[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2005211936A - Method for continuously casting steel slab - Google Patents

Method for continuously casting steel slab Download PDF

Info

Publication number
JP2005211936A
JP2005211936A JP2004021792A JP2004021792A JP2005211936A JP 2005211936 A JP2005211936 A JP 2005211936A JP 2004021792 A JP2004021792 A JP 2004021792A JP 2004021792 A JP2004021792 A JP 2004021792A JP 2005211936 A JP2005211936 A JP 2005211936A
Authority
JP
Japan
Prior art keywords
mold
taper
steel
short side
long side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004021792A
Other languages
Japanese (ja)
Other versions
JP4337565B2 (en
Inventor
Seiji Itoyama
誓司 糸山
Makoto Suzuki
真 鈴木
Yoshihisa Kitano
嘉久 北野
Hirohide Uehara
博英 上原
Takeshi Matsuzaki
健 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004021792A priority Critical patent/JP4337565B2/en
Publication of JP2005211936A publication Critical patent/JP2005211936A/en
Application granted granted Critical
Publication of JP4337565B2 publication Critical patent/JP4337565B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for continuously casting a steel slab which can effectively prevent product defects and surface cracks developing when low carbon steel is continuously cast at high speed, and further prevent longitudinal cracks streak-like cracks and the development of the streak arising regardless of the casting speed in the steel which shows peritectic solidification transformation or δ-γ solidification. <P>SOLUTION: The ratio β<SB>n</SB>/β<SB>w</SB>of a narrow wall side taper β<SB>n</SB>and a wide wall side taper β<SB>w</SB>serving as the setting condition of a combined mold is made to be in the range of ≥1 to ≤6. The above wide wall taper β<SB>w</SB>and the narrow wall taper β<SB>n</SB>take values (%/m) calculated with the following formulas (1), (2), respectively, and their ranges are β<SB>w</SB>: 0.2 to 0.9 %/m, and β<SB>n</SB>: 0.8 to 1.3 %/m. The formulas are β<SB>w</SB>=ä(T<SB>u</SB>-T<SB>d</SB>)/T<SB>u</SB>/L}×100 (%)...(1), and β<SB>n</SB>=ä(W<SB>u</SB>-W<SB>d</SB>)/W<SB>u</SB>/L}×100 (%)...(2), wherein, T<SB>u</SB>, T<SB>d</SB>: the upper and the lower end widths (mm) at the narrow wall side of the mold, respectively, W<SB>u</SB>, W<SB>d</SB>: the upper and the lower end widths (mm) at the wide wall sides in the mold, respectively, and L: the mold length (m). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、鋼のスラブ連続鋳造方法に係り、特に鋳造速度や鋼種によらず縦割れやストリークを防止し得る連続鋳造方法に関する。   The present invention relates to a steel slab continuous casting method, and more particularly to a continuous casting method capable of preventing vertical cracking and streak regardless of casting speed and steel type.

鋼を連続鋳造するにあたっては、生産性の向上のためにいわゆる高速鋳造が指向されている。近年の種々の技術開発によって、最大鋳造速度はスラブ厚によって異なるものの、スラブ厚250mm程度では3.5m/min、スラブ厚90mm程度では8m/minが達成されている。   In continuous casting of steel, so-called high speed casting is directed to improve productivity. Although the maximum casting speed varies depending on the slab thickness due to various technological developments in recent years, 3.5 m / min is achieved at a slab thickness of about 250 mm, and 8 m / min is achieved at a slab thickness of about 90 mm.

しかしながら、鋳造速度の増大に伴い、特に鋳造速度が2m/min以上ときわめて高速になるのに伴い、鋳型内湯面変動が激しくなり、それに伴ってモールドフラックスが溶鋼中に巻き込まれ、製品欠陥の増加を招くという問題が発生しやすくなってきており、また、鋳型抜熱量の増大とそれに起因した不均一凝固起因の表面割れが発生しやすくなってきている。一方、中炭素鋼(C:0.08〜0.15mass%)に代表される包晶凝固変態する鋼やδ−γ凝固する鋼は、不均一凝固起因の表面縦割れが発生しやすいという特徴がある。甚だしい場合には、7〜10mのスラブ全長に亘り直線的な窪み(ストリーク)や割れを伴うストリーク状割れが発生する。   However, as the casting speed increases, especially as the casting speed becomes extremely high at 2 m / min or more, the molten metal surface fluctuation in the mold becomes severe, and accordingly, the mold flux is caught in the molten steel, resulting in an increase in product defects. In addition, an increase in the amount of heat extracted from the mold and surface cracks due to non-uniform solidification due to the increase in heat removal from the mold are likely to occur. On the other hand, steel that undergoes peritectic solidification transformation and steel that undergoes δ-γ solidification, such as medium carbon steel (C: 0.08 to 0.15 mass%), is prone to surface vertical cracks due to non-uniform solidification. There is. In severe cases, streak-like cracks accompanied by linear depressions (streaks) and cracks occur over the entire length of the slab of 7 to 10 m.

これらの問題を解決するため、一般に(1)モールドフラックスの粘度を適正な高粘度とすること、あるいは(2)モールドフラックスの結晶化温度を上昇させるという方法がとられているが、モールドフラックスの高粘度化や結晶化温度の高温度化に伴い、潤滑不良による拘束性ブレークアウトの発生頻度が増加し、安定操業が困難になったり、逆にストリークが発生しやすくなったりするため、生産性の阻害や鋳片手入れを余儀なくされている。このような問題に対して、特許文献1には、鋳型の長辺面の傾斜角度と鋳型振動ストロークとの関係および鋳型の最大上昇速度と鋳造速度との関係を所定の範囲に収めることとする手段が提案され、これによって鋳型潤滑が安定し、かつ表面割れのない鋳片を安定して製造することができるとされている。   In order to solve these problems, generally, (1) the viscosity of the mold flux is set to an appropriate high viscosity, or (2) the crystallization temperature of the mold flux is increased. As the viscosity increases and the crystallization temperature increases, the frequency of constraining breakouts due to poor lubrication increases, making stable operation difficult, and conversely, streaks tend to occur. Is obstructed and slab care is forced. With respect to such a problem, Patent Document 1 discloses that the relationship between the inclination angle of the long side surface of the mold and the mold vibration stroke and the relationship between the maximum rising speed of the mold and the casting speed are within a predetermined range. Means have been proposed, and it is said that the mold lubrication is stable and a slab free from surface cracks can be produced stably.

