (en) | Steel continuous casting method | |
JP3342774B2 (en) | Mold powder for continuous casting | |
JP2018149602A (en) | Method for continuously casting steel | |
JPH04178240A (en) | Continuous casting method for stainless steel | |
JPH0631418A (en) | Continuous casting method | |
JP2006205239A (en) | Method for continuous casting | |
JPH11179507A (en) | Method for oscillating mold for continuous casting | |
JPH09277001A (en) | Method for continuously casting stainless steel cast slab | |
JPH08309498A (en) | Continuous casting method | |
JPH07214266A (en) | Method for continuously casting steel | |
JPH0857584A (en) | Production of stainless steel cast slab having good surface quality and workability | |
JPH08187562A (en) | Method for continuously casting steel | |
JP2016168610A (en) | Steel continuous casting method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20001018 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071117 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081117 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081117 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091117 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101117 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101117 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111117 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111117 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121117 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |