JPH0777167B2 - Magnetic core parts - Google Patents
Magnetic core partsInfo
- Publication number
- JPH0777167B2 JPH0777167B2 JP63175464A JP17546488A JPH0777167B2 JP H0777167 B2 JPH0777167 B2 JP H0777167B2 JP 63175464 A JP63175464 A JP 63175464A JP 17546488 A JP17546488 A JP 17546488A JP H0777167 B2 JPH0777167 B2 JP H0777167B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic core
- magnetic
- core
- alloy
- core component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000004907 flux Effects 0.000 claims description 36
- 239000008358 core component Substances 0.000 claims description 31
- 230000035699 permeability Effects 0.000 claims description 31
- 239000013078 crystal Substances 0.000 claims description 25
- 239000004065 semiconductor Substances 0.000 claims description 22
- 230000008859 change Effects 0.000 claims description 15
- 229910052758 niobium Inorganic materials 0.000 claims description 8
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 229910052735 hafnium Inorganic materials 0.000 claims description 5
- 229910052721 tungsten Inorganic materials 0.000 claims description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 239000011162 core material Substances 0.000 description 173
- 229910045601 alloy Inorganic materials 0.000 description 68
- 239000000956 alloy Substances 0.000 description 68
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 62
- 238000010438 heat treatment Methods 0.000 description 49
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 40
- 238000004804 winding Methods 0.000 description 30
- 238000010586 diagram Methods 0.000 description 29
- 230000000052 comparative effect Effects 0.000 description 26
- 239000000203 mixture Substances 0.000 description 24
- 238000000034 method Methods 0.000 description 17
- 230000005415 magnetization Effects 0.000 description 15
- 238000001816 cooling Methods 0.000 description 13
- 238000005096 rolling process Methods 0.000 description 12
- 239000012298 atmosphere Substances 0.000 description 11
- 239000010410 layer Substances 0.000 description 11
- 229910000859 α-Fe Inorganic materials 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 239000005011 phenolic resin Substances 0.000 description 7
- 238000002425 crystallisation Methods 0.000 description 6
- 230000008025 crystallization Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- 229920003223 poly(pyromellitimide-1,4-diphenyl ether) Polymers 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000001962 electrophoresis Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229910000889 permalloy Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000000306 component Substances 0.000 description 2
- 239000002178 crystalline material Substances 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910017625 MgSiO Inorganic materials 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910008423 Si—B Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000005280 amorphization Methods 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229910052839 forsterite Inorganic materials 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- -1 modified alkyl silicate Chemical compound 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C45/00—Amorphous alloys
- C22C45/02—Amorphous alloys with iron as the major constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/153—Amorphous metallic alloys, e.g. glassy metals
- H01F1/15308—Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0206—Manufacturing of magnetic cores by mechanical means
- H01F41/0213—Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
- H01F41/0226—Manufacturing of magnetic circuits made from strip(s) or ribbon(s) from amorphous ribbons
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F29/00—Variable transformers or inductances not covered by group H01F21/00
- H01F29/14—Variable transformers or inductances not covered by group H01F21/00 with variable magnetic bias
- H01F2029/143—Variable transformers or inductances not covered by group H01F21/00 with variable magnetic bias with control winding for generating magnetic bias
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Materials Engineering (AREA)
- Electromagnetism (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Soft Magnetic Materials (AREA)
- Coils Or Transformers For Communication (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は経時変化が少なく耐久性に優れた磁心部品、た
とえば可飽和リアクトル、半導体回路用リアクトル、コ
モンモードチョーク、トランス、電動機用の磁心等に関
するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a magnetic core component having little durability and excellent durability, such as a saturable reactor, a semiconductor circuit reactor, a common mode choke, a transformer, and a magnetic core for an electric motor. It is about.
[従来の技術] 上記した磁心部品は一般に、磁歪が小さいこと、高い実
効透磁率を有すること、高い飽和磁束密度を有するるこ
とが必要であり、更に、これらの磁気特性が経時変化せ
ず、耐久性に優れることが必要である。[Prior Art] Generally, the above-described magnetic core component is required to have a small magnetostriction, a high effective magnetic permeability, and a high saturation magnetic flux density, and further, these magnetic characteristics do not change with time, It is necessary to have excellent durability.
上記特性に加えて、特に磁気増幅回路などに用いられる
可飽和リアクトルに対しては、コア損失が小さいこと、
制御磁化特性が良好であること(制御不能磁束密度が小
さい)ことも要求される。In addition to the above characteristics, especially for saturable reactors used in magnetic amplification circuits, etc., the core loss is small,
It is also required that the controlled magnetization characteristics be good (the uncontrollable magnetic flux density is small).
また、半導体回路用リアクトルは半導体回路のオン、オ
フ時に発生する電流スパイクや電流リンキングによって
半導体に規格値以上の電流が流れ半導体回路が破壊され
たり、ノイズによる半導体回路が誤動作するのを防止す
るために挿入されるものであり、特に実効透磁率が高
く、上記した異常電流のみを制御するために高い角形比
が要求される。In addition, the semiconductor circuit reactor prevents current spikes and current linking that occur when the semiconductor circuit is turned on and off, causing a current exceeding the specified value to flow into the semiconductor and destroying the semiconductor circuit, or preventing the semiconductor circuit from malfunctioning due to noise. In particular, the effective magnetic permeability is high, and a high squareness ratio is required to control only the above-mentioned abnormal current.
また、コモンモードチョークにおいては特に、単極性ノ
イズを防止するため、有効動作磁束密度を大きくする必
要が有り、直流B−Hカーブにおける角形比が小さいこ
とが要求される。Further, particularly in the common mode choke, in order to prevent unipolar noise, it is necessary to increase the effective operating magnetic flux density, and it is required that the squareness ratio in the DC BH curve is small.
また、単極性電圧励磁のトランスにおいては、動作磁束
密度を大きくとる必要があるため直流B−Hカーブにお
ける角形比が低いこと、および最近のスイッチング電源
の高周波駆動型への移行に伴い、高周波特性(例えば高
周波で駆動したときの鉄損が小さいこと)に優れること
が要求される。Further, in a unipolar voltage excitation transformer, since it is necessary to have a large operating magnetic flux density, the squareness ratio in the DC BH curve is low, and with the recent shift to a high frequency drive type switching power supply, high frequency characteristics It is required to be excellent (for example, small iron loss when driven at high frequency).
近年、高い飽和磁束密度を有する材料として、Fe基およ
びCo基非晶質合金が注目されている。Co基非晶質合金は
磁歪が小さく、実効透磁率が高いという利点があり、最
近、可飽和リアクトル用磁心材として、特開昭57-21061
2号公報あるいは特開昭57-21512号公報にCo基非晶質合
金を使用するものが開示された。これに対し、Fe基非晶
質合金は飽和磁束密度がCo基の非晶質合金よりも高く、
特公昭58-1183号公報に記載されているように非酸化性
雰囲気で熱処理することによって高角形比の直流磁気特
性が得られる利点のあることが知られている。In recent years, Fe-based and Co-based amorphous alloys have attracted attention as materials having a high saturation magnetic flux density. Co-based amorphous alloys have the advantages of low magnetostriction and high effective magnetic permeability, and recently, as a magnetic core material for saturable reactors, JP-A-57-21061
No. 2 or Japanese Patent Laid-Open No. 21521/1982 discloses that a Co-based amorphous alloy is used. On the other hand, the Fe-based amorphous alloy has a higher saturation magnetic flux density than the Co-based amorphous alloy,
It is known that heat treatment in a non-oxidizing atmosphere, as described in Japanese Patent Publication No. 58-1183, has the advantage that high squareness DC magnetic characteristics can be obtained.
[本発明が解決しようとする課題] 上記したようにFe基の非晶質合金はCo基非晶質合金に比
べ飽和磁束密度が高いという利点があるが、例えばスイ
ッチング電源の磁気増幅回路にFe基の非晶質合金を用い
た可飽和リアクトルを使用した場合、特に20kHz以上の
高周波で駆動する場合、コア損失や制御磁化特性がCo基
の非晶質合金よりも劣っており、全制御磁化力が大きい
ため、出力電圧を制御するための制御磁化電流が大きく
なるという問題や磁心の温度上昇が大きくなるという問
題があり、制御回路の負担が増加し効率が低下したり、
周囲の部品の耐久性が低下する場合があった。[Problems to be Solved by the Present Invention] As described above, the Fe-based amorphous alloy has an advantage that the saturation magnetic flux density is higher than that of the Co-based amorphous alloy. When a saturable reactor using a base-based amorphous alloy is used, especially when it is driven at a high frequency of 20 kHz or more, the core loss and controlled magnetization characteristics are inferior to the Co-based amorphous alloy, and the total controlled magnetization Since the force is large, there is a problem that the control magnetizing current for controlling the output voltage becomes large and a problem that the temperature rise of the magnetic core becomes large, which increases the load on the control circuit and reduces the efficiency.
In some cases, the durability of surrounding parts was reduced.
また、半導体回路用リアクトルをFe基の非晶質合金で構
成した場合は、磁歪が著しく大きく、実効透磁率も低い
ためスパイク電流等の防止効果は充分なものではなかっ
た。Further, when the reactor for a semiconductor circuit is made of an Fe-based amorphous alloy, the magnetostriction is remarkably large and the effective magnetic permeability is low, so that the effect of preventing spike current and the like is not sufficient.
また、スイッチング電源のトランスには従来は主にMn-Z
nフェライトが用いられているが、高周波で駆動するス
イッチング電源のトランスにFe基の非晶質合金を用いる
試みが信学技報PE84-3812頁に記載されている。しか
し、この報告では、Fe基の非晶質合金を用いた場合は磁
歪が大きいため機械的ストレスにより特性が劣化しやす
く、含浸コアやカットコアとした場合、高周波磁気特性
が劣化するという問題点が指摘されている。In addition, the transformer of the switching power supply is conventionally mainly Mn-Z.
Although n-ferrite is used, an attempt to use an Fe-based amorphous alloy for a transformer of a switching power supply driven at high frequency is described in SI Tech. However, in this report, when Fe-based amorphous alloy is used, the magnetostriction is large and the characteristics tend to deteriorate due to mechanical stress. When the impregnated core or cut core is used, the high frequency magnetic characteristics deteriorate. Has been pointed out.
そのため、Co基の非晶質合金に匹敵する低磁歪および高
い実効透磁率を有し、かつFe基の非晶質合金と同等の飽
和磁束密度を有し、さらに特性が経時変化せず耐久性に
優れる材料が望まれていた。Therefore, it has low magnetostriction and high effective magnetic permeability comparable to Co-based amorphous alloys, and has the same saturation magnetic flux density as Fe-based amorphous alloys. There has been a demand for a material having excellent properties.
また、磁気特性の経時変化の少ない磁心部品として特開
昭62-101008号公報に、ほぼ0.1μm以下の微結晶が非晶
質体であるから母相に均一に分散し、かつ母相の体積以
上である凝結晶質材料を、磁気回路の少なくとも一部に
使用したものが開示されている。しかし、上記凝結晶質
材料は単に、耐熱性のみを改良するものとして提案され
たものであり、従来のFe基及びCo基の非晶質合金の磁気
特性を改善することは全く開示されていない。Also, as a magnetic core component whose magnetic characteristics do not change over time, Japanese Patent Application Laid-Open No. 62-101008 discloses that fine crystals of about 0.1 μm or less are amorphous and are dispersed uniformly in the mother phase, and the volume of the mother phase is small. It is disclosed that the above-mentioned solid crystalline material is used for at least a part of a magnetic circuit. However, the above-mentioned coagulated crystalline material is merely proposed as a material for improving only heat resistance, and it is not disclosed at all to improve the magnetic characteristics of conventional Fe-based and Co-based amorphous alloys. .
本発明は前記した非晶質合金および凝結晶合金の磁気特
性および耐久性を改善し、飽和磁束密度および実効透磁
率が高く、低損失である磁心部品を提供することを目的
とする。An object of the present invention is to improve the magnetic properties and durability of the above-mentioned amorphous alloys and coagulated alloys, to provide a magnetic core component having high saturation magnetic flux density and effective magnetic permeability and low loss.
[課題を解決するための手段] 本発明はFe,CuおよびM(ただしMは、Nb,W,Ta,Zr,Hf,T
i及びMoからなる群から選ばれた少なくとも一種以上の
元素)を必須元素として含み、組織の少なくとも50%が
微細な結晶粒からなり、実効透磁率の経時変化率Xは0.
3以下である磁心を用いたことを特徴とする磁心部品で
ある。[Means for Solving the Problems] In the present invention, Fe, Cu and M (where M is Nb, W, Ta, Zr, Hf, T
At least one element selected from the group consisting of i and Mo) is contained as an essential element, at least 50% of the structure is composed of fine crystal grains, and the effective magnetic permeability change rate X is 0.
A magnetic core component characterized by using a magnetic core having a size of 3 or less.
ここで本発明に用いる合金は、本発明者等が特願昭62-3
67187号として先に出願したFe基の超微結晶合金であ
る。この合金は 組成式: (Fel−aMa)100−x−y−z−αCuxSiyBzM′α (ただしMはCo及び/又はNiであり、M′はNb,W,Ta,Z
r,Hf,Ti及びMoからなる群から選ばれた少なくとも一種
の元素であり、a,x,y,z及びαはそれぞれ0≦a≦0.5,
0.1≦x≦3.0,0≦y≦30,0≦z≦25,5≦y+z≦30およ
び0.1≦α≦30を満たす。)により表わされる組成を有
し、組織の少なくとも50%が微細な結晶粒からなるFe基
の超微結晶合金、 または、 組成式: (Fel−aMa)100−x−y−z−α−β−γCuxSiyBzM′
αM″βX (ただしMはCo及び/又はNiであり、M′はNb,W,Ta,Z
r,Hf,Ti及びMoからなる群から選ばれた少なくとも一種
の元素,M″はV,Cr,Mn,Al,白金元素、Sc,Y,希土類元素、
Au,Zn,Sn,Reからなる群から選ばれた少なくとも1種の
元素、XはC,Ge,P,Ga,Sb,In,Be,Asからなる群から選ば
れた少なくとも1種の元素であり、a,x,y,z,α,β及び
γはそれぞれ0≦a≦0.5,0.1≦x≦3.0,0≦y≦30,0≦
z≦25,5≦y+z≦30,0.1≦α≦30,β≦10,γ≦10を満
たす。)により表わされる組成を有し、組織の少なくと
も50%が微細な結晶粒からなるFe基の超微結晶合金、 である。Here, the alloy used in the present invention is disclosed in Japanese Patent Application No. 62-3
It is a Fe-based ultrafine crystal alloy filed previously as 67187. This alloy has a compositional formula: (Fel-aMa) 100-x-yz-αCuxSiyBzM'α (where M is Co and / or Ni and M'is Nb, W, Ta, Z).
It is at least one element selected from the group consisting of r, Hf, Ti and Mo, and a, x, y, z and α are each 0 ≦ a ≦ 0.5,
0.1 ≦ x ≦ 3.0, 0 ≦ y ≦ 30, 0 ≦ z ≦ 25, 5 ≦ y + z ≦ 30 and 0.1 ≦ α ≦ 30 are satisfied. ), A Fe-based ultrafine crystal alloy having a composition represented by at least 50% of fine crystal grains, or a composition formula: (Fel-aMa) 100-xyz-α-β −γCuxSiyBzM ′
αM ″ βX (where M is Co and / or Ni and M ′ is Nb, W, Ta, Z
r, Hf, at least one element selected from the group consisting of Ti and Mo, M ″ is V, Cr, Mn, Al, a platinum element, Sc, Y, a rare earth element,
At least one element selected from the group consisting of Au, Zn, Sn and Re, X is at least one element selected from the group consisting of C, Ge, P, Ga, Sb, In, Be and As A, x, y, z, α, β and γ are 0 ≦ a ≦ 0.5, 0.1 ≦ x ≦ 3.0, 0 ≦ y ≦ 30,0 ≦, respectively.
z ≦ 25, 5 ≦ y + z ≦ 30, 0.1 ≦ α ≦ 30, β ≦ 10, γ ≦ 10 are satisfied. ) Is a Fe-based ultra-fine crystal alloy having a composition represented by at least 50% of the microstructure.
ここで、Fe,CuおよびM(ただしMは、Nb,W,Ta,Zr,Hf,T
i及びMoからなる群から選ばれた少なくとも一種以上の
元素)を必須元素としたのは、結晶核の生成を促進し結
晶成長を助長する元素と考えられるCuと結晶の成長を抑
制する元素と考えられるMの相互作用によってFe基の超
微結晶合金が得られるためである。この微結晶合金は非
晶質化した後熱処理することによって微結晶化するもの
であり、上記必須元素の他にSi,B等の非晶質化を促進す
る元素を含む方が好ましい。Here, Fe, Cu and M (where M is Nb, W, Ta, Zr, Hf, T
At least one element selected from the group consisting of i and Mo) is an essential element, and Cu and an element that suppresses crystal growth are considered to be elements that promote the formation of crystal nuclei and promote crystal growth. This is because a possible Fe-based ultrafine crystal alloy is obtained by the possible interaction of M. This microcrystalline alloy is microcrystalline by being heat-treated after being amorphized, and it is preferable that it contains an element that promotes amorphization, such as Si or B, in addition to the above essential elements.
また、組織の少なくとも50%以上が微細な結晶粒とした
のは、非晶質部分が多いと経時変化が大きくなるためで
あり、実質的に微細な結晶粒からなる合金組織とした方
がより好ましい。Further, at least 50% or more of the structure is made fine crystal grains because the change with time becomes large when there are many amorphous parts, and it is more preferable to make the alloy structure to be substantially fine crystal grains. preferable.
また、本発明において飽和磁束密度(Bs)が10kG以上で
あり、実効透磁率(μelkHz)が5×103以上であること
が好ましい。Further, in the present invention, it is preferable that the saturation magnetic flux density (Bs) is 10 kG or more and the effective magnetic permeability (μelkHz) is 5 × 10 3 or more.
実効透磁率の経時変化量Xは大気中100℃の恒温槽中に
資料をいれ、1000時間の試験を行い試験前の1kHzにおけ
る実効透磁率をμa、試験後の1kHzにおける実効透磁率
μbとおき、実効透磁率の変化率Xを次のように定義し
た。The amount of change in effective magnetic permeability X with time is measured by putting data in a thermostatic chamber at 100 ° C in the atmosphere and conducting a 1000-hour test, and the effective magnetic permeability at 1 kHz before the test is μa, and the effective magnetic permeability at 1 kHz after the test is μb. The change rate X of the effective magnetic permeability was defined as follows.
X=1−μb/μa この経時変化率は0.3以下であるのが好ましい。また、
組成式中のMは磁気特性の面でNbであることが好まし
い。X = 1-μb / μa The rate of change with time is preferably 0.3 or less. Also,
M in the composition formula is preferably Nb in terms of magnetic properties.
また、これらの合金を樹脂含浸、コーティングする際に
発生する内部応力による磁気特性の劣化を小さくするた
めには、飽和磁歪λsが+5×10-6〜−5×0-6である
ことが好ましい。特に望ましくは+1.5×10-6〜−1.5×
10-6の範囲である。Further, in order to reduce the deterioration of the magnetic properties due to the internal stress generated when impregnating or coating these alloys with a resin, the saturation magnetostriction λs is preferably + 5 × 10 −6 to −5 × 0 −6. . Particularly preferably + 1.5 × 10 −6 to −1.5 ×
It is in the range of 10 -6 .
上記組成を有するFe基の超微結晶合金を用いることによ
り可飽和リアクトル、半導体回路用リアクトル、コモン
モードチョーク、ノーマルモードチョーク、高周波トラ
ンス、電動機用磁心等の優れた磁心部品を実現すること
ができる。Saturable reactors, semiconductor circuit reactors, common mode chokes, normal mode chokes, high frequency transformers, excellent magnetic core parts such as magnetic cores for electric motors can be realized by using an Fe-based ultrafine crystal alloy having the above composition. .
本発明において、磁心部品が可飽和リアクトルまたは半
導体回路用リアクトルの場合、前者については制御範囲
を大きくするため、また後者については本来の回路にか
かる電圧を抑制せず、スパイク電流のみ防止するために
直流B−Hカーブにおける角形比Br/B10が70%以上であ
ることが好ましく、さらに好ましくは角形比Br/B10が80
%以上(Br:残留磁束密度、B10:10Oeの磁場を印加した
場合の磁束密度)とするのが良い。In the present invention, when the magnetic core component is a saturable reactor or a semiconductor circuit reactor, in order to increase the control range for the former, and for the latter to prevent the voltage applied to the original circuit, only to prevent spike current. The squareness ratio Br / B10 in the DC BH curve is preferably 70% or more, more preferably the squareness ratio Br / B10 is 80.
% Or more (Br: residual magnetic flux density, magnetic flux density when a magnetic field of B10: 10Oe is applied).
このような、高角形比の特性は磁心の磁路方向に磁場を
印加しながら熱処理することにより得ることができる。Such a high squareness ratio characteristic can be obtained by heat treatment while applying a magnetic field in the magnetic path direction of the magnetic core.
可飽和リアクトルには特に負荷電流が大きくなったとき
に電圧変動が起こらないように50kHzにおける制御不能
磁束密度ΔBbが3KG以下であるほうが好ましい。For the saturable reactor, the uncontrollable magnetic flux density ΔBb at 50 kHz is preferably 3 KG or less so that voltage fluctuation does not occur especially when the load current becomes large.
半導体回路用リアクトル用磁心に前記組織を有する合金
を使用することにより、半導体回路のスパイク電流防止
に優れた性能を発揮する。By using the alloy having the above-described structure for the magnetic core for a reactor for a semiconductor circuit, excellent performance is exhibited in preventing spike current in the semiconductor circuit.
コモンモードチョークコイルおよび高周波トランス用磁
心として使用する場合、特に単極性パルス電圧が印加さ
れる場合は有効動作磁束密度を大きくできるため直流B
−Hカーブにおける角形比Br/B10が30%以下であること
が特に好ましい。When used as a magnetic core for a common mode choke coil and a high frequency transformer, it is possible to increase the effective operating magnetic flux density, especially when a unipolar pulse voltage is applied.
It is particularly preferable that the squareness ratio Br / B10 in the −H curve is 30% or less.
製造方法において、非晶質合金とした後、切断、巻回し
等の磁心を形成するための加工を行ってから微結晶化熱
処理を行うのは、熱処理を行った後は合金は結晶化によ
り脆化し、加工性が著しく減少するためであり、このよ
うな製造方法を用いることによって、たとえば、複雑な
形状を有する電動機用の磁心の打ち抜き加工を可能とす
ることができる。しかしながら、エッチング等の技術に
より、必ずしも、この製造方法によらなくともよい。In the manufacturing method, after the amorphous alloy is formed, the microcrystallization heat treatment is performed after the cutting, winding, etc., to form the magnetic core, and the alloy is brittle due to crystallization after the heat treatment. This is because the workability is significantly reduced and the workability is significantly reduced. By using such a manufacturing method, it is possible to punch a magnetic core for an electric motor having a complicated shape, for example. However, it is not always necessary to use this manufacturing method by a technique such as etching.
熱処理は特定の形状に加工した非晶質リボンを真空中ま
たは、水素、窒素、Ar等の不活性ガス雰囲気中、又は大
気中において一定時間保持して行うことができる。The heat treatment can be performed by holding the amorphous ribbon processed into a specific shape in a vacuum, in an atmosphere of an inert gas such as hydrogen, nitrogen, or Ar, or in the air for a certain period of time.
熱処理を磁場中で行う場合は、熱処理の間中磁場を印加
し続ける必要はなく、合金のキュリー温度Tcより低い温
度の時に印加するだけで充分な効果が得られる。When the heat treatment is performed in a magnetic field, it is not necessary to continuously apply the magnetic field during the heat treatment, and sufficient effect can be obtained only by applying the magnetic field at a temperature lower than the Curie temperature Tc of the alloy.
本発明に使用する上記組成の合金の場合、主相となって
いるbccFe固溶体のキュリー温度は非晶質相のキュリー
温度よりかなり高いため(通常500℃以上)、非晶質状
態のキュリー温度より高い温度でもbccFe固溶体のキュ
リー温度より低ければ磁場中熱処理の効果がある。In the case of the alloy of the above composition used in the present invention, the Curie temperature of the bccFe solid solution, which is the main phase, is considerably higher than the Curie temperature of the amorphous phase (usually 500 ° C. or higher). Even at a high temperature, if it is lower than the Curie temperature of the solid solution of bccFe, there is an effect of heat treatment in a magnetic field.
熱処理は通常一定温度に保持して行うが、この温度は通
常450℃〜700℃で、かつ結晶開始温度より高いほうが好
ましく、その保持時間は5分〜24時間が量産する場合は
好ましい。The heat treatment is usually carried out at a constant temperature, which is usually 450 ° C. to 700 ° C. and is preferably higher than the crystal starting temperature, and the holding time is preferably 5 minutes to 24 hours in mass production.
熱処理の際の昇温や冷却の条件は状況に応じて任意に変
えることができる。また、同一温度または異なる温度で
複数回に別けて熱処理を行ったり、多段の熱処理パター
ンを使用することもできる。更には、一定時間に保持せ
ず昇温後冷却する熱処理を適用することができる。The conditions of temperature rise and cooling during the heat treatment can be arbitrarily changed depending on the situation. Further, it is also possible to perform the heat treatment at the same temperature or different temperatures a plurality of times, or to use a multi-step heat treatment pattern. Furthermore, a heat treatment in which the temperature is raised and then cooled without holding for a certain period of time can be applied.
磁場の印加方法としては耐熱導線を磁心に巻きつけ電流
を流す方法や導体の棒や板等を磁心に貫通させ、これに
電流を流す方法等がある。また、電磁石、永久磁石やソ
レノイドコイル等により外部から磁場を印加する方法も
ある。また必要に応じて回転磁場中熱処理も適用でき
る。As a method of applying a magnetic field, there are a method of winding a heat-resistant conductor around a magnetic core and passing a current, and a method of passing a conductor rod or plate through the magnetic core and passing a current through it. There is also a method of applying a magnetic field from the outside with an electromagnet, a permanent magnet, a solenoid coil, or the like. If necessary, heat treatment in a rotating magnetic field can be applied.
この場合、交流では周波数を上げることによって磁心の
コア損失による発熱効果によって熱処理も同時に行うこ
とができる。導体に流す電流の波形は半波正弦波や三角
波等の任意のものを利用できる。In this case, the heat treatment can be performed at the same time by increasing the frequency of the alternating current and by the heat generation effect of the core loss of the magnetic core. An arbitrary waveform such as a half-wave sine wave or a triangular wave can be used as the waveform of the current flowing through the conductor.
また、熱処理は必要に応じて応力下で行い磁気特性を調
整することも出来る。Further, the heat treatment can be performed under stress as necessary to adjust the magnetic characteristics.
本発明に係る可飽和リアクトル、トランス等の磁心は巻
磁心及び積層磁心が含まれる。The magnetic cores of saturable reactors, transformers, etc. according to the present invention include wound magnetic cores and laminated magnetic cores.
また、コア損失低減のため合金表面の一部又は全面に絶
縁層を形成することが好ましい。この絶縁層は合金薄板
の片面でも両面でも良いのはもちろんである。Further, it is preferable to form an insulating layer on a part or the whole surface of the alloy in order to reduce core loss. It goes without saying that this insulating layer may be on one side or both sides of the alloy thin plate.
この絶縁層の形成方法は、例えば、SiO2,MgO,Al2O3等の
粉末を浸漬、スプレー法や電気泳動法により付着させた
り、スパッター法や蒸着法によりSiO2等の膜を付ける。
あるいは、変性アルキルシリケートを含むアルコール溶
液に酸と添加し、この溶液を塗布し、乾燥させたり、フ
ォルステライト(MgSiO4)層を熱処理により形成させた
りする方法がある。また、SiO2-TiO2系金属アルコキシ
ド部分加水分解ゾルに各種セラミックス粉末原料を混合
したものを塗布したり、チラノポリマーを主体とする溶
液を塗布あるいは浸漬後加熱したり、リン酸塩溶液を塗
布後加熱することによって絶縁層を形成する方法もあ
る。As a method of forming this insulating layer, for example, a powder of SiO 2 , MgO, Al 2 O 3 or the like is dipped, and is attached by a spray method or an electrophoresis method, or a film of SiO 2 or the like is attached by a sputtering method or a vapor deposition method.
Alternatively, there is a method in which an acid is added to an alcohol solution containing a modified alkyl silicate, the solution is applied and dried, or a forsterite (MgSiO 4 ) layer is formed by heat treatment. In addition, SiO 2 -TiO 2 metal alkoxide partial hydrolysis sol mixed with various ceramic powder raw materials is applied, a solution mainly composed of tyranopolymer is applied or heated after immersion, or a phosphate solution is applied. There is also a method of forming an insulating layer by post-heating.
また、熱処理により、表面にSi等の酸化物層や窒化物層
を形成したり、酸化剤等により合金表面に絶縁層を形成
することも可能である。It is also possible to form an oxide layer such as Si or a nitride layer on the surface by heat treatment, or form an insulating layer on the alloy surface by using an oxidizing agent or the like.
巻磁心で可飽和リアクトル等を形成する場合、前記合金
薄帯と絶縁テープをかさねて巻回し、層間絶縁しても良
い。When forming a saturable reactor or the like with a wound magnetic core, the alloy ribbon and the insulating tape may be overlapped and wound to perform interlayer insulation.
この絶縁テープとしてはポリイミドテープやセラミック
ス繊維製の絶縁テープ、ポリエステルテープ、アラミド
テープ、ガラス繊維製テープ等が使用出来る。As the insulating tape, polyimide tape, ceramic fiber insulating tape, polyester tape, aramid tape, glass fiber tape or the like can be used.
耐熱性に優れたテープを使用する場合は前記合金薄帯と
同組成の非晶質合金薄帯と重ねて巻回した後、熱処理す
ることが可能になる。When a tape having excellent heat resistance is used, it can be heat-treated after being wound around an amorphous alloy ribbon having the same composition as the alloy ribbon and wound.
積層磁心の場合は、前記合金薄帯の一層あるいは複数層
ごとに薄板上の絶縁物を挿入した層間絶縁を行うことも
できる。積層磁心の場合は、可塑性の無い物質例えば、
セラミックス板、ガラス板、雲母板等が使用出来る。こ
の場合も、耐熱性に優れた絶縁物を使用した場合、絶縁
物を挿入した後に熱処理することが出来る。In the case of a laminated magnetic core, it is also possible to perform interlayer insulation by inserting an insulating material on a thin plate for each one or a plurality of layers of the alloy ribbon. In the case of laminated magnetic core, non-plastic material such as
Ceramic plates, glass plates, mica plates, etc. can be used. Also in this case, when an insulator having excellent heat resistance is used, heat treatment can be performed after inserting the insulator.