特開2003−04155号公報Japanese Patent Laid-Open No. 2003-04155

しかしながら、特許文献1記載の手段では、鋳造対象鋼種が低炭素鋼である場合には効果が認められるものの、鋳造対象鋼種が、たとえば極低炭素鋼、中炭素鋼、あるいは高炭素鋼となり、かつ鋳造速度が2m/minを超える高速鋳造領域では必ずしも安定操業ができなくなるという問題があった。また、不均一凝固が顕著な中炭素鋼(普通鋼であると種々の合金成分を含むハイテン鋼であるとを問わない)やステンレス鋼で、鋳造速度が2m/min以下と比較的小さい条件で発生する縦割れ、ストリーク状割れ、ストリーク等の表面割れに対する対策はこれまでのところ開示されていない。   However, in the means described in Patent Document 1, although the effect is recognized when the steel type to be cast is a low carbon steel, the steel type to be cast is, for example, an extremely low carbon steel, a medium carbon steel, or a high carbon steel, and There is a problem that stable operation cannot always be performed in a high-speed casting region where the casting speed exceeds 2 m / min. In addition, medium carbon steel with remarkable non-uniform solidification (regardless of whether it is plain steel or high-tensile steel containing various alloy components) or stainless steel, the casting speed is relatively low at 2 m / min or less. No measures have been disclosed so far for countermeasures against surface cracks such as vertical cracks, streak-like cracks, and streaks.

本発明は、低炭素鋼を高速で連続鋳造する際に生ずる製品欠陥や表面割れ、また、包晶凝固変態する鋼やδ−γ凝固する鋼で鋳造速度によらず生ずる縦割れ、ストリーク状割れ、ストリークの発生を効果的に防止可能なスラブ連続鋳造方法を提案することを目的とし、広く鋼種、鋳造速度に無関係に連続鋳造においてこれら欠陥の発生を防止することを課題とする。   The present invention relates to product defects and surface cracks that occur during continuous casting of low carbon steel at high speed, and vertical cracks and streak cracks that occur regardless of casting speed in steels that undergo peritectic solidification transformation and steels that undergo δ-γ solidification. An object of the present invention is to propose a slab continuous casting method capable of effectively preventing the occurrence of streaks, and to prevent the occurrence of these defects in continuous casting regardless of the steel type and casting speed.

本発明に係る連続鋳造方法は、4面の鋳型板により構成される鋼のスラブ連続鋳造用組み鋳型を用いて鋳造する際に、前記組み鋳型の設定条件を短辺側テーパーβと長辺側テーパーβの比β/βを1以上6以下の範囲とするものである。ここにおいて、上記長辺テーパーβ、短辺テーパーβnはそれぞれ下記の(1)、(2)式で計算される値(%/m)であり、その範囲は、β:0.2%/m以上0.9%/m以下、βn:0.8%/m以上1.3%/m以下とする。
βw={(T−T)/T/L}×100(%)・・・(1)
βn={(W−W)/W}/L}×100(%)・・・(2)
ここにおいて、
,T:鋳型の短辺側の上端、下端幅(mm)、
,W:鋳型の長辺側の上端、下端幅(mm)、
L:鋳型長さ(m)
である。
In the continuous casting method according to the present invention, when casting is performed using a steel slab continuous casting assembled mold composed of four-sided mold plates, the setting conditions of the assembled mold are set to a short side taper β n and a long side. The ratio β n / β w of the side taper β w is in the range of 1 to 6. Here, the long side taper β w and the short side taper β n are values (% / m) calculated by the following formulas (1) and (2), respectively, and their ranges are β w : 0.2. % / M to 0.9% / m and β n : 0.8% / m to 1.3% / m.
β w = {(T u −T d ) / T u / L} × 100 (%) (1)
β n = {(W u −W d ) / W u } / L} × 100 (%) (2)
put it here,
T u , T d : upper end on the short side of the mold, lower end width (mm),
W u , W d : upper end on the long side of the mold, lower end width (mm),
L: Mold length (m)
It is.

上記発明において、長辺側テーパーβを所定値に設定後、短辺側テーパーβを調整するのが操業上望ましい。 In the above-described invention, it is desirable in terms of operation to adjust the short side taper β n after setting the long side taper β w to a predetermined value.

このように、本発明は連続鋳造用鋳型のパラメータβ、βおよびこれらの比β/βについて上記のように定めて連続鋳造を行なうものであるが、そこに至る主な知見について簡単に説明すると以下のとおりである。 As described above, the present invention performs continuous casting by determining the parameters β n and β w of the continuous casting mold and the ratio β n / β w thereof as described above. The following is a brief description.

短辺側テーパーβや長辺側テーパーβを適正に設定することは、バルジングやブレークアウトを防止しながら健全な鋳片を得るための基本条件であり、従来から経験的に、短辺側テーパーβを0.7〜1.3%/m、長辺側テーパーβを0〜1.0%/mとして操業することが行われている(鉄と鋼、67巻、1981年、p.93、特開平15−94155号公報等参照)。 Proper setting of the short side taper β n and the long side taper β w is a basic condition for obtaining a sound slab while preventing bulging and breakout. It has been practiced to operate with a side taper β n of 0.7 to 1.3% / m and a long side taper β w of 0 to 1.0% / m (iron and steel, Vol. 67, 1981). , P. 93, Japanese Patent Laid-Open No. 15-94155, etc.).