巻磁心を作成する際、巻始めまたは巻終わりの部分は固
定されているほうが好ましい。これは、熱処理の際巻磁
心の形がくずれにくく熱処理後の取り扱いも容易になる
ためである。When the wound magnetic core is produced, it is preferable that the winding start portion or the winding end portion is fixed. This is because the shape of the wound magnetic core is not easily deformed during the heat treatment, and the handling after the heat treatment is easy.
この固定方法としては、レーザー光照射あるいは電気エ
ネルギーにより局部的に溶融し接合する方法や耐熱性の
接着剤あるいはテープにより固定する方法がある。This fixing method includes a method of locally melting and joining by laser light irradiation or electric energy, and a method of fixing with a heat-resistant adhesive or tape.
本発明は例えば可飽和リアクトルとして用いるときに、
複数個の磁心を重ねて使用する等、組磁心として形成し
たり、他の磁心と組み合わせて形成しても良い。The present invention, for example, when used as a saturable reactor,
It may be formed as a combined magnetic core, for example, by stacking a plurality of magnetic cores, or may be formed in combination with another magnetic core.
本発明磁心は使用する薄帯表面をメッキしたりコーティ
ングしたりして耐蝕性を改善することを行うが、一般的
には、絶縁物から鳴るボビンやケースに入れたり、磁心
の周囲をコーティングしたり、磁心をシリコンオイルに
つけたり、シリコン樹脂で含浸あるいはコーティングし
たり、ケースにグリース等の合金と外気を遮断する物質
を充填することによって錆による特性劣化、破損の防
止、巻線との絶縁を行う。また、本発明において用いる
合金はFe基であるため特に錆の発生防止のために合金と
外気を遮断することは耐久性向上のため有効な手段であ
る。The magnetic core of the present invention is coated or coated on the surface of the thin ribbon to be used to improve the corrosion resistance, but in general, it is put in a bobbin or a case that rings from an insulator or coated around the magnetic core. To prevent deterioration of characteristics due to rust, damage, and insulation from windings, by filling the magnetic core with silicon oil, impregnating or coating with silicon resin, and filling the case with an alloy such as grease and a substance that blocks the outside air To do. Further, since the alloy used in the present invention is Fe-based, it is an effective means to improve durability, in particular to shut off the alloy and the outside air to prevent the generation of rust.
[実施例] 以下本発明の実施例を詳しく説明するが、本発明はこれ
らの実施例に限るものではない。[Examples] Examples of the present invention will be described in detail below, but the present invention is not limited to these examples.
実施例1 原子%で、Cu1,Nb2.5,Si13.5,B7.2,残部実質的にFeから
なる合金溶湯から、単ロール法により幅4.5mm、厚さ18
μmのリボンを作成した。このリボンをX線回折により
分析した結果を第2図に示す。これは非晶質合金特有の
ハローパターンを示すものであり、このリボンは非晶質
であることが確認された。このリボンを外径13mm,内径1
0mmに巻回し第5図に示す巻磁心を作成した。Example 1 From a molten alloy containing Cu1, Nb2.5, Si13.5, B7.2 and the balance substantially Fe in atomic%, a width of 4.5 mm and a thickness of 18 were obtained by a single roll method.
A μm ribbon was created. The result of the X-ray diffraction analysis of this ribbon is shown in FIG. This shows a halo pattern peculiar to an amorphous alloy, and it was confirmed that this ribbon was amorphous. This ribbon has an outer diameter of 13 mm and an inner diameter of 1
The wound magnetic core shown in FIG.
次に、550℃、1時間の微結晶化熱処理を行なった。Then, a microcrystallization heat treatment was performed at 550 ° C. for 1 hour.
この磁心をフェノール樹脂性のコアケースに入れ、1次
側および2次側とも10ターンの巻線を施した。この磁心
部品を、100℃の恒温槽に入れ実効透磁率の経時変化を
測定した。結果を第1図に示した。比較例として同様の
方法で原子%でFe0.4,Mn5.9,Si15,B9,残部実質的にCoよ
りなる非晶質合金および微結晶化熱処理しない本発明と
同組成の非晶質合金で形成した磁心部品の経時変化を同
様に示した。This magnetic core was put into a phenol resin core case, and 10 turns of winding were applied to both the primary side and the secondary side. This magnetic core part was placed in a constant temperature bath at 100 ° C. and the change with time of the effective magnetic permeability was measured. The results are shown in Fig. 1. As a comparative example, the same method was used to prepare an amorphous alloy consisting of Fe0.4, Mn5.9, Si15, B9 in atomic% and the balance consisting essentially of Co, and an amorphous alloy having the same composition as the present invention without heat treatment for microcrystallization. The changes over time of the formed magnetic core parts are also shown.
第1図より本発明の磁心部品で実効透磁率はほとんど劣
化せず、前述した経時変化率Xは0.02であった。一方、
比較例のCo基合金では、0.73と経時変化の激しいもので
あった。また、本発明と同組成を有する合金の場合は0.
03であり、経時変化は少ないものであったが実効透磁率
は7000しかなく、本発明の磁心部品よりも非常に小さい
値であった。したがって、本発明の磁心部品は経時変化
が少なく耐久性に優れたものであることがわかった。From FIG. 1, the effective magnetic permeability of the magnetic core component of the present invention was hardly deteriorated, and the above-mentioned change rate X with time was 0.02. on the other hand,
The Co-based alloy of Comparative Example had a severe change with time of 0.73. Further, in the case of an alloy having the same composition as the present invention, 0.
The effective permeability was only 7,000, which was much smaller than that of the magnetic core component of the present invention. Therefore, it was found that the magnetic core component of the present invention has little change over time and is excellent in durability.
この磁心を分解し合金の組織を分析したところ、第3図
(a)のX線回折パターン,第3図(b)の透過電子顕
微鏡により観察した模式図から50〜200ÅのbccFe固溶体
からなる超微細な結晶粒組織を有しておりこの結晶粒は
均一に分布していることがわかった。This magnetic core was disassembled and the structure of the alloy was analyzed. As a result, the X-ray diffraction pattern shown in Fig. 3 (a) and the schematic diagram observed with a transmission electron microscope in Fig. 3 (b) showed that the superstructure consisting of bccFe solid solution of 50 to 200 Å It was found that it has a fine grain structure and that these grains are uniformly distributed.
尚、この結晶粒の周囲は非晶質であると考えられるが、
熱処理温度が高い場合は結晶相になっていると推測され
る。It is considered that the periphery of this crystal grain is amorphous,
When the heat treatment temperature is high, it is presumed to be in the crystalline phase.
実施例2 第6図は制御磁化特性測定用回路であり、可飽和リアク
トルを評価するのに用いた測定回路である。第7図は任
意の直流の制御電流Icが制御回路に流れている場合の可
飽和リアクトルの動作模式図である。Example 2 FIG. 6 shows a controlled magnetization characteristic measuring circuit, which is a measuring circuit used for evaluating a saturable reactor. FIG. 7 is an operation schematic diagram of the saturable reactor when an arbitrary direct-current control current Ic is flowing in the control circuit.
第6図中、試料SはNL,Nc,Nvの3種類の巻線と磁心で構
成された可飽和リアクトルである。In FIG. 6, the sample S is a saturable reactor composed of three types of windings N L , Nc, and Nv and a magnetic core.
Nlは磁気増幅器として用いた可飽和リアクトルの出力巻
線に相当し、抵抗RL及び整流器Dを介し、周波数f(周
期Tp)の交流電源Egに接続されている。Egの値はゲート
半周期Tgにおいて、印加電圧の正弦波電圧の90°以内の
位相角で磁心が飽和に達するような大きな値に設定す
る。Nl corresponds to the output winding of the saturable reactor used as the magnetic amplifier, and is connected to the AC power source Eg having the frequency f (cycle Tp) via the resistor RL and the rectifier D. The value of Eg is set to a large value such that the magnetic core reaches saturation at a phase angle within 90 ° of the sine wave voltage of the applied voltage in the gate half cycle Tg.
Ncは制御巻線で、制御回路よりみた磁心インダクタンス
に比較し、充分大きな値のインダクタンスLcを通して直
流電源Ecに接続し、拘束磁化条件の直流起磁力を与えて
いる。Nvは制御入力に対応するリセット磁束量Δφcm測
定用巻線で、平均値整流方式の交流電圧計Vに接続され
ている。Nc is a control winding, which is connected to a DC power source Ec through an inductance Lc having a sufficiently large value compared with the magnetic core inductance seen from the control circuit, and gives a DC magnetomotive force of a restricted magnetizing condition. Nv is a winding for measuring the reset magnetic flux amount Δφcm corresponding to the control input, and is connected to the average value rectification type AC voltmeter V.
第8図に本測定回路により測定して得られる制御磁化曲
線の模式図を示す。FIG. 8 shows a schematic diagram of a control magnetization curve obtained by measuring with this measurement circuit.
全制御磁化力Hrの逆数をβ0とおくと、 β0=1/Hr 可飽和リアクトルとしてはβ0が大(Hrが小)であるほ
ど制御電流は小となり特性が良いことになる。If β 0 is the reciprocal of the total control magnetizing force Hr, β 0 = 1 / Hr As a saturable reactor, the larger β 0 (smaller Hr), the smaller the control current and the better the characteristics.
一方、磁心の磁化特性の角形の程度を示すパラメータを
α0とおくと、 β0=1−ΔBb/ΔBm 可飽和リアクトルとしては、α0が大であるほど制御不
能磁束密度ΔBbが小さい特性が良いことになる。On the other hand, if the parameter indicating the degree of squareness of the magnetization characteristics of the magnetic core is set to α 0 , β 0 = 1−ΔBb / ΔBm As a saturable reactor, the larger the α 0 is, the smaller the uncontrollable magnetic flux density ΔBb is. It will be good.
α0とβ0の積をG0で表し、Specific Core Gainと呼ぶ
が、この G0=α0・β0 が大きいほど総合的に見て可飽和リアクトル用磁心とし
て優れていると判断できる。The product of α 0 and β 0 is represented by G 0, which is called Specific Core Gain. It can be determined that the larger G 0 = α 0 · β 0 , the better the magnetic core for a saturable reactor as a whole.
また、ゲート磁界の最大値 HLm={NL・iL(max)}/le ……(1) le:資料の平均磁路長 に対応する磁束密度の最大値Bmと制御磁界 H=(Nc・Ic)/le ……(2) によって決まる磁束密度Bcとの差の磁束密度量をΔBcm
とし、周波数をfとすれば、Nv回路の磁束電圧型Vの読
みは Ev=f・Nv・A・ΔBcm ……(3) A:磁心の有効断面積 実際の可飽和リアクトルにおいては磁界Hが正の領域の
特性HLm−ΔBb特性と、磁界Hが負の領域の特性Hlm−Δ
Bb特性を把握することが必要である。In addition, the maximum value of the gate magnetic field H L m = {N L · i L (max)} / le (1) le: The maximum value B m of the magnetic flux density corresponding to the average magnetic path length in the data and the control magnetic field H = (Nc ・ Ic) / le (2) The magnetic flux density, which is the difference from the magnetic flux density Bc determined by (2), is ΔBcm.
And the frequency is f, the reading of the magnetic flux voltage type V of the Nv circuit is Ev = f · Nv · A · ΔBcm (3) A: Effective area of the magnetic core In the actual saturable reactor, the magnetic field H is Characteristic H L m-ΔBb characteristic in the positive region and characteristic H lm-Δ in the region where the magnetic field H is negative
It is necessary to understand the Bb characteristics.
ΔBb=Bm−Br ……(4) であり、 Evd=f・Nv・A・ΔBcm ……(5) 一方、 ΔB=ΔBcm−ΔBb ……(6) である。ΔBb = Bm−Br (4) and Evd = f · Nv · A · ΔBcm (5) On the other hand, ΔB = ΔBcm−ΔBb (6).
可飽和リアクトルとしては、第8図に示す第1象限の曲
線が下側にあり、第2象限の曲線が右側によっており、
かつ傾斜が急なものほど良いことになる。As the saturable reactor, the curve in the first quadrant shown in FIG. 8 is on the lower side, and the curve in the second quadrant is on the right side,
And the steeper the slope, the better.
実施例3 原子%でCu1%,Si13.5%,B9%,Nb3%及び残部Feからな
る組成の溶湯から、単ロール法により幅4.5mm,厚さ18μ
mのリボンを作成した。このリボンはほぼ完全な非晶質
であった。このリボンを外径13mm、内径10mmに巻回し、
巻磁心を作成した。この合金の結晶化温度は10℃/minの
昇温速度で測定した場合508℃、キュリー温度は約310℃
であった。Example 3 From a molten metal having a composition of Cu1%, Si13.5%, B9%, Nb3% and the balance Fe in atomic%, a width of 4.5 mm and a thickness of 18 μ were measured by a single roll method.
m ribbon was created. This ribbon was almost completely amorphous. Wrap this ribbon around the outer diameter of 13 mm and the inner diameter of 10 mm,
A wound core was created. The crystallization temperature of this alloy is 508 ℃ when measured at a heating rate of 10 ℃ / min, and the Curie temperature is about 310 ℃.
Met.
次に第4図に示す各種の熱処理パターンにより磁場中熱
処理を行った。磁場を印加する場合は磁心の磁路方向に
10Oe印加した。熱処理後の合金は組織の大部分がbcc構
造のFe固溶体からなる100〜200Åの結晶粒からなること
が確認された。Next, heat treatment in a magnetic field was performed according to various heat treatment patterns shown in FIG. When applying a magnetic field, in the magnetic path direction of the magnetic core
Applied 10 Oe. It was confirmed that most of the structure of the alloy after heat treatment consisted of 100-200 Å crystal grains consisting of Fe solid solution of bcc structure.
この磁心をフェノール性コアケースに入れ実施例1と同
様に1次側、2次側とも10ターンの巻線を行い可飽和リ
アクトルとしての特性を試験した。作成した磁心の磁気
特性を第1表に示す。This magnetic core was put in a phenolic core case, and winding was performed for 10 turns on both the primary side and the secondary side in the same manner as in Example 1, and the characteristics as a saturable reactor were tested. Table 1 shows the magnetic characteristics of the prepared magnetic core.
第1表に示すように、第4図に示す各熱処理パターンに
よって、高角形比の特性が得られ、2kG、100kHzにおけ
るコア損失W2/100kはCo基非晶質合金の磁心(W2/100k=
200−900)に匹敵する小さな値を示した。また、10Oeに
おける磁束密度B10(≒Bs)は12.4kGあり、Co基非晶質
合金、80%Niパーマロイ等による磁心よりかなり高い値
を示した。 As shown in Table 1, the heat treatment patterns shown in FIG. 4 provide high squareness characteristics, and the core loss W2 / 100k at 2kG and 100kHz is the core of Co-based amorphous alloy (W2 / 100k =
200-900). The magnetic flux density B10 (≈ Bs) at 10 Oe was 12.4 kG, which was considerably higher than that of a magnetic core made of Co-based amorphous alloy, 80% Ni permalloy, etc.
なお、第4図中の(b)の熱処理を行った合金のキュリ
ー温度Tcは570℃、飽和磁歪λsは3.8×10-6であった。The Curie temperature Tc of the heat-treated alloy shown in FIG. 4B was 570 ° C., and the saturation magnetostriction λs was 3.8 × 10 −6 .
実施例4 原子%でCu1%,Si13.5%,B9%,N5%及び残部実質的にFe
からなる組成の溶湯から、単ロール法により幅5mm,厚さ
18μmのリボンを作成した。この合金の結晶化温度は、
10℃/minで測定した場合533℃であった。また、キュリ
ー温度は260℃であった。Example 4 Cu1%, Si13.5%, B9%, N5% and the balance substantially Fe in atomic%
5 mm wide and thick by the single roll method from the molten metal composed of
An 18 μm ribbon was created. The crystallization temperature of this alloy is
It was 533 ° C when measured at 10 ° C / min. The Curie temperature was 260 ° C.
次に、このリボン表面に電気泳動法によってMgO粉末を
つけ、外径19mm,内径15mmに巻回し巻磁心を作成した。Next, MgO powder was applied to the surface of this ribbon by an electrophoresis method, and the ribbon was wound around an outer diameter of 19 mm and an inner diameter of 15 mm to form a wound magnetic core.
次に、この巻磁心を610℃に保ったN2ガス雰囲気炉に入
れ1時間保持した後、磁心の磁路方向に5Oeの磁場を印
加しながら5℃/minの冷却速度で250℃まで冷却し、4
時間保持後室温まで約60℃/minの冷却速度で室温まで冷
却した。Next, the wound magnetic core was placed in an N 2 gas atmosphere furnace kept at 610 ° C. and held for 1 hour, and then cooled to 250 ° C. at a cooling rate of 5 ° C./min while applying a magnetic field of 5 Oe in the magnetic path direction of the magnetic core. Then 4
After holding for a period of time, it was cooled to room temperature at a cooling rate of about 60 ° C./min.
また、同様の巻磁心を610℃で1時間保持後、磁心の磁
路方向に5Oeの磁場を印加しながら100℃/minの冷却速度
で室温まで冷却した。After holding the same wound magnetic core at 610 ° C. for 1 hour, it was cooled to room temperature at a cooling rate of 100 ° C./min while applying a magnetic field of 5 Oe in the magnetic path direction of the magnetic core.
これらの磁心をフェノール樹脂性コアケースに入れ実施
例1と同様に1次側、2次側とも10ターンの巻線を行い
可飽和リアクトルとしての特性を試験した。得られた磁
気特性を結果をそれぞれ第2表(a)および(b)に示
す。These magnetic cores were put in a phenol resin core case, and windings of 10 turns were made on both the primary side and the secondary side in the same manner as in Example 1 to test the characteristics as a saturable reactor. The obtained magnetic characteristics are shown in Table 2 (a) and (b), respectively.
第2表からわかるようにこれらは高角形比を有してお
り、可飽和リアクトルとして好適である。なお、第2表
パターン(b)で熱処理した合金の主相のキュリー温度
は550℃、飽和磁歪λsは1×10-6であった。As can be seen from Table 2, these have a high squareness ratio and are suitable as a saturable reactor. The Curie temperature of the main phase of the alloy heat-treated according to the pattern (b) in Table 2 was 550 ° C., and the saturation magnetostriction λs was 1 × 10 −6 .
また、合金組織は実施例1とほぼ同じように超微結晶で
占められていた。Further, the alloy structure was occupied by ultrafine crystals in the same manner as in Example 1.
実施例5 第9図に本発明の可飽和リアクトルに用いる磁心と、従
来の高角形比Fe基非晶質合金の可飽和リアクトルに用い
る磁心、高角形比Co基非晶質合金の可飽和リアクトルの
磁心のコア損失の周波数依存性の一例を示した。 Example 5 FIG. 9 shows a magnetic core used in the saturable reactor of the present invention, a magnetic core used in a saturable reactor of a conventional high squareness ratio Fe-based amorphous alloy, and a saturable reactor of a high squareness ratio Co-based amorphous alloy. An example of the frequency dependence of the core loss of the magnetic core was shown.
本発明可飽和リアクトルに使用した合金の内、Fe73.5Cu
1Nb3Si13.5B9合金(タイプ1)は磁路方向に2Oeの磁場
を印加しながら550℃で1時間保持後280℃で1時間保持
し冷却する熱処理を行ったもの、Fe71.5Cu1Nb5Si13.5B9
合金(タイプ2)は磁路方向に15Oeの磁場を印加しなが
ら610℃で1時間保持し更に250℃で2時間保持後冷却す
る熱処理を行ったもの、Fe71.5Cu1Nb5Si13.5B9合金(タ
イプ3)は610℃で1時間保持後磁路方向に2Oeの磁場を
印加しながら空冷する熱処理を行ったものである。Among the alloys used in the saturable reactor of the present invention, Fe73.5Cu
The 1Nb3Si13.5B9 alloy (type 1) was heat-treated by holding it at 550 ° C for 1 hour and then holding it at 280 ° C for 1 hour while applying a 2Oe magnetic field in the magnetic path direction. Fe71.5Cu1Nb5Si13.5B9
The alloy (type 2) was heat-treated by holding it at 610 ° C for 1 hour while applying a magnetic field of 15 Oe in the magnetic path direction, further holding it at 250 ° C for 2 hours, and then cooling it. Fe71.5Cu1Nb5Si13.5B9 alloy (type 3) Is heat-treated by holding at 610 ° C. for 1 hour and then air-cooling while applying a magnetic field of 2 Oe in the magnetic path direction.
本発明の可飽和リアクトルに用いる磁心は従来の高角形
比Co基非晶質合金の場合と同等あるいはそれ以下のコア
損失であり、可飽和リアクトルとして好適である。ま
た、従来の高角形比Fe基非晶質合金の場合の1/2以下の
コア損失となった。The magnetic core used for the saturable reactor of the present invention has a core loss equal to or less than that of the conventional high-square-ratio Co-based amorphous alloy, and is suitable as the saturable reactor. In addition, the core loss was less than half that of the conventional high-square-ratio Fe-based amorphous alloy.
実施例6 実施例5の第9図に示した合金による本発明の可飽和リ
アクトルと従来の高角形比Co基非晶質合金による可飽和
リアクトルを実施例2に示した第6図の評価回路によっ
て制御磁化特性を評価した。この時の巻線は1次側(N
v)及び2次側の巻線(Nl)はそれぞれ17ターン、制御
用巻線(Nc)は5ターンである。その結果を第10図に示
した。Example 6 The evaluation circuit of FIG. 6 showing the saturable reactor of the present invention using the alloy shown in FIG. 9 of Example 5 and the saturable reactor of the conventional high squareness ratio Co-based amorphous alloy shown in FIG. The controlled magnetization characteristics were evaluated by. The winding at this time is the primary side (N
v) and the secondary winding (Nl) have 17 turns each and the control winding (Nc) has 5 turns. The results are shown in Fig. 10.
本発明の可飽和リアクトルの同一ΔBに対する制御磁化
力は高角形比Co基非晶質合金の場合とほぼ同等である
が、全制御磁束密度量ΔBmがCo基非晶質合金の可飽和リ
アクトルの1.5〜2倍程度あり大きくとれるのでの磁心
の温度上昇があまり問題とならない条件下では可飽和リ
アクトルを小型化できることがわかる。The control magnetizing force of the saturable reactor of the present invention for the same ΔB is almost the same as that of the high-square-ratio Co-based amorphous alloy, but the total controlled magnetic flux density ΔBm of the saturable reactor of the Co-based amorphous alloy is the same. It can be seen that the saturable reactor can be miniaturized under the condition that the temperature rise of the magnetic core is not so problematic because it is 1.5 to 2 times larger and can be made large.
実施例7 第11図に原子%でCu1%,Si13.5%,B9%,Nb3%及び残部F
eからなる微結晶合金を用いた本発明に係る可飽和リア
クトルの温度特性を示した。Example 7 Fig. 11 shows Cu1%, Si13.5%, B9%, Nb3% and balance F in atomic%.
The temperature characteristics of the saturable reactor according to the present invention using the microcrystalline alloy of e are shown.
角形比Br/B10、コア損失、保磁力Hcともに室温から150
℃の範囲でほとんど変化しない。また、B10も150℃で室
温より1kG程度低下するだけで実用上問題なく、耐久性
に優れた可飽和リアクトルであることがわかった。Squareness ratio Br / B10, core loss, coercive force Hc from room temperature to 150
Almost no change in the range of ° C. It was also found that B10 is a saturable reactor with excellent durability and practically no problem as it only drops about 1 kG from room temperature at 150 ° C.
実施例8 第3表に示す組成の合金溶湯から単ロール法により幅5m
m,厚さ18μmの非晶質リボンを作成した。次に、このリ
ボンを外径19mm,内径15mmに巻回し巻磁心を作成した。
この巻磁心を熱処理することにより、超微結晶粒からな
る組織を有するものとした。Example 8 A width of 5 m was obtained from a molten alloy having the composition shown in Table 3 by the single roll method.
An amorphous ribbon having a thickness of m and a thickness of 18 μm was prepared. Next, this ribbon was wound around an outer diameter of 19 mm and an inner diameter of 15 mm to form a wound magnetic core.
The wound magnetic core was heat-treated to have a structure composed of ultrafine crystal grains.
この磁心をフェノール樹脂性のケースに入れ実施例1と
同様に1次側、2次側とも10ターンの巻線を行い可飽和
リアクトルとしての特性を試験した。この時の直流B−
Hカーブ、交流B−Hカーブ、100kHz,2kGにおけるコア
損失W2/100k、および実施例2に示した方法によって実
施例6と同様の可飽和リアクトルを作成したときの50KH
zにおける制御磁化曲線を測定した。The magnetic core was put in a phenol resin case, and windings of 10 turns were made on both the primary side and the secondary side in the same manner as in Example 1 to test the characteristics as a saturable reactor. DC B- at this time
H curve, AC B-H curve, core loss W2 / 100k at 100 kHz, 2 kG, and 50 KH when a saturable reactor similar to that in Example 6 was prepared by the method shown in Example 2.
The controlled magnetization curve at z was measured.
10Oeの磁場を印加した場合の磁束密度B10,直流 B−Hカーブの角形比Br/B10,Hc(DC),20kHzにおける
交流B−Hカーブの角形比Br/B1(AC),Hc(AC),W2/10
0k,全制御磁化力Hr,制御不能磁束密度ΔBbを第3表に示
した。Magnetic flux density B10, DC when a magnetic field of 10 Oe is applied Squareness ratio of B-H curve Br / B10, Hc (DC), AC squareness ratio of AC BH curve at 20kHz Br / B1 (AC), Hc (AC), W2 / 10
Table 3 shows 0k, total control magnetizing force Hr, and uncontrollable magnetic flux density ΔBb.
本発明の可飽和リアクトルはB10がCo基非晶質合金の場
合、80wt%Niパーマロイの場合より高く、高角形比であ
り、Hc,コア損失、Hr,ΔBbはCo基非晶質合金の場合に匹
敵する優れた特性を示すことがわかった。In the saturable reactor of the present invention, when B10 is a Co-based amorphous alloy, it is higher than in the case of 80 wt% Ni permalloy and has a high squareness ratio, Hc, core loss, Hr, ΔBb is a Co-based amorphous alloy. It has been found that it exhibits excellent characteristics comparable to
また、50wt%NiパーマロイやFe基非晶質合金の場合に比
べ低損失でHrが小さく制御磁化特性に優れている。Moreover, compared with the case of 50 wt% Ni permalloy or Fe-based amorphous alloy, the loss is low, the Hr is small, and the controlled magnetization characteristics are excellent.
これより、制御電流を小さくすることができ回路の効率
を上げることが出来ることがわかった。また、ΔBbが小
さいため制御範囲も十分広いことがわかった。From this, it was found that the control current can be reduced and the efficiency of the circuit can be increased. It was also found that the control range is sufficiently wide because ΔBb is small.
実施例9 第4表に示す組成の合金溶湯から、実施例8と同様に超
微結晶粒組織を有する巻磁心を作成し、可飽和リアクト
ルとしての特性を試験した。この 可飽和リアクトルの10Oeにおける磁束密度B10,100kHz,2
kGにおけるコア損失W2/100k,制御不能磁束密度ΔBb、飽
和磁歪λsを測定した。得られた結果を第4表に示し
た。Example 9 A wound magnetic core having an ultrafine grain structure was prepared in the same manner as in Example 8 from the molten alloy having the composition shown in Table 4, and the characteristics as a saturable reactor were tested. this Magnetic flux density at 10 Oe of saturable reactor B10,100kHz, 2
The core loss W2 / 100k in kG, the uncontrollable magnetic flux density ΔBb, and the saturation magnetostriction λs were measured. The results obtained are shown in Table 4.
本発明の可飽和リアクトルはFe基非晶質合金の場合より
も、高角形比、低Hc、低コア損失で制御不能磁束密度Δ
Bbが小さい。また、λsが小さいためコーティング等に
よる特性劣化を防止できることがわかった。The saturable reactor of the present invention has a higher squareness ratio, lower Hc, lower core loss, and uncontrollable magnetic flux density Δ than those of Fe-based amorphous alloys.
Bb is small. It was also found that the deterioration of characteristics due to coating or the like can be prevented because λs is small.
実施例10 原子%でCu1%,Si13.5%,B9%,Nb3%及び残部Feからな
る非晶質合金リボンと比較例として原子%でSi13.5%,B
9%,Nb3%及び残部Feからなる非晶質合金リボンを作成
した。Example 10 Amorphous alloy ribbon composed of Cu1%, Si13.5%, B9%, Nb3% and balance Fe in atomic% and Si13.5%, B in atomic% as a comparative example
An amorphous alloy ribbon consisting of 9%, Nb3% and balance Fe was prepared.
このCu-Nbを含有する前者の非晶質合金の結晶化温度
は、10℃/minの昇温速度で測定した場合508℃であり、
比較例の非晶質合金は583℃であった。The crystallization temperature of the former amorphous alloy containing Cu-Nb is 508 ° C. when measured at a temperature rising rate of 10 ° C./min,
The amorphous alloy of the comparative example had a temperature of 583 ° C.
これらの非晶質合金を巻回し外径19mm,内径15mmの巻磁
心を作成した。These amorphous alloys were wound to form a wound magnetic core having an outer diameter of 19 mm and an inner diameter of 15 mm.
Cu-Nbを含有する本発明に用いた磁心には550℃で1時間
磁路方向に10Oeの磁場を印加しながら保持した後、20℃
/minの冷却速度で室温まで冷却し超微結晶粒が組織の大
部分を占める磁心を得た。The magnetic core containing Cu-Nb used in the present invention was held at 550 ° C. for 1 hour while applying a magnetic field of 10 Oe in the magnetic path direction, and then kept at 20 ° C.
After cooling to room temperature at a cooling rate of / min, a magnetic core was obtained in which the ultrafine crystal grains occupied most of the structure.
一方、比較例の磁心は500℃で1時間保持後磁路方向に1
0Oeの磁場をかけながら280℃まで5℃/minの冷却速度で
冷却し280℃に4時間保持後室温まで20℃/minの冷却速
度で冷却した。なお、比較例の磁心の組織は非晶質状態
であった。これらの磁心をフェノール樹脂製のコアケー
スに入れ巻線を、1次側、2次側共に20ターン、制御用
巻線5ターンを有する可飽和リアクトルを作成した。On the other hand, the magnetic core of the comparative example was held at 500 ° C for 1 hour,
While applying a magnetic field of 0 Oe, it was cooled to 280 ° C at a cooling rate of 5 ° C / min, kept at 280 ° C for 4 hours, and then cooled to room temperature at a cooling rate of 20 ° C / min. The structure of the magnetic core of the comparative example was in an amorphous state. These magnetic cores were put in a core case made of phenol resin, and a saturable reactor having 20 windings on both the primary side and the secondary side and 5 turns of the control winding was prepared.