従来、これらの短辺側テーパーおよび長辺側テーパーは、基本的には上記範囲内で独立に調整され、鋼種等によって定められる鋳造条件毎にそれぞれ最適と思われる値を選択してきた。しかし、長辺シェルと短辺シェルは互いに組み合わされ連続体としての鋳片が構成されているため、連続鋳造鋳型内では溶鋼、凝固シェルを含む鋼物質のマスバランスを考慮しないと、短辺側テーパーβと長辺側テーパーβが個々には適正範囲であっても、鋳片表面割れ、鋳片形状不良、湯面変動増加等の問題が生じる場合があり、このマスバランスに短辺側テーパーβnと長辺側テーパーβの比が関係するのである。 Conventionally, these short side taper and long side taper are basically adjusted independently within the above-mentioned range, and values that are considered to be optimal for each casting condition determined by the steel type and the like have been selected. However, since the long side shell and the short side shell are combined with each other to form a slab as a continuous body, in the continuous casting mold, if the mass balance of the steel material including molten steel and solidified shell is not considered, the short side side Even if the taper β n and the long side taper β w are individually within the proper range, problems such as slab surface cracks, slab shape defects and increased fluctuations in the molten metal surface may occur. The ratio of the side taper β n and the long side taper β w is related.

具体的に説明すると以下のとおりとなる。長辺側テーパーβが短辺側テーパーβに対して相対的に大き過ぎる場合、鋳型内において鋼物質がマスバランスを保つため短辺シェルが幅方向に張り出そうとするが、短辺シェルが十分に厚くて座屈しない場合、その反力として長辺シェルに圧縮力が発生し、長辺シェルが幅方向に座屈する結果を招く。そのため、不均一凝固が顕著な中炭素鋼(普通鋼であるかハイテン鋼を問わない)やステンレス鋼では、鋳造速度が2m/min以下と比較的小さい条件でも、ストリーク状割れやストリークが発生することとなる。このような欠陥は幅方向にほぼ等間隔に発生し、あるいは、鋳型幅方向中心線に沿うなど特定場所に発生するという特徴がある。 Specifically, it is as follows. If the long side taper β w is too large relative to the short side taper β n , the short side shell tends to protrude in the width direction in order to keep the mass balance of the steel material in the mold. When the shell is sufficiently thick and does not buckle, a compressive force is generated in the long-side shell as a reaction force, resulting in the long-side shell buckling in the width direction. For this reason, medium carbon steel (regardless of ordinary steel or high-tensile steel) or stainless steel with remarkable non-uniform solidification causes streak-like cracks and streaks even under relatively low casting speeds of 2 m / min or less. It will be. Such defects are characterized by occurring at almost equal intervals in the width direction, or at specific locations such as along the center line in the mold width direction.

この問題は、短辺側に張り出すシェルを吸収するに足りるだけ短辺テーパーが緩やかであると、短片シェルが鋳型側に膨らむスペースが生じるため、長辺側シェルヘの反力が作用しなくなり、あるいは軽減され、その結果、短辺、長辺シェルに不必要な圧縮力が作用しなくなり、シェルの座屈が防止され、それによって解決される。同様の現象は、短辺テーパーが相対的に大き過ぎる場合にも、発生することとなる。このように、βが大きいときはβを相対的に小さく、一方、βが大きいときはβを相対的に小さく設定することにより、本発明の初期の目的を達成することができる。上記の短辺側テーパーβと長辺側テーパーβの比β/β及び短辺側テーパーβと長辺側テーパーβの取り得る範囲の数値は上記考察に基づき本発明の目的の達成できる範囲を具体的に規定したものである。 This problem is that if the short side taper is gentle enough to absorb the shell protruding to the short side, there will be a space where the short shell swells to the mold side, so the reaction force to the long side shell will not work, Alternatively, as a result, unnecessary compression force does not act on the short side and long side shells, and the buckling of the shell is prevented and thereby solved. A similar phenomenon occurs even when the short side taper is too large. Thus, by setting β w relatively small when β n is large, while β n is relatively small when β w is large, the initial object of the present invention can be achieved. . Figures possible range of the short side taper beta n and the long side taper beta w ratio β n / β w and the short side taper beta n and the long side taper beta w is the present invention based on the above considerations It specifically defines the range in which the objective can be achieved.

本発明により鋳型の長辺側テーパーと短辺側テーパーとの関係が最適値に設定されるので、連続鋳造中の湯面変動が少なくなり、表面割れの発生が抑制される。それにより低炭素鋼では鋳造速度が2.0m/min超の高速連続鋳造となっても、低炭素鋼を高速で連続鋳造する際に生ずる製品欠陥や表面割れを防止することができ、また、包晶凝固変態する鋼やδ−γ凝固する鋼で鋳造速度によらず生ずる縦割れ、ストリーク状割れ、ストリークの発生を効果的に防止することができる。その結果、幅広い鋼種にわたって欠陥のない、すなわち手入れを要しないスラブを安定して得ることができ、操業の安定と生産性の向上が達成される。   According to the present invention, the relationship between the long side taper and the short side taper of the mold is set to an optimum value, so that the molten metal surface fluctuation during continuous casting is reduced, and the occurrence of surface cracks is suppressed. As a result, even when low-carbon steel is cast at a high speed of over 2.0 m / min, product defects and surface cracks that occur when continuously casting low-carbon steel at a high speed can be prevented. It is possible to effectively prevent the occurrence of vertical cracks, streak-like cracks, and streaks that occur regardless of the casting speed in steel that undergoes peritectic solidification transformation or steel that undergoes δ-γ solidification. As a result, it is possible to stably obtain a slab having no defects over a wide range of steel types, that is, requiring no maintenance, thereby achieving stable operation and improved productivity.