これらの可飽和リアクトルを駆動周波数100kHz,出力12V
4A(マグアンプ制御)、5V12A(PWM制御)の磁気制御型
スイッチング電源に取付け出力電荷特性を測定した。入
力電圧はAC100V,5V出力は12A一定にし12V負荷電流を変
化させ12V出力端子電圧、電源効率η、コアケース表面
温度上昇ΔTを比較した。These saturable reactors drive frequency 100kHz, output 12V
The output charge characteristics were measured by mounting it on a magnetically controlled switching power supply of 4A (mag amp control) and 5V12A (PWM control). Input voltage was AC100V, 5V output was 12A constant, 12V load current was changed, and 12V output terminal voltage, power supply efficiency η, and core case surface temperature rise ΔT were compared.
得られた結果を第12図に示す。The obtained results are shown in FIG.
本発明の可飽和リアクトルの場合は比較例よりも温度上
昇が小さくかつ電源効率ηも高く出力電圧もほとんど変
化しないものを得ることができた。In the case of the saturable reactor of the present invention, it was possible to obtain the one in which the temperature rise was smaller than that of the comparative example, the power supply efficiency η was high, and the output voltage hardly changed.
実施例11 原子%でCu0.8%,Si13.6%,B9%,Nb3%及び残部実質的
にFeからなる組成の溶湯と原子%でCu1%,Si13.5%,B9
%,Nb5%及び残部実質的にFeからなる組成の溶湯から単
ロール法により非晶質合金を作成した。これらをN2ガス
雰囲気中で磁路方向に10Oeの磁場を印加しながら磁場中
熱処理を行った。Example 11 A molten metal having a composition of Cu 0.8%, Si 13.6%, B 9%, Nb 3%, and balance Fe at atomic% and Cu 1%, Si 13.5%, B 9 at atomic%.
%, Nb5%, and the balance consisting essentially of Fe, an amorphous alloy was prepared by the single roll method. These were annealed in a magnetic field while applying a magnetic field of 10 Oe in the magnetic path direction in an N 2 gas atmosphere.
前者は550℃1時間保持後280℃に1時間保持するもので
あり、後者は610℃1時間保持後250℃に4時間保持する
ものであった。磁場は熱処理の期間中印加し続けた。The former was for holding at 550 ° C for 1 hour and then at 280 ° C for 1 hour, and the latter was for holding at 610 ° C for 1 hour and then at 250 ° C for 4 hours. The magnetic field was continuously applied during the heat treatment.
この熱処理により超微結晶粒を有する組織とすることが
できた。This heat treatment made it possible to obtain a structure having ultrafine crystal grains.
次に、これらをベーク製のコアケースに入れ1次側、2
次側ともに10ターンの巻線を施し可飽和リアクトルとし
ての特性を試験した。Next, put them in a bake core case, and
The secondary side was wound with 10 turns and tested for its characteristics as a saturable reactor.
これらの直流B−Hカーブを測定した結果を第13図に示
す。比較例として原子%で,Si15%,B9%,Mn5.9%及び残
部実質的にCoからなる非晶質合金によって本発明と同様
に構成した可飽和リアクトルの直流B−Hカーブを示
す。本発明の場合は比較例のCo基非晶質合金の場合より
B10が高く、保磁力Hc、角形比Br/B10はほぼ同等であっ
た。また、最大透磁率μmは Fe73.6Cu0.8Si13.6B9Nb3合金の場合1.45×106 Fe71.5Cu1Si13.5B9Nb5合金の場合1.00×106であった。The results of measuring these DC BH curves are shown in FIG. As a comparative example, there is shown a DC BH curve of a saturable reactor constituted in the same manner as the present invention by using an amorphous alloy composed of atomic%, Si15%, B9%, Mn5.9% and the balance substantially Co. In the case of the present invention, compared to the case of the Co-based amorphous alloy of the comparative example
B10 was high, coercive force Hc, and squareness ratio Br / B10 were almost the same. The maximum permeability μm was 1.45 × 10 6 in the case of Fe73.6Cu0.8Si13.6B9Nb3 alloy and 1.00 × 10 6 in the case of Fe71.5Cu1Si13.5B9Nb5 alloy.
実施例12 Fe72.5-XCuXSi13.5B9Nb3合金溶湯及び比較例としてFe7
7.5-XCuXSi13.5B9合金溶湯から単ロール法により非晶質
合金リボンを作成した。Example 12 Fe72.5-XCuXSi13.5B9Nb3 alloy molten metal and Fe7 as a comparative example
Amorphous alloy ribbons were prepared from the 7.5-XCuXSi13.5B9 alloy melt by the single roll method.
次に、これらのリボンを外径19mm、内径15mmに巻回し磁
心を製作した。この磁心をN2ガス雰囲気中で磁路方向に
20Oeの磁場を印加しながら他の条件は第4図の熱処理パ
ターン(b)と同様に熱処理した。この磁心をフェノー
ル樹脂性のコアケースに入れ1次側、2次側ともに10タ
ーンの巻線を行い可飽和リアクトルとし、実施例2で示
す回路により制御磁化特性を測定した。Next, these ribbons were wound around an outer diameter of 19 mm and an inner diameter of 15 mm to produce a magnetic core. This magnetic core is oriented in the magnetic path in an N 2 gas atmosphere.
While applying a magnetic field of 20 Oe, other conditions were the same as the heat treatment pattern (b) of FIG. This magnetic core was placed in a phenol resin core case, and windings of 10 turns were made on both the primary side and the secondary side to make a saturable reactor, and the control magnetization characteristics were measured by the circuit shown in Example 2.
50kHzにおけるSpecific Core Gain G0を測定した結果を
第14図に示す。Figure 14 shows the results of measuring the Specific Core Gain G 0 at 50kHz.
Xが0.1を以上になるとG0が著しく大きくなるが、Xが
3を超えると0が小さくなり好ましくないことがわかっ
た。It was found that when X exceeds 0.1, G 0 remarkably increases, but when X exceeds 3, 0 decreases, which is not preferable.
また、Nbを添加していない場合はG0はCuの添加により余
り改善されない。このことからCuとNbの複合添加が可飽
和リアクトルの制御磁化特性改善に非常に有効であるこ
とが判った。Further, when Nb is not added, G 0 is not so much improved by the addition of Cu. From this, it was found that the combined addition of Cu and Nb is very effective in improving the controlled magnetization characteristics of the saturable reactor.
実施例13 Fe76.5−αCu1Si15.5B7Nbα合金溶湯及び比較例としてF
e77.5−αSi15.5B7Nbα合金溶湯から単ロール法により
非晶質合金リボンを作成した。Example 13 Fe76.5-αCu1Si15.5B7Nbα molten alloy and F as a comparative example
Amorphous alloy ribbons were prepared from the melted e77.5-αSi15.5B7Nbα alloy by the single roll method.
次に、これらのリボンを外径19mm、内径15mmに巻回し磁
心を製作した。この磁心をN2ガス雰囲気中で磁路方向に
20Oeの磁場を印加しながら他の条件は第4図の熱処理パ
ターン(b)と同様に熱処理し、実施例12と同様に可飽
和リアクトルを作成してから、50kHzにおけるSpecific
Core Gain G0を測定した。得られた結果を第15図に示
す。Next, these ribbons were wound around an outer diameter of 19 mm and an inner diameter of 15 mm to produce a magnetic core. This magnetic core is oriented in the magnetic path in an N 2 gas atmosphere.
While applying a magnetic field of 20 Oe, heat treatment was performed under the other conditions in the same manner as the heat treatment pattern (b) of FIG. 4, and a saturable reactor was created in the same manner as in Example 12, and then at 50 kHz.
Core Gain G 0 was measured. The obtained results are shown in FIG.
本発明の可飽和リアクトルは比較例よりもG0が著しく大
きくCuとNbの複合添加が制御磁化特性改善に非常に有効
であることが確認できた。It was confirmed that the saturable reactor of the present invention has a remarkably larger G 0 than the comparative example, and that the combined addition of Cu and Nb is very effective in improving the controlled magnetization characteristics.
実施例14 原子%でCu1%,Si13.5%,B9%,Nb3%及び残部実質的にF
eからなる組成の溶湯から、単ロール法により幅3mm,厚
さ18μmのリボンを作成した。このリボンを実施例3の
第4図(b)の熱処理を行った。Example 14 Cu1%, Si13.5%, B9%, Nb3% and the balance substantially F at atomic%
A ribbon having a width of 3 mm and a thickness of 18 μm was prepared from a molten metal having a composition of e by a single roll method. This ribbon was heat-treated in Example 3 as shown in FIG.
次にこの磁心をフェノール樹脂製のケースに入れ0.4mm
φの巻線を20ターンほどこし、第16図に示す半導体回路
用リアクトルを作成した。このリアクトルの1kHzのイン
ダクタンスを測定した。最大インダクタンスと初期イン
ダクタンスの比は3.03、最大インダクタンスと残留イン
ダクタンス(残留インダクタンスとは直流を重畳させた
場合のインダクタンス)の比は300であった。Next, put this magnetic core in a case made of phenol resin and 0.4 mm
The φ winding was wound about 20 turns to produce the semiconductor circuit reactor shown in FIG. The 1kHz inductance of this reactor was measured. The ratio of the maximum inductance to the initial inductance was 3.03, and the ratio of the maximum inductance to the residual inductance (the residual inductance is the inductance when DC is superimposed) was 300.
最大インダクタンスと残留インダクタンスの比が大きい
ためダイオードのリカバリ特性改善に優れた特性が得ら
れた。Since the ratio between the maximum inductance and the residual inductance is large, excellent characteristics were obtained for improving the recovery characteristics of the diode.
第17図に上記半導体回路用リアクトルを用いたスイッチ
ング電源の基本回路例を示す。また、第18図はパルス幅
10μs、入力電圧100V,D.Cで半波整流回路に上記リアク
トルを挿入した場合としない場合の負荷電流波形を示し
たものであり、本発明の半導体回路用リアクトルを用い
ることにより、電流スパイクを著しく低減できることが
判った。FIG. 17 shows a basic circuit example of a switching power supply using the semiconductor circuit reactor. Fig. 18 shows pulse width
FIG. 7 shows load current waveforms with and without the above reactor inserted in a half-wave rectifier circuit at 10 μs, input voltage 100 V, DC, and by using the semiconductor circuit reactor of the present invention, current spikes are significantly reduced. I knew I could do it.
実施例15 原子%でCu1%,Si13.5%,B7%,Nb2.5%及び残部実質的
にFeからなる組成の溶湯から、単ロール法により幅3mm,
厚さ18μmの非晶質合金リボンを作成した。Example 15 Cu1% at atomic%, Si13.5%, B7%, Nb2.5% and the balance substantially 3% by a single roll method from a molten metal having a composition consisting of Fe,
An amorphous alloy ribbon having a thickness of 18 μm was prepared.
次にこの合金リボンの前記した単ロールとの接触面側に
MgO粉末を塗布し絶縁層を形成した後、外径4mm、内径2m
mに巻回し、トロイダル磁心とた。この磁心を550℃で1
時間熱処理し、磁心の外側表面をエポキシ樹脂でコーテ
ィングし第19図に示すようにダイオードの端子に作成し
た磁心を挿入しダイオードと組合わされた半導体回路用
リアクトルを作成した。Next, on the contact surface side of this alloy ribbon with the single roll described above,
After applying MgO powder to form an insulating layer, outer diameter 4 mm, inner diameter 2 m
It was wound around m and used as a toroidal magnetic core. This magnetic core is 1 at 550 ℃
After heat treatment for a time, the outer surface of the magnetic core was coated with epoxy resin, and the magnetic core prepared at the terminals of the diode was inserted as shown in FIG. 19 to prepare a semiconductor circuit reactor combined with the diode.
次にこのリアクトルをスイッチング電源の出力側の平滑
回路に用い、ダイオード電圧と出力ノイズを測定した。Next, this reactor was used for the smoothing circuit on the output side of the switching power supply, and the diode voltage and the output noise were measured.
本発明のリアクトルを用いない場合、ダイオード電圧は
61.0V、出力ノイズは123mVp−pであったものが、本発
明のリアクトルを用いることにより、ダイオード電圧が
33.5V、出力ノイズが47.3mVp−pとなり、低減効果が著
しく優れていることが確認された。Without using the reactor of the present invention, the diode voltage is
61.0V, the output noise was 123mVp-p, but by using the reactor of the present invention, the diode voltage is
It was confirmed that the reduction effect was remarkably excellent at 33.5 V and the output noise was 47.3 mVp-p.
実施例16 第5表に示す組成の合金リボンからなる磁心を用いた本
発明リアクトルを実施例14と同様な方法で作成し初期イ
ンダクタンスL0、最大インダクタンスLmを測定し、次に
120℃で1000時間保持後に初期インダクタンスL01000、
最大インダクタンスLm1000を測定し0時間の値と1000時
間の値の比L01000/L0、Lm1000/Lmを求めた。得られた結
果を 第5表に示す。Example 16 A reactor of the present invention using a magnetic core made of an alloy ribbon having the composition shown in Table 5 was prepared in the same manner as in Example 14, and the initial inductance L0 and the maximum inductance Lm were measured.
Initial inductance L0 1000 after holding at 120 ℃ for 1000 hours,
The maximum inductance Lm 1000 was measured and the ratio L0 1000 / L0 and Lm 1000 / Lm of the value at 0 hour and the value at 1000 hours were obtained. The results obtained It is shown in Table 5.
第5表からわかるように本発明の半導体回路用リアクト
ルはインダクタンスの経時変化は従来のCo基の非晶質合
金を用いたリアクトルより著しく小さいものであった。As can be seen from Table 5, the time-dependent change in inductance of the semiconductor circuit reactor of the present invention was significantly smaller than that of the conventional reactor using a Co-based amorphous alloy.
実施例17 原子%でCu1%,Si14%,B8%,Nb5%及び残部実質的にFe
からなる組成の溶湯から、単ロール法により幅5mm,最大
板厚20μm、平均板厚17μmの非晶質合金リボンを作成
し、内径6mmにトロイダル状に20回巻回した後、Arガス
雰囲気中600℃で1時間保持し空冷する熱処理を施し実
施例1と同様な組織を有する磁心を作成した。Example 17 Cu1%, Si14%, B8%, Nb5% and the balance substantially Fe in atomic%
An amorphous alloy ribbon with a width of 5 mm, a maximum plate thickness of 20 μm, and an average plate thickness of 17 μm was made from a molten metal having a composition of, and wound in a toroidal shape with an inner diameter of 6 mm 20 times and then in an Ar gas atmosphere. A magnetic core having a structure similar to that of Example 1 was prepared by performing a heat treatment of holding at 600 ° C. for 1 hour and air cooling.
この磁心に20ターンの巻線を施し半導体回路用リアクト
ルを作成した。A winding for 20 turns was applied to this magnetic core to create a semiconductor circuit reactor.
この半導体回路用リアクトルをスイッチング電源のダイ
オードに直列に挿入して、電源効率を求めた。この時の
電源効率は80%であった。また、このリアクトルの温度
上昇は15℃であった。一方、Fe-Si-B系のFe基非晶質合
金からなる同様のリアクトルを用いた場合の電源効率は
77%であり、本発明のリアクトルの方が高効率であっ
た。The power supply efficiency was obtained by inserting this semiconductor circuit reactor in series with the diode of the switching power supply. The power efficiency at this time was 80%. The temperature rise of this reactor was 15 ° C. On the other hand, the power supply efficiency when using a similar reactor made of Fe-Si-B type Fe-based amorphous alloy is
77%, and the reactor of the present invention had higher efficiency.