本発明は、4面の鋳型板により構成される鋼のスラブ連続鋳造用組み鋳型を用いる連続鋳造方法が対象となる。鋼の連続鋳造用の鋳型は、一般に図1に示すように、水冷銅板によって構成される一対の短辺用鋳型板1A,1Bに対して一対の長辺用鋳型板2A,2Bを組み合わせることによって構成される。これら4面の鋳型板(1A,1B,2A,2B)により構成される鋼のスラブ連続鋳造用組み鋳型は、鋼の連続鋳造の際、凝固シェルの熱収縮量を補償して凝固シェルが鋳型から大きく離れないようにするために、前記長辺用鋳型板および短辺用鋳型板を下方に至るに従い鋳型断面積が小さくなくようにテーパーが設けられている。   The present invention is directed to a continuous casting method using a steel slab continuous casting assembled mold composed of four-sided mold plates. As shown in FIG. 1, a continuous casting mold for steel is generally obtained by combining a pair of long-side mold plates 2A and 2B with a pair of short-side mold plates 1A and 1B constituted by water-cooled copper plates. Composed. The steel slab continuous casting assembled mold composed of these four-sided mold plates (1A, 1B, 2A, 2B) compensates for the amount of thermal shrinkage of the solidified shell during the continuous casting of steel, and the solidified shell becomes the mold. In order to prevent the mold from being greatly separated from the mold, a taper is provided so that the mold cross-sectional area does not become smaller as the long side mold plate and the short side mold plate are moved downward.

図1に従えば、短辺用鋳型板1が有する下向き先細りのテーパーによって長辺側テーパーβが決定され、一方、短辺側テーパーβは短辺用鋳型板1のあおり角度によって独自に決定される。このうち短辺側テーパーは図2に示されるように鋳型上端5と鋳型下端6との距離をL、短辺用鋳型板1(1A,1B)が長辺用鋳型板2に接する部分の長辺用鋳型の上端側寸法をW、鋳型下端側寸法をWとしたとき、
βn={(W−W)/W}/L}×100(%/m)・・・(2)
によって表される。同様にして図3を参照すれば、短辺側テーパーは
βw={(T−T)/T/L}×100(%/m)・・・(1)
と表される。本発明ではβとβにつき、以下に示す関係を設定する。
According to FIG. 1, the long side taper β w is determined by the downward taper taper of the short side mold plate 1, while the short side taper β n is uniquely determined by the tilt angle of the short side mold plate 1. It is determined. Among these, as shown in FIG. 2, the short side taper is the distance between the mold upper end 5 and the mold lower end 6 being L, and the length of the portion where the short side mold plate 1 (1A, 1B) is in contact with the long side mold plate 2 When the upper side dimension of the side mold is W u and the lower side dimension of the mold is W d ,
β n = {(W u −W d ) / W u } / L} × 100 (% / m) (2)
Represented by Similarly, referring to FIG. 3, the short side taper is β w = {(T u −T d ) / T u / L} × 100 (% / m) (1)
It is expressed. In the present invention, the following relationship is set for β n and β w .

短辺側テーパーβと長辺側テーパーβの比、β/β:1〜6
鋳造速度が大になるに伴い、鋳造内で形成されるシェル厚が薄くなり、特に鋳造速度が2m/min以上の場合には、長辺シェルにおいては鋳型内でのバルジング傾向が増大し潤滑不良を招くため、鋳型とシェル間に流入するモールドフラックスの量を適正にすることが必要になる。そのためには、短辺側テーパーβと長辺側テーパーβの間にβ/β≧1、換言すればβ≧βの関係を維持する必要がある。
Ratio of short side taper β n and long side taper β w , β n / β w : 1-6
As the casting speed increases, the thickness of the shell formed in the casting becomes thinner. Especially when the casting speed is 2 m / min or more, the bulging tendency in the mold increases in the long side shell, resulting in poor lubrication. Therefore, it is necessary to make the amount of mold flux flowing between the mold and the shell appropriate. For that purpose, it is necessary to maintain the relationship of β n / β w ≧ 1, in other words, β n ≧ β w , between the short side taper β n and the long side taper β w .

また、上記短辺側テーパーβと長辺側テーパーβの比β/βが大きすぎると、短辺用鋳型板で生ずる抜熱量と長辺用鋳型板で生ずる抜熱量が不均一になり過ぎ、鋳型を出た後に行なわれる二次冷却時に鋳片断面形状が不均一になるおそれがある。またコーナー縦割れが発生する傾向もある。そのため短辺側テーパーβと長辺側テーパーβの比β/βは6以下に制限する必要がある。 In addition, if the ratio β n / β w of the short side taper β n and the long side taper β w is too large, the heat removal amount generated in the short side mold plate and the heat extraction amount generated in the long side mold plate are not uniform. The cross-sectional shape of the slab may become non-uniform during secondary cooling performed after leaving the mold. There is also a tendency for corner vertical cracks to occur. Therefore, the ratio β n / β w of the short side taper β n and the long side taper β w needs to be limited to 6 or less.

なお、短辺側テーパーβと長辺側テーパーβの比β/βは1未満(βが大き過ぎる場合)であっても6超(βが大き過ぎる場合)であっても鋳造条件によっては湯面変動やコーナー割れを助長する。このため、安定操業の観点からも上記比β/βwは1以上6以下としなければならない。 Note that the ratio β n / β w of the short side taper β n and the long side taper β w is less than 1 (when β w is too large) and is more than 6 (when β n is too large). However, depending on the casting conditions, it may promote fluctuations in the molten metal surface and corner cracks. For this reason, from the viewpoint of stable operation, the ratio β n / βw must be 1 or more and 6 or less.

短辺倒テーパーβ:0.8〜1.3%/m
一般的に、短辺側テーパーβは、長辺用鋳型板に接して形成される鋳片シェル(以下「長辺シェル」という)の鋳片幅方向への収縮率に設定されている。この長辺シェルの収縮率は鋳造速度や鋼種により変化し、かつ操業中変動するので、最適値に設定することは非常に困難とされている。しかしながら、短辺側テーパーβが小さすぎると、短辺用鋳型板に接して形成される鋳片シェル(以下「短辺シェル」という)にバルジングやコーナー縦割れも発生しやすく、さらには短辺用鋳型板と短辺シェルとの間に流入するモールドフラックス量が多くなり過ぎ、鋳型への抜熱量が減少して短辺シェルの成長が阻害され、短辺シェルが浸債ノズルからの噴流により再溶解されることによるブレークアウトが発生する危険がある。したがって、短辺側テーパーβは0.8%/m以上が望ましい。
Short edge taper β n : 0.8 to 1.3% / m
In general, the short side taper β n is set to a contraction rate in the slab width direction of a slab shell (hereinafter referred to as “long side shell”) formed in contact with the long side mold plate. The shrinkage ratio of the long side shell varies depending on the casting speed and steel type, and fluctuates during the operation, so that it is very difficult to set the optimum value. However, the short side taper beta n is too small, the slab shell (hereinafter referred to as "short side shell") bulging and corners vertical cracks even more likely to occur, which is formed in contact with the mold plate for a shorter side, and further the short The amount of mold flux that flows between the side mold plate and the short side shell becomes too large, the amount of heat removed to the mold is reduced and the growth of the short side shell is hindered, and the short side shell is jetted from the immersion nozzle. There is a risk of breakout due to redissolution. Therefore, the short side taper β n is desirably 0.8% / m or more.