実施例18 第6表に示す組成の合金溶湯を単ロール法によって急冷
し非晶質合金を得た。この非晶質合金を巻回し、外径35
mm、内径25mmの巻磁心を作成した。この巻磁心を結晶化
温度以上で、磁路と直角方向に5000Oeの磁場を印加しな
がら熱処理し超微結晶粒を有する組織の磁心を作成し
た。Example 18 A molten alloy having the composition shown in Table 6 was rapidly cooled by a single roll method to obtain an amorphous alloy. This amorphous alloy is wound to an outer diameter of 35
A wound magnetic core having an inner diameter of 25 mm and an inner diameter of 25 mm was prepared. This wound magnetic core was heat-treated at a temperature above the crystallization temperature while applying a magnetic field of 5000 Oe in the direction perpendicular to the magnetic path to prepare a magnetic core having a structure having ultrafine crystal grains.
この磁心を第20図に示すように10ターンの巻線を2本形
成しコモンモードチョークを作成した。このコモンモー
ドチョークの直流磁気特性、2kG、100kHzにおけるコア
損失W2/100k、100kHzにおける複素透磁率の絶対値||
100k、10μsのパルス幅でΔBを4kGとした場合の実効
パルス透磁率μp、飽和磁歪λsを測定した。得られた
結果を第6表に示す。As shown in Fig. 20, two 10-turn windings were formed on this magnetic core to form a common mode choke. DC magnetic characteristics of this common mode choke, core loss at 2kG, 100kHz W2 / 100k, absolute value of complex permeability at 100kHz ||
The effective pulse permeability μp and the saturation magnetostriction λs were measured when ΔB was 4 kG with a pulse width of 100 k and 10 μs. The results obtained are shown in Table 6.
直流磁気特性はFe基非晶質合金に匹敵し、||100kはC
o基非晶質合金に匹敵し、100kHz付近の最もノイズ対策
が必要な周波数帯で、大きなコモンモードノイズ減衰効
果が期待できることがわかった。DC magnetic characteristics are comparable to Fe-based amorphous alloys, and || 100k is C
It was found that a large common mode noise attenuation effect can be expected in the frequency band around 100 kHz, which is comparable to the o-based amorphous alloy and requires the most noise suppression.
また、2kG100kHzにおけるコア損失はFe基非晶質合金よ
りも少ないことがわかった。飽和磁歪はCo基非晶質合金
に匹敵するほど小さくできた。 It was also found that the core loss at 2kG100kHz was smaller than that of the Fe-based amorphous alloy. The saturation magnetostriction could be made as small as that of Co-based amorphous alloy.
実施例19 原子%でCu1%,Si16.5%,B6%,Nb3%及び残部実質的にF
eからなる組成の溶湯から、単ロール法により幅7.5mm、
厚さ18mmの非晶質合金を作成した。Example 19 Cu1%, Si16.5%, B6%, Nb3% and the balance substantially F in atomic%
Width 7.5 mm from the molten metal composed of e by the single roll method,
An 18 mm thick amorphous alloy was prepared.
この非晶質合金を巻回し、外径19.5mm、内径9.6mmの巻
磁心を作成した。この磁心をN2雰囲気で3000Oeの磁場を
磁路と直角方向に印加しながら熱処理を行った。この熱
処理において、10℃/min昇温速度で昇温、510℃で1時
間保持後、2.5℃/minの冷却速度で室温まで冷却した。This amorphous alloy was wound to form a wound magnetic core having an outer diameter of 19.5 mm and an inner diameter of 9.6 mm. This magnetic core was heat-treated in a N 2 atmosphere while applying a magnetic field of 3000 Oe in the direction perpendicular to the magnetic path. In this heat treatment, the temperature was raised at a temperature rising rate of 10 ° C./min, held at 510 ° C. for 1 hour, and then cooled to room temperature at a cooling rate of 2.5 ° C./min.
この磁心をフェノール樹脂製のコアケースにいれ、第20
図に示す10ターンの巻線を2本形成したコモンモードチ
ョークを作成した。Put this magnetic core in a phenol resin core case and
We made a common mode choke with two 10-turn windings as shown in the figure.
この時の磁気特性を測定した結果、B10=12kG,Br/B10=
14%,Hc=0.018Oe,μe1k=28000,||100K=22000,B1=
11.5KGであった。As a result of measuring the magnetic characteristics at this time, B10 = 12 kG, Br / B10 =
14%, Hc = 0.018 Oe, μe1k = 28000, || 100K = 22000, B1 =
It was 11.5KG.
次にこのコモンモードチョークを、50kHzで駆動するス
イッチング電源のAC100V入力ラインのラインフィルター
に使用した。この時の電源入力端子漏出コモンモードノ
イズを測定した結果を第21図に示す。Next, this common mode choke was used for the line filter of the AC100V input line of the switching power supply driven at 50kHz. Fig. 21 shows the measurement result of the common mode noise leaking from the power input terminal at this time.
この図から本発明のコモンモードチョークを用いたライ
ンフィルターの方がフェライト磁心を用いた場合より
も、特に低周波側のノイズレベルが低くノイズを減少さ
せる効果が大きいことがわかった。From this figure, it is understood that the line filter using the common mode choke of the present invention has a lower noise level especially on the low frequency side and has a greater effect of reducing noise than the case of using the ferrite magnetic core.
実施例20 原子%でCu1%,Si13.5%,B9%,Nb3%及び残部実質的にF
eからなる組成の溶湯から、単ロール法により非晶質合
金を作成した。Example 20 Cu1%, Si13.5%, B9%, Nb3% and the balance substantially F at atomic%
An amorphous alloy was prepared by a single roll method from a melt having a composition of e.
この非晶質合金を巻回し、外径31mm、内径18mmの巻磁心
を作成した。この磁心をN2雰囲気で5000Oeの磁場を磁路
と直角方向に印加しながら熱処理を行ない、超微結晶粒
を有する組織を得た。This amorphous alloy was wound to form a wound magnetic core having an outer diameter of 31 mm and an inner diameter of 18 mm. This magnetic core was heat-treated in an N 2 atmosphere while applying a magnetic field of 5000 Oe in the direction perpendicular to the magnetic path, and a structure having ultrafine crystal grains was obtained.
この磁心をベーク製コアケースに入れ、1次側、2次側
ともに10ターンの巻線を施し磁気特性を測定した。The magnetic core was put in a bake core case, and windings of 10 turns were made on both the primary side and the secondary side, and the magnetic characteristics were measured.
この時の直流B−Hカーブ、およびパルス透磁率μpを
測定した。結果をそれぞれ第23図(a)および(b)に
示す。比較例として、Mn-ZnフェライトおよびCo基非晶
質合金の場合を付記した。本発明の場合、飽和磁束密度
が高く、低角形比で透磁率が高く、恒透磁率性に優れ、
低コア損失であるため、比較例の合金より実効パルス透
磁率の動作磁束密度変化量ΔB依存性が優れていること
がわかった。これより、コモンモードチョークとして使
用した場合、高電圧パルス状ノイズによっても磁心が飽
和しにくく、高いインダクタンスを維持できるため、高
電圧パルス減衰特性に優れたラインフィルターを作成で
きる。At this time, the DC BH curve and the pulse permeability μp were measured. The results are shown in FIGS. 23 (a) and (b), respectively. As a comparative example, the case of Mn-Zn ferrite and a Co-based amorphous alloy is additionally shown. In the case of the present invention, the saturation magnetic flux density is high, the magnetic permeability is high at a low squareness ratio, and the constant magnetic permeability is excellent,
Since the core loss is low, it was found that the dependency of the effective pulse permeability on the operating magnetic flux density variation ΔB was superior to that of the alloy of the comparative example. As a result, when used as a common mode choke, the magnetic core is less likely to be saturated by high-voltage pulse noise and high inductance can be maintained, so that a line filter excellent in high-voltage pulse attenuation characteristics can be created.
また、この磁心の複素透磁率の絶対値||の周波数特
性を測定した結果を第24図に示す。||が大きいこと
は通常のノイズに大して大きな減衰効率があることを意
味する。FIG. 24 shows the result of measuring the frequency characteristic of the absolute value || of the complex permeability of this magnetic core. A large || means that the ordinary noise has a large attenuation efficiency.
本発明磁心の場合、||がCo基非晶質合金を用いた場
合と同等以上の優れた特性を示すことがわかった。It has been found that in the case of the magnetic core of the present invention, || exhibits excellent characteristics equal to or higher than those in the case of using the Co-based amorphous alloy.
また、このことからトランス用磁心として使用した場
合、トランスの励磁電流を小さくでき、かつ高ΔBで動
作させても磁心が飽和しにくく、温度上昇が問題となら
ない場合は、磁心を小型化でき、高効率のトランスを得
ることができることがわかった。Further, from this fact, when used as a transformer magnetic core, the exciting current of the transformer can be reduced, and the magnetic core is less likely to be saturated even when operated at a high ΔB, and when the temperature rise does not cause a problem, the magnetic core can be downsized, It turned out that a highly efficient transformer can be obtained.
実施例21 原子%でCu1%,Si13.5%、B7.2%,Nb2.5%及び残部実質
的にFeからなる組成の溶湯から、単ロール法により幅6.
5mmの非晶質合金を作成した。Example 21 From the melt having a composition of Cu1%, Si13.5%, B7.2%, Nb2.5%, and the balance substantially Fe in atomic%, a width of 6.
A 5 mm amorphous alloy was prepared.
この非晶質合金を巻回し、外径20mm、内径10mmの巻磁心
を作成した。この磁心をAr雰囲気で550℃1時間の無磁
場中熱処理を行った本発明例(A)と同じ雰囲気で550
℃1時間3000Oeの磁場を磁路と直角方向に印加しながら
熱処理を行なった本発明例(B)を作成した。この磁心
にそれぞれ12ターンの2つの巻線を施しコモンモードチ
ョークとした。第26図(a)にパルス減衰特性評価に用
いた回路を示し、測定したパルス減衰特性を第26図
(b)に示した。第26図(b)には本発明のコモンモー
ドチョークと同一形状を有するMn-ZnフェライトおよびF
e基の非晶質合金によるコモンモードチョークの場合の
パルス減衰特性も示した。This amorphous alloy was wound to form a wound magnetic core having an outer diameter of 20 mm and an inner diameter of 10 mm. This magnetic core was heat-treated in an Ar atmosphere at 550 ° C. for 1 hour in the absence of a magnetic field in the same atmosphere as in the present invention example (A).
An example (B) of the present invention was prepared by performing heat treatment while applying a magnetic field of 3000 Oe at a temperature of 1 ° C for 1 hour in a direction perpendicular to the magnetic path. Two windings of 12 turns each were applied to this magnetic core to make a common mode choke. The circuit used for the pulse attenuation characteristic evaluation is shown in FIG. 26 (a), and the measured pulse attenuation characteristic is shown in FIG. 26 (b). FIG. 26 (b) shows an Mn-Zn ferrite and an F having the same shape as the common mode choke of the present invention.
The pulse attenuation characteristics for a common mode choke made of an e-based amorphous alloy are also shown.
ここに示すように、磁場中熱処理を施さない本発明例
(A)でも、Mn-Znフェライトの場合よりもパルス減衰
特性が優れており、また、磁場中熱処理を行った本発明
例(B)ではFe基の非晶質合金よりも優れていることが
わかった。As shown here, even in the present invention example (A) which was not subjected to the heat treatment in the magnetic field, the pulse attenuation characteristics were superior to those in the case of the Mn-Zn ferrite, and in the present invention example (B) which was subjected to the heat treatment in the magnetic field. Was found to be superior to the Fe-based amorphous alloy.
実施例22 実施例21で作成したコモンモードチョークについて減衰
量の周波数の依存性を測定した。この時の測定回路を第
27図(a)に示し、結果をMn-Znの場合を含めて第27図
(b)に示した。このようにMn-Znフェライトよりもど
の周波数においても減衰量が多く優れていることがわか
った。Example 22 With respect to the common mode choke created in Example 21, the frequency dependence of attenuation was measured. The measurement circuit at this time
The results are shown in Fig. 27 (a), and the results are shown in Fig. 27 (b) including the case of Mn-Zn. Thus, it was found that Mn-Zn ferrite was superior to Mn-Zn ferrite in the amount of attenuation at any frequency.
実施例23 第8表に本発明に係る超微結晶合金を用いたコモンモー
ドチョークと従来合金のコモンモードチョークの磁気特
性と高電圧パルス特性を示す。こ こで、これらのコモンモードチョークは幅12.5mm、外径
25mm、内径15mmに巻回したものに22ターンの巻線を2本
施したものであり、この表において、磁場を印加する場
合は熱処理中、磁路と直角方向に3000Oeの磁場を印加し
た。Example 23 Table 8 shows the magnetic characteristics and high-voltage pulse characteristics of the common mode choke using the ultrafine crystal alloy according to the present invention and the common mode choke of the conventional alloy. This Here, these common mode chokes have a width of 12.5 mm and an outer diameter.
A coil having a diameter of 25 mm and an inner diameter of 15 mm was wound with two turns of 22 turns. In this table, when a magnetic field was applied, a magnetic field of 3000 Oe was applied in the direction perpendicular to the magnetic path during the heat treatment.
本発明のコモンモードチョークの場合、従来の非晶質合
金を結晶化させて作成したものよりも100kHzにおける複
素磁率の絶対値||が高く、ノイズ減衰性に優れ、か
つ、ラインフィルターを形成した場合の1000V、1μsec
のパルス電圧に対する出力電圧V0が小さいため優れたラ
インフィルターとなったことがわかる。In the case of the common mode choke of the present invention, the absolute value of complex magnetic susceptibility || at 100 kHz is higher than that prepared by crystallizing a conventional amorphous alloy, the noise damping property is excellent, and a line filter is formed. In case of 1000V, 1μsec
It can be seen that an excellent line filter was obtained because the output voltage V 0 for the pulse voltage of was small.
また、磁場中熱処理により||が改善されることが確
認できた。It was also confirmed that || was improved by heat treatment in a magnetic field.
実施例24 第9表に実施例23と同様の形状を有する本発明に係るコ
モンモードチョークの磁気特性と高電圧パルス特性を示
す。この表において、熱処理期間中、磁路と直角方向に
3000Oeの磁場を印加した。Example 24 Table 9 shows the magnetic characteristics and high-voltage pulse characteristics of a common mode choke according to the present invention having the same shape as that of Example 23. In this table, during the heat treatment period,
A magnetic field of 3000 Oe was applied.
実施例23と同様に100kHzにおける複素磁率の 絶対値||およびラインフィルターを形成した場合の
1000V,1μsecのパルス電圧に対する出力電圧Vを測定し
た。その結果を第9表に示す。As in Example 23, the complex magnetic susceptibility at 100 kHz Absolute value || and when a line filter is formed
The output voltage V was measured for a pulse voltage of 1000 V and 1 μsec. The results are shown in Table 9.