しかしながら、特に鋳造速度2m/min以上の高速鋳造を行なう場合には長辺シェルがきわめて薄くなるため、短辺側テーパーβが大きくなりすぎると、長辺シェルに座屈に基づくうねりを生じることがあり、それによりスラブ長辺面に表面割れ(縦割れ)やスラグストリークの生成が助長される傾向がある。このような現象は、鋳造速度が小さい場合でも不均一凝固が顕著な中炭素鋼(普通鋼であるとハイテン鋼であるとを問わない)あるいはステンレス鋼でも発生する。また、短辺側テーパーβが大きいと、短辺用鋳型板と短辺シェル間へのモールドフラックスの流入が阻害される原因になり、鋳型板とシェル間の潤滑が悪化するため、拘束性ブレークアウトが発生する危険を生ずる。さらに、短辺側テーパーβが大きくなるに伴い、鋳型振動の上昇過程において鋳型が短辺シェルを溶鋼側に押し込む距離が大きくなり、その結果、湯面が鋳型振動と共振して湯面変動が大きくなり、モールドフラックスの巻き込みや潤滑不良の原因になる。このような問題を考慮すると短辺側テーパーβは1.3%/m以下に限定される。 However, it becomes extremely thin long side shell, particularly when performing high-speed casting of more casting speed 2m / min, when the short side taper beta n is too large, causing waviness based on buckling in a long side shell This tends to promote the generation of surface cracks (longitudinal cracks) and slag streaks on the long side surface of the slab. Such a phenomenon also occurs in medium carbon steel (regardless of whether it is plain steel or high-tensile steel) or stainless steel, which is markedly unevenly solidified even when the casting speed is low. Further, when the short side taper beta n is large, cause the inflow of mold flux into between short side mold plate and the short side shell is inhibited to deteriorate lubrication between the mold plate and the shell, restricted There is a risk of breakout. In addition, as the short side taper β n increases, the distance that the mold pushes the short side shell into the molten steel increases in the process of increasing mold vibration. Becomes larger, causing mold flux entrainment and poor lubrication. Considering such a problem, the short side taper β n is limited to 1.3% / m or less.

長辺側テーパーβの適用範囲:0.2〜0.9%/m
長辺側テーパーβは小さすぎると、長辺シェルのバルジングを惹起する傾向が大となるおそれがある。また、長辺シェルと長辺用鋳型板との間隔が鋳片コーナー部近傍において大きくなり、その部位においてモールドフラックスの流入量が多くなり過ぎ、鋳型への抜熱が滅少してシェルの成長が阻害され、浸漬ノズルからの噴流によりシェルが再溶解されることによるブレークアウトが発生する危険がある。したがって、長辺側テーパーβは0.2%/m以上が望ましい。
Scope of long side taper β w: 0.2~0.9% / m
When the long side taper beta w are too small, there is a possibility that the tendency to elicit a bulging of the long side shell is large. In addition, the gap between the long side shell and the long side mold plate is increased near the corner of the slab corner, and the amount of mold flux inflow is excessive at that portion, so that heat removal from the mold is reduced and the shell grows. There is a risk of breakout due to hindrance and re-melting of the shell by the jet from the immersion nozzle. Therefore, the long side taper beta w is more desirably 0.2% / m.

しかし、長辺側テーパーβが大きすぎると、鋳造速度が2m/min以上と大きいときには短辺シェルがより薄くなるため、短辺シェルが座屈して鋳片短辺中央部やコーナーから短辺幅の1/4〜1/6近傍に鋳造方向に走る凹状のストリークが生じる場合があり、表面割れ(縦割れ)やブレークアウトを助長するおそれがある。また、長辺側テーパーβを大さくし過ぎると、長辺用鋳型板と長辺シェル間へのモールドフラックス流入が阻害される原因になり、鋳型板とシェル間の潤滑が悪化するため、拘束性ブレークアウトが発生する危険を生ずる。さらに、長辺側テーパーβが大きくなるに伴い、鋳型振動の上昇過程において鋳型が長辺シェルを洛鋼側に押し込む距離が大きくなり、その結果、湯面が鋳型振動と共振して湯面変動が大きくなり、モールドフラックスの巻き込みや潤滑不良の原因になる。このような問題を考慮すると短辺側テーパーβは0.9%/m以下に限定すべきである。 However, when the long side taper beta w is too large, it becomes thinner is the short side shell when the casting speed is high and 2m / min or higher, slab short side central portion and the corner short side short side shell buckles A concave streak running in the casting direction may occur in the vicinity of ¼ to の of the width, which may promote surface cracks (longitudinal cracks) and breakout. Further, an excessively large fence the long side taper beta w, causes the mold flux flowing into between the long side mold plate and the long side shell is inhibited to deteriorate lubrication between the mold plate and the shell, restrain Creates a risk of sex breakout. Furthermore, with the long side taper beta w increases, the distance which the mold at elevated course of mold vibration pushes the long side shell Lok steel side becomes greater, as a result, the resonance melt surface is a mold oscillating water surface Fluctuations increase, causing mold flux entrainment and poor lubrication. Such consideration of the short side taper beta w problems should be limited to 0.9% / m.