実施例25 実施例19の組成を有する幅7.5mm、厚さ20mmの非晶質合
金から第22図(a)に示す巻磁心を作成し5000Oeの磁場
を全熱処理期間中磁心の磁路と直角方向に印加する超微
結晶化熱処理を行った。なお、熱処理は昇温速度20℃/m
inで500℃まで昇温し、500℃で1時間保持後、5℃/min
で280℃まで冷却し、280℃で2時間保持後、2℃/minで
室温まで冷却するものであった。この磁心を第22図
(b)のようにカプトンテープを巻つけ、トランス用磁
心を作成した。この磁心を巻線に施し、磁気特性を測定
した。Example 25 A wound magnetic core shown in FIG. 22 (a) was made from an amorphous alloy having the composition of Example 19 and having a width of 7.5 mm and a thickness of 20 mm, and a magnetic field of 5000 Oe was formed at right angles to the magnetic path of the magnetic core during the entire heat treatment period. Ultra-fine crystallization heat treatment was applied in the direction. The heat treatment rate is 20 ℃ / m
Heated up to 500 ℃ in 1 hour, kept at 500 ℃ for 1 hour, then 5 ℃ / min
Was cooled to 280 ° C. at 280 ° C., kept at 280 ° C. for 2 hours, and then cooled to room temperature at 2 ° C./min. This magnetic core was wrapped with Kapton tape as shown in FIG. 22 (b) to prepare a magnetic core for a transformer. This magnetic core was applied to a winding and magnetic characteristics were measured.
その結果、B10=12kG,Br/B10=12%,Hc=0.012Oe,W2/10
0k=240mw/ccであった。As a result, B10 = 12kG, Br / B10 = 12%, Hc = 0.012Oe, W2 / 10
It was 0k = 240mw / cc.
また、エポキシ樹脂により真空含浸してモールドコアを
作成してからカプトンテープを巻付け、トランス用磁心
とした場合は、B10=12kG,Br/B10=18%,Hc=0.018Oe,W
2/100k=370mw/ccであった。Also, when a Kapton tape is wound after forming a mold core by vacuum impregnation with epoxy resin to make a transformer core, B10 = 12kG, Br / B10 = 18%, Hc = 0.018Oe, W
It was 2 / 100k = 370mw / cc.
比較のため、原子%でSi13.5%,B9%,Nb3%残部実質的
にFeよりなる非晶質合金を作成し、本発明例と同様にカ
プトンテープを巻付けたものと、エポキシ樹脂により含
浸してからカプトンテープを巻付けたトランス用磁心を
作成した。エポキシ樹脂で含浸しないものはW2/100k=1
500mw/ccであったが、エポキシ樹脂で含浸したものはW2
/100k=3300mw/ccと著しくコア損失が増大した。これよ
り、本発明の方が低損失で含浸による劣化が少ないもの
であることがわかった。For comparison, an amorphous alloy consisting of Si13.5%, B9%, Nb3% balance Fe in atomic% was prepared, and a Kapton tape was wound in the same manner as in the example of the present invention. A magnetic core for a transformer, which was impregnated and then wrapped with Kapton tape, was prepared. W2 / 100k = 1 for those not impregnated with epoxy resin
It was 500 mw / cc, but the one impregnated with epoxy resin is W2
/ 100k = 3300mw / cc, which markedly increased core loss. From this, it was found that the present invention had lower loss and less deterioration due to impregnation.
実施例26 実施例20の組成を有する非晶質合金から第25図(a)に
示すEコアを作成し、Ar雰囲気で550℃1時間の熱処理
を行い超微結晶粒を有する組織とし、第25図(b)に示
すトランス用E型磁心を作成した。Example 26 An E core shown in FIG. 25 (a) was prepared from an amorphous alloy having the composition of Example 20, and heat treated at 550 ° C. for 1 hour in an Ar atmosphere to obtain a structure having ultrafine crystal grains. An E-type magnetic core for transformer shown in Fig. 25 (b) was prepared.
この磁心の磁気特性を測定したところ、飽和磁束密度は
12.6kGであり、Mn-Znフェライトの2倍以上であった。
また、コア損失W2/100k=280mw/ccであった。When the magnetic characteristics of this magnetic core were measured, the saturation magnetic flux density was
It was 12.6 kG, which was more than twice that of Mn-Zn ferrite.
The core loss was W2 / 100k = 280mw / cc.
この磁心を200kHzで駆動するスイッチング電源のトラン
スとして1次側に13ターン、2次側に6ターンの巻線を
施し実装し、コアの温度上昇を測定した。得られた結果
を第7表に示す。本発明の磁心はMn-Znフェライト磁心
より、温度上昇が少なく、他の電気素子へ温度の影響を
及ぼさないため好適であることが判った。As a transformer for a switching power supply that drives this magnetic core at 200 kHz, a winding with 13 turns on the primary side and a winding with 6 turns on the secondary side were mounted, and the temperature rise of the core was measured. The results obtained are shown in Table 7. It has been found that the magnetic core of the present invention is preferable to the Mn-Zn ferrite magnetic core because the temperature rise is small and the temperature does not affect other electric elements.
実施例27 原子%でFe73.5Cu1Si16.5B6Nb3なる組成を有する合金溶
湯から幅8mmの非晶質合金を作成し、電気泳動法により
表面にMgO層を形成した後、第28(a)に示すような型
に巻つけ530℃で1時間保持後冷却する熱処理を行っ
た。熱処理後この磁心をワニスで含浸し、外周スライサ
ーにより中央部を切断した。その後切断面を平研し更に
ラップを行い、第28図(b)に示すカットコアを作成し
た。Example 27 After forming an amorphous alloy with a width of 8 mm from a molten alloy having a composition of Fe73.5Cu1Si16.5B6Nb3 at atomic% and forming a MgO layer on the surface by electrophoresis, as shown in 28 (a). It was wound around a large mold and held at 530 ° C. for 1 hour and then heat-treated for cooling. After the heat treatment, this magnetic core was impregnated with varnish, and the central portion was cut with an outer peripheral slicer. After that, the cut surface was flattened and further lapped to prepare a cut core shown in FIG. 28 (b).
100kHz2kGのコア損失は500mW/ccであり十分低いコア損
失であった。The core loss at 100kHz2kG was 500mW / cc, which was a sufficiently low core loss.
このようなカットコアはボビンに自動巻線を行いボビン
を挿入することによりトランスを作成することができる
ため巻線形成が容易になるという利点がある。また、ギ
ャップ形成することにより実効透磁率を調整することも
できる。 Such a cut core has an advantage that the winding can be easily formed because the transformer can be formed by automatically winding the bobbin and inserting the bobbin. Further, the effective permeability can be adjusted by forming the gap.
実施例28 第29図に実施例14で示したFe73.5Cu1Nb3Si13.5B9の組成
を有する本発明磁心部品のコア損失の周波数依存性を従
来材の場合と比較して示した。Example 28 FIG. 29 shows the frequency dependence of the core loss of the magnetic core component of the present invention having the composition of Fe73.5Cu1Nb3Si13.5B9 shown in Example 14 in comparison with that of the conventional material.
本発明の磁心部品のコア損失は高周波領域までCo基非晶
質合金による場合と同等あるいはそれ以下の低い値であ
り、Fe基非晶質合金による場合やMn-Znフェライトによ
る場合よりはるかに低い値を示しており高周波で駆動す
るトランスとして優れている。飽和磁束密度はMn-Znフ
ェライトやCo基非晶質合金の場合よりはるかに高くトラ
ンスの小型化ができることがわかった。The core loss of the magnetic core component of the present invention is as low as or lower than that of a Co-based amorphous alloy up to a high frequency region, and much lower than that of a Fe-based amorphous alloy or Mn-Zn ferrite. It shows the value and is excellent as a transformer driven at high frequency. It was found that the saturation magnetic flux density is much higher than that of Mn-Zn ferrite and Co-based amorphous alloys, and the transformer can be miniaturized.
[本発明の効果] 本発明によれば経時変化が少なく耐久性に優れた磁心部
品となる。また、飽和磁束密度及び実行透磁率が大き
く、コア損失が小さいため磁心部品の小型化も可能であ
る。更に、Fe基であるため安価な磁心部品が提供でき
る。[Effects of the Present Invention] According to the present invention, a magnetic core component that has little change over time and is excellent in durability is provided. Further, since the saturation magnetic flux density and the effective magnetic permeability are large and the core loss is small, the magnetic core component can be downsized. Furthermore, since it is Fe-based, an inexpensive magnetic core component can be provided.
第1図は本発明の磁心部品に用いる磁心及び比較例の実
効透磁率の経時変化の一実施例を示した図、第2図は本
発明の製造行程中で中間に作成される非晶質合金のX線
回折パターンの一実施例を示した図、第3図(a)は本
発明の磁心部品に使用した磁心のX線回折パターンの一
実施例を示した図、第3図(b)は第3図(a)の磁心
の顕微鏡観察をした結果を示した図、第4図は本発明磁
心部品を製造するのに用いた熱処理パターンの一実施例
を示した図、第5図は本発明の磁心部品に用いた磁心の
構造の一実施例を示した図、第6図は本発明の可飽和リ
アクトルの評価に用いた制御磁化特性測定用回路を示し
た図、第7図は可飽和リアクトルの動作模式図、第8図
は第6図の回路により得られる制御磁化曲線の模式図、
第9図は本発明の可飽和リアクトルと比較例のコア損失
の周波数依存性の一実施例を示した図、第10図は本発明
の可飽和リアクトルと比較例を第6図の回路により測定
し得られた制御磁化曲線を示した図、第11図は本発明の
可飽和リアクトルの温度特性の一実施例を示した図、第
12図は本発明の可飽和リアクトルの一実施例をスイッチ
ング電源に取付けた場合の出力電荷特性の一実施例を比
較例と共に示した図、第13図は本発明の可飽和リアクト
ルに使用した磁心の直流B−Hカーブの一実施例を比較
例と共に示した図、第14図は本発明の可飽和リアクトル
に使用する磁心部の合金成分のCuの含有量を変化させた
ときのSpecific core gainを測定した場合の一実施例を
比較例と共に示した図、第15図は本発明の可飽和リアク
トルに使用する磁心の合金成分のNbの含有量を変化させ
たときのSpecific core gainを測定した場合の一実施例
を比較例と共に示した図、第16図は本発明の半導体リア
クトルの構成の一実施例を示した図、第17図は本発明の
半導体回路用リアクトルを用いたスイッチング電源の一
実施例を示した図、第18図は本発明の半導体回路用リア
クトルの電流スパイクの低減効果の一実施例を示した
図、第19図は本発明の半導体回路用リアクトルをダイオ
ードと組み合わせて構成した一実施例を示した図、第20
図は本発明のコモンモードチョークの構成の一実施例を
示した図、第21図は本発明のコモンモードチョークをラ
インフィルターに用いた場合のノイズ低減効果の一実施
例を示した図、第22図(a)及び(b)は本発明のトラ
ンスに用いる磁心の実施例を示した図、第23図(a)及
び(b)は本発明のコモンモードチョーク及びトランス
に使用する磁心の直流B−Hカーブ及びパルス透磁率の
一実施例を比較例と共に示した図、第24図は本発明のコ
モンモードチョーク及びトランスに使用する磁心の複素
透磁率の絶対値の周波数依存性の一実施例を比較例と共
に示した図、第25図(a)はトランス用Eコアの一実施
例を示した図、第25図(b)は第25図(a)のEコアを
用いたトランス用磁心の一実施例を示した図、第26図
(a)は本発明のコモンモードチョークのパルス減衰特
性を評価するのに用いた回路を示した図、第26図(b)
は第26図(a)の回路により測定した本発明のコモンモ
ードチョークのパルス減衰特性の一実施例を比較例と共
に示した図、第27図(a)は本発明のコモンモードチョ
ークのパルス減衰量の周波数依存性を評価するのに用い
た回路を示した図、第27図(b)は第27図(a)の回路
により測定した本発明のコモンモードチョークのパルス
減衰量の周波数依存性の一実施例を比較例と共に示した
図、第28図(a)及び(b)は本発明のトランスに使用
するカットコアの説明図、第29図は本発明のトランスに
用いた磁心のコア損失の周波数依存性の一実施例を比較
例と共に示した図である。FIG. 1 is a diagram showing an embodiment of changes over time in effective magnetic permeability of a magnetic core used in a magnetic core component of the present invention and a comparative example, and FIG. 2 is an amorphous material formed in the middle of the manufacturing process of the present invention. FIG. 3 (a) is a diagram showing an example of an X-ray diffraction pattern of an alloy, FIG. 3 (a) is a diagram showing an example of an X-ray diffraction pattern of a magnetic core used in a magnetic core component of the present invention, and FIG. 3 (b). ) Is a diagram showing a result of microscopic observation of the magnetic core of FIG. 3 (a), FIG. 4 is a diagram showing an example of a heat treatment pattern used for manufacturing the magnetic core component of the present invention, and FIG. Is a diagram showing an embodiment of the structure of the magnetic core used in the magnetic core component of the present invention, FIG. 6 is a diagram showing a control magnetization characteristic measuring circuit used for evaluation of the saturable reactor of the present invention, FIG. Is a schematic diagram of the operation of the saturable reactor, FIG. 8 is a schematic diagram of the control magnetization curve obtained by the circuit of FIG. 6,
FIG. 9 is a diagram showing an example of the frequency dependence of the core loss of the saturable reactor of the present invention and a comparative example, and FIG. 10 is the saturable reactor of the present invention and a comparative example measured by the circuit of FIG. FIG. 11 is a diagram showing the obtained control magnetization curve, FIG. 11 is a diagram showing an example of temperature characteristics of the saturable reactor of the present invention,
FIG. 12 is a diagram showing an example of output charge characteristics when an example of the saturable reactor of the present invention is attached to a switching power supply together with a comparative example, and FIG. 13 is a magnetic core used for the saturable reactor of the present invention. FIG. 14 is a diagram showing an example of a DC BH curve of the present invention together with a comparative example, and FIG. 14 is a specific core gain when the Cu content of the alloy component of the magnetic core part used in the saturable reactor of the present invention is changed. Fig. 15 is a diagram showing one example together with a comparative example in the case of measuring, and Fig. 15 shows the specific core gain when the Nb content of the alloy component of the magnetic core used in the saturable reactor of the present invention is changed. FIG. 16 is a diagram showing an example of the case with a comparative example, FIG. 16 is a diagram showing an example of the configuration of the semiconductor reactor of the present invention, and FIG. 17 is a switching power supply using the semiconductor circuit reactor of the present invention. FIG. 18 showing an embodiment, FIG. Diagram showing an example of the effect of reducing current spikes conductor circuit reactor, Fig. 19 is showing an example of a semiconductor circuit reactor is constructed in combination with the diode of the present invention FIG, 20th
FIG. 21 is a diagram showing an embodiment of the configuration of the common mode choke of the present invention, and FIG. 21 is a diagram showing an embodiment of the noise reduction effect when the common mode choke of the present invention is used in a line filter. 22 (a) and (b) are diagrams showing an embodiment of a magnetic core used in the transformer of the present invention, and FIGS. 23 (a) and (b) are direct currents of the magnetic core used in the common mode choke and the transformer of the present invention. FIG. 24 is a diagram showing an example of a BH curve and a pulse permeability together with a comparative example, and FIG. 24 is an example of the frequency dependence of the absolute value of the complex permeability of the magnetic core used in the common mode choke and transformer of the present invention. Fig. 25 shows a comparative example, Fig. 25 (a) shows an example of an E core for a transformer, and Fig. 25 (b) shows a transformer using the E core of Fig. 25 (a). FIG. 26 (a) shows a magnetic core according to an embodiment of the present invention. FIG. 26 (b) is a diagram showing a circuit used for evaluating the pulse attenuation characteristic of the hard choke.
Is a diagram showing an example of the pulse attenuation characteristics of the common mode choke of the present invention measured by the circuit of FIG. 26 (a) together with a comparative example, and FIG. 27 (a) is the pulse attenuation of the common mode choke of the present invention. FIG. 27 is a diagram showing a circuit used to evaluate the frequency dependence of the amount, and FIG. 27 (b) is a frequency dependence of the pulse attenuation amount of the common mode choke of the present invention measured by the circuit of FIG. 27 (a). FIG. 28 is a diagram showing an example together with a comparative example, FIGS. 28 (a) and 28 (b) are explanatory views of a cut core used in the transformer of the present invention, and FIG. 29 is a core of a magnetic core used in the transformer of the present invention. It is the figure which showed one Example of the frequency dependence of loss with the comparative example.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−295602(JP,A) 特開 昭61−288048(JP,A) 特開 昭59−63704(JP,A) 特開 平1−294847(JP,A) 特開 平2−19442(JP,A) 特開 昭63−302504(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP 61-295602 (JP, A) JP 61-288048 (JP, A) JP 59-63704 (JP, A) JP 1- 294847 (JP, A) JP 2-19442 (JP, A) JP 63-302504 (JP, A)
Claims (11)
r,Hf,Ti及びMoからなる群から選ばれた少なくとも一種
の元素)を必須元素として含み、組織の少なくとも50%
が微細な結晶粒からなり、実効透磁率の経時変化率Xは
0.3以下であることを特徴とする磁心部品。1. Fe, Cu, and M (where M is Nb, W, Ta, Z)
At least 50% of the structure contains at least one element selected from the group consisting of r, Hf, Ti and Mo) as an essential element.
Is composed of fine crystal grains, and the rate of change in effective permeability with time X is
Magnetic core parts characterized by being 0.3 or less.
効透磁率(μelkHz)が5×103以上であることを特徴と
する請求項1に記載の磁心部品。2. The magnetic core component according to claim 1, wherein the saturation magnetic flux density (Bs) is 10 kG or more and the effective magnetic permeability (μelkHz) is 5 × 10 3 or more.
ることを特徴とする請求項1又は2に記載の磁心部品。3. A core component as claimed in claim 1 or 2, characterized in that the saturation magnetostriction λs is 5 × 10 -6 ~-5 × 10 -6.
特徴とする請求項1ないし3のいずれかに記載の磁心部
品。4. The magnetic core component according to claim 1, wherein the magnetic core component is a supersaturated reactor.
以下であることを特徴とする請求項4記載の磁心部品。5. The uncontrollable magnetic flux density ΔBb at 50 kHz is 3 kG.
The magnetic core component according to claim 4, wherein:
ことを特徴とする請求項1ないし3のいずれかに記載の
磁心部品。6. The magnetic core component according to claim 1, wherein the magnetic core component is a semiconductor circuit reactor.
上であることを特徴とする請求項4ないし6のいずれか
に記載の磁心部品。7. The magnetic core component according to claim 4, wherein the squareness ratio Br / B10 of the DC BH curve is 70% or more.
とを特徴とする請求項1ないし3のいずれかに記載の磁
心部品。8. The magnetic core part according to claim 1, wherein the magnetic core part is a common mode choke.
下であり、100kHzにおける複素透磁率の絶対値||が
1000以上、1Oeの磁界を印加した場合の磁束密度B1が5kG
以上、かつ10Oeの磁界を印加した場合の磁束密度B10が1
0kG以上であることを特徴とする請求項8に記載の磁心
部品。9. A DC BH curve having a squareness ratio Br / B10 of 30% or less and an absolute value of the complex permeability at 100 kHz ||
Magnetic flux density B1 is 5 kG when a magnetic field of 1000 or more and 1 Oe is applied
Above, and when the magnetic field of 10 Oe is applied, the magnetic flux density B10 is 1
9. The magnetic core component according to claim 8, wherein the magnetic core component is 0 kG or more.
ことを特徴とする請求項1ないし3のいずれかに記載の
磁心部品。10. The magnetic core component according to claim 1, wherein the magnetic core component is a magnetic core for a high frequency transformer.
以下であることを特徴とする請求項10に記載の磁心部
品。11. A DC BH curve having a squareness ratio Br / B10 of 30%.
11. The magnetic core component according to claim 10, wherein:
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17567387 | 1987-07-14 | ||
JP18834487 | 1987-07-28 | ||
JP18834587 | 1987-07-28 | ||
JP173188 | 1988-01-07 | ||
JP62-188345 | 1988-01-07 | ||
JP63-1731 | 1988-01-07 | ||
JP62-188344 | 1988-01-07 | ||
JP62-175673 | 1988-01-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0277105A JPH0277105A (en) | 1990-03-16 |
JPH0777167B2 true JPH0777167B2 (en) | 1995-08-16 |
Family
ID=27453468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63175464A Expired - Lifetime JPH0777167B2 (en) | 1987-07-14 | 1988-07-14 | Magnetic core parts |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0299498B1 (en) |
JP (1) | JPH0777167B2 (en) |
KR (1) | KR910002375B1 (en) |
CA (1) | CA1341105C (en) |
DE (1) | DE3884491T2 (en) |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5443664A (en) * | 1988-11-16 | 1995-08-22 | Hitachi Metals, Ltd. | Surge current-suppressing circuit and magnetic device therein |
DE3911618A1 (en) * | 1989-04-08 | 1990-10-18 | Vacuumschmelze Gmbh | USE OF A FINE CRYSTALLINE IRON BASE ALLOY AS A MAGNETIC CORE MATERIAL FOR AN INTERFACE TRANSMITTER |
DE3911480A1 (en) * | 1989-04-08 | 1990-10-11 | Vacuumschmelze Gmbh | USE OF A FINE CRYSTALLINE IRON BASE ALLOY AS A MAGNETIC MATERIAL FOR FAULT CURRENT CIRCUIT BREAKERS |
DE4108802A1 (en) * | 1991-03-18 | 1992-09-24 | Vacuumschmelze Gmbh | MEASURING CONVERTER FOR ELECTRONIC ARRANGEMENTS FOR THE FAST DETECTION OF SHORT CIRCUITS |
FR2699683B1 (en) * | 1992-12-17 | 1995-01-13 | Commissariat Energie Atomique | Method for determining the intrinsic magnetic permeability of elongated ferromagnetic elements and the electromagnetic properties of composites using such elements. |
JPH07335450A (en) * | 1994-06-10 | 1995-12-22 | Hitachi Metals Ltd | Compact transformer, inverter circuit, and discharge tube lighting circuit |
EP0801443B1 (en) * | 1996-04-12 | 2003-02-19 | Vacuumschmelze GmbH | Noise-damping arrangement for damping noise currents of electronic devices |
JP2922844B2 (en) * | 1996-04-19 | 1999-07-26 | 日立金属株式会社 | Apparatus using inverter |
JPH11102827A (en) * | 1997-09-26 | 1999-04-13 | Hitachi Metals Ltd | Saturable reactor core and magnetic amplifier mode high output switching regulator using the same, and computer using the same |
FR2772181B1 (en) * | 1997-12-04 | 2000-01-14 | Mecagis | METHOD FOR MANUFACTURING A NANOCRYSTALLINE SOFT MAGNETIC ALLOY MAGNETIC CORE FOR USE IN A CLASS A DIFFERENTIAL CIRCUIT BREAKER AND MAGNETIC CORE OBTAINED |
FR2772182B1 (en) * | 1997-12-04 | 2000-01-14 | Mecagis | METHOD FOR MANUFACTURING A NANOCRYSTALLINE SOFT MAGNETIC ALLOY MAGNETIC CORE AND USE IN AN AC CLASS DIFFERENTIAL CIRCUIT BREAKER |
US6420813B1 (en) * | 1998-11-06 | 2002-07-16 | Alliedsignal Inc. | Bulk amorphous metal magnetic components for electric motors |
DE19908374B4 (en) * | 1999-02-26 | 2004-11-18 | Magnequench Gmbh | Particle composite material made of a thermoplastic plastic matrix with embedded soft magnetic material, method for producing such a composite body, and its use |
DE19926699C2 (en) * | 1999-06-11 | 2003-10-30 | Vacuumschmelze Gmbh | High-pass branch of a crossover for ADSL systems |
KR100370061B1 (en) * | 2000-03-22 | 2003-01-29 | 엘지전자 주식회사 | inductor and method for fabricating the same |
DE10045705A1 (en) * | 2000-09-15 | 2002-04-04 | Vacuumschmelze Gmbh & Co Kg | Magnetic core for a transducer regulator and use of transducer regulators as well as method for producing magnetic cores for transducer regulators |
JP2002134329A (en) * | 2000-10-24 | 2002-05-10 | Hitachi Metals Ltd | Magnetic parts for suppressing common mode lightning surge current of signal link |
DE10134056B8 (en) | 2001-07-13 | 2014-05-28 | Vacuumschmelze Gmbh & Co. Kg | Process for the production of nanocrystalline magnetic cores and apparatus for carrying out the process |
US7541909B2 (en) * | 2002-02-08 | 2009-06-02 | Metglas, Inc. | Filter circuit having an Fe-based core |
DE102004024337A1 (en) * | 2004-05-17 | 2005-12-22 | Vacuumschmelze Gmbh & Co. Kg | Process for producing nanocrystalline current transformer cores, magnetic cores produced by this process, and current transformers with same |
DE102005034486A1 (en) | 2005-07-20 | 2007-02-01 | Vacuumschmelze Gmbh & Co. Kg | Process for the production of a soft magnetic core for generators and generator with such a core |
FR2892232B1 (en) * | 2005-10-13 | 2008-02-08 | Centre Nat Rech Scient | METHOD FOR MANUFACTURING A MAGNETO IMPEDANCE SENSOR |
SE529789C8 (en) | 2006-03-10 | 2007-12-27 | Abb Ab | Measuring device comprising a layer of a magnetoelastic alloy and method for manufacturing the measuring device |
US8287664B2 (en) | 2006-07-12 | 2012-10-16 | Vacuumschmelze Gmbh & Co. Kg | Method for the production of magnet cores, magnet core and inductive component with a magnet core |
JP2007027790A (en) * | 2006-09-29 | 2007-02-01 | Toshiba Corp | Method of manufacturing magnetic core and method of manufacturing magnetic component |
DE502007000329D1 (en) | 2006-10-30 | 2009-02-05 | Vacuumschmelze Gmbh & Co Kg | Soft magnetic iron-cobalt based alloy and process for its preparation |
US8012270B2 (en) | 2007-07-27 | 2011-09-06 | Vacuumschmelze Gmbh & Co. Kg | Soft magnetic iron/cobalt/chromium-based alloy and process for manufacturing it |
US9057115B2 (en) | 2007-07-27 | 2015-06-16 | Vacuumschmelze Gmbh & Co. Kg | Soft magnetic iron-cobalt-based alloy and process for manufacturing it |
JP5267201B2 (en) * | 2009-02-23 | 2013-08-21 | 日産自動車株式会社 | Switching circuit |
WO2015046140A1 (en) * | 2013-09-27 | 2015-04-02 | 日立金属株式会社 | METHOD FOR PRODUCING Fe-BASED NANO-CRYSTAL ALLOY, AND METHOD FOR PRODUCING Fe-BASED NANO-CRYSTAL ALLOY MAGNETIC CORE |
CN108559906A (en) * | 2017-12-11 | 2018-09-21 | 安徽宝辰机电设备科技有限公司 | A kind of main transformer for conversion welder core material |
JP7099035B2 (en) * | 2018-04-27 | 2022-07-12 | セイコーエプソン株式会社 | Soft magnetic powder, powder magnetic core, magnetic element and electronic equipment |
JP7195445B2 (en) * | 2019-08-22 | 2022-12-23 | 三菱電機株式会社 | CORE COOLING STRUCTURE AND POWER CONVERSION DEVICE INCLUDING THE SAME |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2102212B (en) * | 1981-07-20 | 1984-11-21 | Telcon Metals Ltd | Magnetic core strctures, devices incorporating them, and magnetic biassing methods |
JPH0611007B2 (en) * | 1982-10-05 | 1994-02-09 | ティーディーケイ株式会社 | Magnetic core for magnetic switch |
US4558297A (en) * | 1982-10-05 | 1985-12-10 | Tdk Corporation | Saturable core consisting of a thin strip of amorphous magnetic alloy and a method for manufacturing the same |
JPS61288048A (en) * | 1985-06-13 | 1986-12-18 | Hitachi Metals Ltd | Fe-base amorphous alloy with low core loss |
JPH0727812B2 (en) * | 1985-06-25 | 1995-03-29 | 日立金属株式会社 | Amorphous magnetic core for common mode choke |
JP2573606B2 (en) * | 1987-06-02 | 1997-01-22 | 日立金属 株式会社 | Magnetic core and manufacturing method thereof |
JP2894561B2 (en) * | 1988-05-23 | 1999-05-24 | 株式会社東芝 | Soft magnetic alloy |
JPH0219442A (en) * | 1988-07-07 | 1990-01-23 | Nippon Steel Corp | High saturated magnetic flux density ferrous alloy having superfine crystalline structure |
-
1988
- 1988-07-14 JP JP63175464A patent/JPH0777167B2/en not_active Expired - Lifetime
- 1988-07-14 DE DE88111364T patent/DE3884491T2/en not_active Expired - Lifetime
- 1988-07-14 KR KR1019880008850A patent/KR910002375B1/en not_active IP Right Cessation
- 1988-07-14 CA CA000571968A patent/CA1341105C/en not_active Expired - Lifetime
- 1988-07-14 EP EP88111364A patent/EP0299498B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
EP0299498A1 (en) | 1989-01-18 |
CA1341105C (en) | 2000-10-03 |
KR890002910A (en) | 1989-04-11 |
JPH0277105A (en) | 1990-03-16 |
KR910002375B1 (en) | 1991-04-20 |
DE3884491D1 (en) | 1993-11-04 |
DE3884491T2 (en) | 1994-02-17 |
EP0299498B1 (en) | 1993-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0777167B2 (en) | Magnetic core parts | |
JP5445889B2 (en) | Soft magnetic alloy, manufacturing method thereof, and magnetic component | |
JP5316920B2 (en) | Soft magnetic alloys, alloy ribbons with an amorphous phase as the main phase, and magnetic components | |
US4871925A (en) | High-voltage pulse generating apparatus | |
JP2573606B2 (en) | Magnetic core and manufacturing method thereof | |
JP2007270271A (en) | Soft magnetic alloy, its manufacturing method, and magnetic component | |
JPH0219179B2 (en) | ||
US5211767A (en) | Soft magnetic alloy, method for making, and magnetic core | |
US20040007289A1 (en) | Magnetic core insulation | |
JPH07320920A (en) | Nano-crystal alloy magnetic core and heat-treatment method thereof | |
JP2005520931A (en) | Iron-based amorphous alloy with linear BH loop | |
JP2000277357A (en) | Saturatable magnetic core and power supply apparatus using the same | |
JPH0544165B2 (en) | ||
JP2721165B2 (en) | Magnetic core for choke coil | |
JPH02183508A (en) | Low-loss core | |
JPH08153614A (en) | Magnetic core | |
JP2859286B2 (en) | Manufacturing method of ultra-microcrystalline magnetic alloy | |
JP2000252111A (en) | High-frequency saturable magnetic core and device using the same | |
JPH0257683B2 (en) | ||
JP2005187917A (en) | Soft magnetic alloy, and magnetic component | |
JP2719978B2 (en) | Amorphous alloy for high frequency magnetic core | |
JPH0927413A (en) | Choke coil magnetic core and manufacture thereof | |
JP2713980B2 (en) | Fe-based soft magnetic alloy | |
JP2760561B2 (en) | Magnetic core | |
JP3121641B2 (en) | Switching power supply |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080816 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term |