本発明は鋳型条件を上記のように設定して連続鋳造することにより、鋳造中の湯面変動を小さくし、鋳型とシェル間へのモールドフラックスの流入量を適正に保ち、それによって不時のブレークアウトを防止しながら、スラブ表面割れ、特に縦割れ系のストリークのない健全な連鋳スラブを得ることを可能にする。   By continuously casting the mold conditions as described above, the present invention reduces the fluctuation of the molten metal surface during casting, keeps the flow rate of the mold flux between the mold and the shell properly, and thereby makes it possible to While preventing breakout, it is possible to obtain a sound continuous cast slab free from slab surface cracks, particularly vertical cracks.

なお、本発明を実施するに際しては、4面の鋳型板により構成される鋼のスラブ連続鋳造用組み鋳型の長辺側テーパーβ及び短辺側テーパーβおよび比β/βを所定範囲に収める必要がある。その手段としては、たとえば図1に示すように特定の、たとえば長辺側テーパーβが0.4%/mとなるように短辺用鋳型板1A,1Bを選び、これに長辺用鋳型板2A,2Bを組み合わせ、さらにその状態で短辺用鋳型板1A,1Bを公知の鋳型幅変更の手段を適用して短辺側テーパーβを適当に調整することが挙げられる。 In carrying out the present invention, the long side taper β w and the short side taper β n and the ratio β n / β w of the assembled mold for continuous casting of steel slab composed of four-sided mold plates are predetermined. Must be in range. As the means, such as particular, as shown in FIG. 1, for example, long side taper beta w is 0.4% / m become as short side mold plate 1A, select 1B, this long side mold plate 2A, combining 2B, include further short side molds plate 1A in this state, 1B and by applying means known mold width changes to adjust the short side taper beta n appropriately.

この場合、長辺側テーパーβは短辺用鋳型板1によって固定されるので、これを鋼種や鋳造条件に応じて適正値に選択しておくことが重要であるが、鋳型幅変更手段として多くの連続鋳造設備に設けられている鋳型幅変更手段を用いることによって短辺側テーパーβおよびβ/βを適正値に設定できるので操業上多くの利点がある。もちろん、図1と異なる形態、たとえばまず短辺側テーパーβが所定の値となるように長辺側鋳型板2A,2Bを選び、これに短辺用鋳型板1A,1Bを組み合わせ、さらにその状態で長辺用鋳型板2A,2Bを調整することもできる。 In this case, since the long side taper beta w it is fixed by short side mold plate 1, which it is important to have selected an appropriate value depending on the steel type and the casting conditions, as a template width changing means Since the short side taper β n and β n / β w can be set to appropriate values by using mold width changing means provided in many continuous casting facilities, there are many operational advantages. Of course, a different form from FIG. 1, for example, first, select the long side mold plates 2A and 2B so that the short side taper β n has a predetermined value, and combine the short side mold plates 1A and 1B with this, The long side mold plates 2A and 2B can be adjusted in the state.

以下、実施例および比較例を列挙して本発明の実施形態をより具体的にする。   Hereinafter, the embodiment of the present invention is made more specific by listing examples and comparative examples.

図1に示す形式の連続鋳造機を用い、厚みが220、235、275mm、幅が750〜1600mmのスラブを表1〜4に示す条件で鋳造した。鋳型高さは900mmであり、使用した浸漬ノズルは吐出口直径が80mm、吐出角度が下向き20°(一定)のものとした。モールドフラックスは、炭素鋼の場合、凝固温度が1000℃、粘度が0.05Pa・s(1300℃)、塩基度(CaO/SiO)が1.0のものを、また、ステンレス鋼の場合、凝固温度が1100℃、粘度が0.02Pa・s(1300℃)、塩基度(CaO/SiO2)が1.1のものを使用した。タンデイツシユにおける溶鋼過熱度は10〜40℃とした。対象鋼種としては、極低炭素鋼(鋼種A)、低炭素鋼(鋼種B)、中炭素鋼(鋼種C)、ステンレス鋼(鋼種D)を選んだ。これら各鋼の組成(いずれもmass%)は以下のとおりである。 A slab having a thickness of 220, 235, 275 mm and a width of 750 to 1600 mm was cast under the conditions shown in Tables 1 to 4 using a continuous casting machine of the type shown in FIG. The mold height was 900 mm, and the immersion nozzle used had a discharge port diameter of 80 mm and a discharge angle of 20 ° downward (constant). In the case of carbon steel, the mold flux has a solidification temperature of 1000 ° C., a viscosity of 0.05 Pa · s (1300 ° C.) and a basicity (CaO / SiO 2 ) of 1.0, and in the case of stainless steel, A solidification temperature of 1100 ° C., a viscosity of 0.02 Pa · s (1300 ° C.), and a basicity (CaO / SiO 2) of 1.1 were used. The degree of superheated molten steel in tundish was 10-40 ° C. As target steel types, very low carbon steel (steel type A), low carbon steel (steel type B), medium carbon steel (steel type C), and stainless steel (steel type D) were selected. The composition of these steels (both mass%) is as follows.

鋼種A:C:0.0005〜0.0090%、Si<0.05%、Mn<0.50%、P<0.035%、S<0.020%、Al:0.005〜0.060%、Ti<0.080%、Nb<0.050%、B<0.0030%、残部は不可避的不純物を除きFeである。   Steel type A: C: 0.0005-0.0090%, Si <0.05%, Mn <0.50%, P <0.035%, S <0.020%, Al: 0.005-0. 060%, Ti <0.080%, Nb <0.050%, B <0.0003%, and the balance is Fe except for inevitable impurities.

鋼種B:C:0.03〜0.06%、Si<0.3%、Mn<0.50%、P<0.035%、S<0.020%、Al:0.005〜0.060%、残部は不可避的不純物を除きFeである。   Steel type B: C: 0.03-0.06%, Si <0.3%, Mn <0.50%, P <0.035%, S <0.020%, Al: 0.005-0. 060%, the balance is Fe except for inevitable impurities.

鋼種C:C:0.08〜0.16%、Si<0.3%,Mn<1.0%、P<0.035%、S<0.020%、Al:0.005〜0.060%、残部は不可避的不純物を除きFeである。   Steel type C: C: 0.08-0.16%, Si <0.3%, Mn <1.0%, P <0.035%, S <0.020%, Al: 0.005-0. 060%, the balance is Fe except for inevitable impurities.

鋼種D:C:0.10〜0.20%、Si<0.3%、Mn<0.45%、P<0.020%、S<0.0010%、Al<0.002%、Cr:8.5〜9.0%、残部は不可避的不純物を除きFeである。   Steel type D: C: 0.10 to 0.20%, Si <0.3%, Mn <0.45%, P <0.020%, S <0.0010%, Al <0.002%, Cr : 8.5 to 9.0%, the balance is Fe except for inevitable impurities.

これらの鋼の鋳造にあたっては、スラブ厚みが220mmの場合には鋳型下端近傍で鋳型全幅に静磁場印加(EMBR)を施し(特開平2−284750号公報に記載)、スラブ厚みが235mmの場合には浸漬ノズル吐出孔出側において静磁場印加(EMLS)を施した(特開昭57−17356号公報に記載)。また、鋼種Dはスラブ厚み275mmとし、鋳型内での溶鋼流動制御は実施しなかった。   In casting these steels, when the slab thickness is 220 mm, a static magnetic field application (EMBR) is applied to the entire width of the mold near the lower end of the mold (described in JP-A-2-284750), and when the slab thickness is 235 mm. Was subjected to static magnetic field application (EMLS) on the outlet side of the submerged nozzle discharge hole (described in JP-A-57-17356). Steel type D had a slab thickness of 275 mm, and molten steel flow control in the mold was not performed.

鋳造時にブレークアウト発生の有無を調査し、鋳型内溶鋼湯面を鋳型短面側から360mm入った厚さ方向の中央部で過流式レベルセンサーにより測定した。また、得られたスラブ(長さ7〜10m長さ)について面縦割れやコーナー縦割れの有無について調査した。結果は操業条件とともにまとめて表1〜4に示す。調査は10〜300チャージ単位で調べた。図4には、短辺、長辺テーパーと表面割れ、湯面変動、ブレークアウト発生状況の関係をまとめて示した。   The presence or absence of breakout during the casting was investigated, and the molten steel surface in the mold was measured with an overflow type level sensor at the center in the thickness direction 360 mm from the mold short side. Further, the obtained slab (length 7 to 10 m in length) was examined for the presence of vertical surface cracks and vertical corner cracks. The results are shown together with the operating conditions in Tables 1 to 4. The investigation was conducted in units of 10 to 300 charges. FIG. 4 shows a summary of the relationship between the short side, long side taper, surface cracking, molten metal surface fluctuation, and breakout occurrence.

表1〜4、および図4から明らかなように、本発明にしたがって鋳造した場合、鋳造速度が2.0m/min超えという高速鋳造においても、湯面変動幅を10mm以下に抑えることができ、その結果、表面割れのないスラブをブレークアウトの発生なく安定した操業の下で製造することができた。また、鋳造速度が小さくても不均一凝固しやすい鋼種Dにおいて、スラブ表面のストリーク状縦割れや拘束性ブレークアウトの発生なく安定した操業が可能になった。   As is apparent from Tables 1 to 4 and FIG. 4, when cast according to the present invention, the molten metal surface fluctuation width can be suppressed to 10 mm or less even in high-speed casting in which the casting speed exceeds 2.0 m / min. As a result, slabs without surface cracks could be produced under stable operation without breakout. In addition, steel type D, which tends to solidify unevenly even at a low casting speed, can be operated stably without the occurrence of streak-like vertical cracks on the slab surface or constraining breakout.

Figure 2005211936
Figure 2005211936

Figure 2005211936
Figure 2005211936

Figure 2005211936
Figure 2005211936

Figure 2005211936
Figure 2005211936

本発明の適用される代表的な連続鋳造鋳型の代表的な組立て構成を示す模式図である。It is a schematic diagram which shows the typical assembly structure of the typical continuous casting mold to which this invention is applied. 短辺側テーパーβの説明図である。It is explanatory drawing of short side taper (beta) n . 長辺側テーパーβの説明図である。It is explanatory drawing of long side taper (beta) w . 短辺テーパーと長辺テーパーの関係においての、表面割れ、湯面変動、ブレークアウト発生状況をまとめて示した説明図である。It is explanatory drawing which showed the surface crack, the molten metal surface fluctuation | variation, and the occurrence condition of a breakout in the relationship between a short side taper and a long side taper.

符号の説明Explanation of symbols

1:短辺用鋳型板
2:長辺用鋳型板
5:鋳型上端
6:鋳型下端
1: Mold plate for short side 2: Mold plate for long side 5: Mold upper end 6: Mold lower end

Claims (2)

4面の鋳型板により構成される鋼のスラブ連続鋳造用組み鋳型を用いて鋳造する際に、前記組み鋳型の設定条件を短辺側テーパーβと長辺側テーパーβの比β/βを1以上6以下の範囲にすることを特徴とする連続鋳造方法。
上記長辺テーパーβ、短辺テーパーβnはそれぞれ次式で計算される値(%/m)であり、その範囲は、β:0.2%/m以上0.9%/m以下、βn:0.8%/m以上1.3%/m以下である。
βw={(T−T)/T/L}×100(%)・・・(1)
βn={(W−W)/W}/L}×100(%)・・・(2)
ここで、
,T:鋳型の短辺側の上端、下端幅(mm)、
,W:鋳型の長辺側の上端、下端幅(mm)、
L:鋳型長さ(m)
When casting using a steel slab continuous casting assembled mold composed of four mold plates, the setting condition of the assembled mold is set to a ratio β n / short side taper β n to long side taper β w continuous casting method characterized by the beta w in the range of 1 to 6.
The long side taper β w and the short side taper β n are values (% / m) calculated by the following equations, respectively, and the range thereof is β w : 0.2% / m or more and 0.9% / m or less. , Β n : 0.8% / m or more and 1.3% / m or less.
β w = {(T u −T d ) / T u / L} × 100 (%) (1)
β n = {(W u −W d ) / W u } / L} × 100 (%) (2)
here,
T u , T d : upper end on the short side of the mold, lower end width (mm),
W u , W d : upper end on the long side of the mold, lower end width (mm),
L: Mold length (m)
長辺側テーパーβを所定値に設定後、短辺側テーパーβを調整することを特徴とする請求項1記載の連続鋳造方法。
After setting the long side taper beta w to a predetermined value, the continuous casting method according to claim 1, wherein the adjusting the short side taper beta n.
JP2004021792A 2004-01-29 2004-01-29 Steel slab continuous casting method Expired - Lifetime JP4337565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004021792A JP4337565B2 (en) 2004-01-29 2004-01-29 Steel slab continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004021792A JP4337565B2 (en) 2004-01-29 2004-01-29 Steel slab continuous casting method

Publications (2)

Publication Number Publication Date
JP2005211936A true JP2005211936A (en) 2005-08-11
JP4337565B2 JP4337565B2 (en) 2009-09-30

Family

ID=34905318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004021792A Expired - Lifetime JP4337565B2 (en) 2004-01-29 2004-01-29 Steel slab continuous casting method

Country Status (1)

Country Link
JP (1) JP4337565B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007125575A (en) * 2005-11-02 2007-05-24 Jfe Steel Kk Method for continuously producing cast slab
JP2007160346A (en) * 2005-12-13 2007-06-28 Mishima Kosan Co Ltd Casting mold for continuous casting
JP2010155249A (en) * 2008-12-26 2010-07-15 Nippon Steel Corp Continuous casting mold
JP2010234443A (en) * 2009-03-11 2010-10-21 Nippon Steel Corp Continuous casting method and continuous casting device
JP2010253548A (en) * 2009-03-31 2010-11-11 Nippon Steel Corp Continuous casting method and continuous casting apparatus
JP2011079062A (en) * 2011-01-28 2011-04-21 Mishima Kosan Co Ltd Mold for continuous casting
JP2018144107A (en) * 2017-03-03 2018-09-20 新日鐵住金株式会社 Continuous casting machine
JP2019147178A (en) * 2018-02-28 2019-09-05 日本製鉄株式会社 Continuous casting machine
CN113399637A (en) * 2021-06-24 2021-09-17 重庆钢铁股份有限公司 Process for preventing crack bleed-out in Q195 steel square billet continuous casting pouring process
CN113560514A (en) * 2021-06-29 2021-10-29 江苏沙钢集团有限公司 Method for controlling surface cracks of bridge steel slab

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007125575A (en) * 2005-11-02 2007-05-24 Jfe Steel Kk Method for continuously producing cast slab
JP2007160346A (en) * 2005-12-13 2007-06-28 Mishima Kosan Co Ltd Casting mold for continuous casting
JP2010155249A (en) * 2008-12-26 2010-07-15 Nippon Steel Corp Continuous casting mold
JP2010234443A (en) * 2009-03-11 2010-10-21 Nippon Steel Corp Continuous casting method and continuous casting device
JP2010253548A (en) * 2009-03-31 2010-11-11 Nippon Steel Corp Continuous casting method and continuous casting apparatus
JP2011079062A (en) * 2011-01-28 2011-04-21 Mishima Kosan Co Ltd Mold for continuous casting
JP2018144107A (en) * 2017-03-03 2018-09-20 新日鐵住金株式会社 Continuous casting machine
JP2019147178A (en) * 2018-02-28 2019-09-05 日本製鉄株式会社 Continuous casting machine
JP7013941B2 (en) 2018-02-28 2022-02-01 日本製鉄株式会社 Continuous casting machine
CN113399637A (en) * 2021-06-24 2021-09-17 重庆钢铁股份有限公司 Process for preventing crack bleed-out in Q195 steel square billet continuous casting pouring process
CN113560514A (en) * 2021-06-29 2021-10-29 江苏沙钢集团有限公司 Method for controlling surface cracks of bridge steel slab

Also Published As

Publication number Publication date
JP4337565B2 (en) 2009-09-30

Similar Documents

Publication Publication Date Title
JP5655988B2 (en) Continuous casting mold and steel continuous casting method
JP4786473B2 (en) Manufacturing method of slabs with excellent surface quality
JP4337565B2 (en) Steel slab continuous casting method
US6367539B1 (en) Crystalliser for continuous casting
JP2015051442A (en) Continuous casting mold and continuous casting method for steel
JP6365604B2 (en) Steel continuous casting method
WO2018055799A1 (en) Continuous steel casting method
JP3526705B2 (en) Continuous casting method for high carbon steel
JP4757661B2 (en) Vertical continuous casting method for large section slabs for thick steel plates
WO2018056322A1 (en) Continuous steel casting method
JP4998734B2 (en) Manufacturing method of continuous cast slab
JP2019171435A (en) Method of continuous casting
JP3022211B2 (en) Mold for continuous casting of round billet slab and continuous casting method using the mold
JPS609553A (en) Stopping down type continuous casting machine
JP2009136908A (en) Method for drawing out slab after completion of casting in continuous casting
JPH1190598A (en) Method for continuously casting stainless steel
JP3817209B2 (en) Continuous casting method for stainless steel slabs to prevent surface and internal defects
JP7230597B2 (en) Pouring nozzle, twin roll type continuous casting apparatus, and method for producing thin cast slab
KR100642779B1 (en) Method for continuous casting of steel for cold pressing and forging
JP3643460B2 (en) Continuous casting mold and continuous casting method
JP2005224852A (en) Continuous casting method of high-titanium-contained steel
JP2024047886A (en) Mold for continuous casting and manufacturing method of the same
JP7028088B2 (en) How to pull out the slab
JPH1043848A (en) Cast slab internal crack prevention method in continuous casting
JP3342774B2 (en) Mold powder for continuous casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090622

R150 Certificate of patent or registration of utility model

Ref document number: 4337565

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term