JPH0257683B2 - - Google Patents
Info
- Publication number
- JPH0257683B2 JPH0257683B2 JP57227219A JP22721982A JPH0257683B2 JP H0257683 B2 JPH0257683 B2 JP H0257683B2 JP 57227219 A JP57227219 A JP 57227219A JP 22721982 A JP22721982 A JP 22721982A JP H0257683 B2 JPH0257683 B2 JP H0257683B2
- Authority
- JP
- Japan
- Prior art keywords
- heat treatment
- magnetic field
- amorphous alloy
- temperature
- coercive force
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000956 alloy Substances 0.000 claims description 37
- 238000010438 heat treatment Methods 0.000 claims description 32
- 229910000808 amorphous metal alloy Inorganic materials 0.000 claims description 26
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 12
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 229910052758 niobium Inorganic materials 0.000 claims description 5
- 229910052715 tantalum Inorganic materials 0.000 claims description 5
- 229910052720 vanadium Inorganic materials 0.000 claims description 5
- 229910052735 hafnium Inorganic materials 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 229910052702 rhenium Inorganic materials 0.000 claims description 4
- 229910052707 ruthenium Inorganic materials 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 3
- 238000010791 quenching Methods 0.000 claims description 2
- 230000000171 quenching effect Effects 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- 239000000203 mixture Substances 0.000 description 15
- 229910045601 alloy Inorganic materials 0.000 description 13
- 229910003271 Ni-Fe Inorganic materials 0.000 description 6
- 230000004907 flux Effects 0.000 description 6
- 238000002425 crystallisation Methods 0.000 description 5
- 230000008025 crystallization Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000004804 winding Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 230000005415 magnetization Effects 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 229910020598 Co Fe Inorganic materials 0.000 description 1
- 229910002519 Co-Fe Inorganic materials 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 238000005280 amorphization Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910000889 permalloy Inorganic materials 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/153—Amorphous metallic alloys, e.g. glassy metals
- H01F1/15316—Amorphous metallic alloys, e.g. glassy metals based on Co
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Soft Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Description
[発明の技術分野]
本発明は高周波領域で用いるのに適した非晶質
合金材料からなる巻鉄心の製造方法に関する。
[発明の技術的背景とその問題点]
従来から、スイツチングレギユレータ等の10〜
50kHzの高周波領域で作動する機器の磁気増幅器
における可飽和リアクトルの鉄心の材料として
は、パーマロイ、センデルタ等のNi−Fe結晶質
合金系が広く用いられてきた。
しかしながら、これらの合金系では、直流特性
では保磁力(Hc)が小さく、角形比(Br/B1,
Br:残留磁束密度、B1:1エルステツドの磁場
における磁束密度)が大きいが、高周波領域にお
いては保磁力が大きく、ヒステリシス損失が大き
いため動作時の温度上昇が高く、同一装置内に組
込まれている、例えばダイオード等の部品の性能
を劣化するというおそれがあつた。
このようなことから、例えばFe,Co,Ni等の
基材に非晶質化元素としてSi,B等を含ませて構
成した非晶質合金材料が、高透磁率、低保磁力等
の優れた軟磁気特性を有するので、最近広く注目
を集めている。
しかしながら、これらの非晶質合金材料のすべ
てが高周波領域において保磁力が低く、従つてヒ
ステリシス損失が小さいというわけではなかつ
た。
また非晶質合金は、いわゆる準安定状態であ
り、経時変化という点からその熱的安定性が懸念
されていた。
[発明の目的]
本発明者らは、角形比が大きく、低保磁力を有
する非晶質合金材料からなる巻鉄心を製造すべく
鋭意研究を進めた結果、巻鉄心に形成した後、歪
取り熱処理を施し、次いで磁気特性調整工程とし
て交流磁場中で80〜200℃の熱処理工程を具備す
る場合に特性の良好な巻鉄心が得られることを見
出した。
本発明はこのような知見に基づいてなされたもの
で、高角形比、低保磁力を有し、かつ極めて熱的
安定性のよい非晶質合金材料からなる巻鉄心の製
造方法を提供することを目的とする。
[発明の概要]
すなわち本発明方法は、非晶質合金材料を巻鉄
心に成形した後、歪取り熱処理を施し、次いで磁
気特性調整工程として交流磁場中で80〜200℃の
熱処理工程を具備することを特徴とする。
本発明において磁気特性調整工程として、交流
磁場中での熱処理を採用した理由は、直流磁場中
の熱処理では高周波において保磁力が増大する傾
向があり、特にスイツチングレギユレータに適用
した場合、その効率の低下を招くという理由によ
る。なお交流磁場とは、通常商用周波数から
100KHzの範囲で好ましい。この磁場の強さは0.5
エルステツド以上が適している。また温度を80〜
200℃に限定したのは、80℃未満では交流磁場の
効果がなく、200℃を越えるとCoとFeあるいは
FeとNi等による、より強い誘導磁気異方性が発
生し、保磁力が増大する理由による。上述の熱処
理温度範囲では実装時のスイツチングレギユレー
タ内の温度に近いため、その特性が非常に安定す
る。
本発明において使用する非晶質合金材料として
は、Co系、Fe系、Co−Fe系があげられる。
特に下記の式で表わされるCo系では、前述し
た交流磁場中での熱処理工程の前段階に急冷工程
を設けるのがよい。
(Co1-aFeaMb)100-x-ySixBy(但し、式中Mは
Ti,V,Cr,Mn,Ni,Zr,Nb,Mo,Ru,
Hf,Ta,W,Re、希土類の群から選ばれる少な
くとも一種の元素、0≦a≦0.1,0≦b≦0.1、
20≦x+y≦30,5≦x≦20,5≦y≦25)
また下記の式で表わされるFe系では、前述し
た交流磁場中での熱処理工程の前段階に40エルス
テツド以下の磁場でキユリー点以下でかつ結晶化
温度以下の高温熱処理を施すとより効果的であ
る。
(Fe1-cMc)100-x-ySixBy
(但し、式中Mは、Ni,Ti,V,Cr,Mn,
Zn,Nb,Mo,Ru,Hf,Ta,W,Re、希土類
元素の群から選ばれる少なくとも1種の元素であ
つて、MがNiの場合は0.2≦c≦0.4,20≦x+y
≦30,5≦x≦20,5≦y≦25、MがNi以外の
場合は0.01≦c≦0.1,15≦x+y≦25,5≦x
≦20,5≦y≦20)
すなわち非晶質合金材料を溶融し、急冷して巻
鉄心に成形した後、キユリー温度より高く、結晶
化温度よりも低い温度で5〜40分間程度加熱して
歪取り熱処理を施した後、Co系の非晶質合金材
料では急冷した後交流磁場中で熱処理を施し、ま
たFe系の非晶質合金材料では磁場中高温熱処理
を施した後、交流磁場中の熱処理を施すのが望ま
しい。
なお本発明においてCo系の場合、Feは得られ
る合金の高磁束密度化及び磁気歪を零にすること
に寄与し、その組成比aは0≦a≦0.10の範囲に
設定される。aが0.10を越えると全体の磁気歪が
大きくなり、かつ保磁力も増大するので好ましく
ない。
Mは合金の熱的安定性に関与し、その組成比b
は0≦b≦0.10の範囲に設定される。bが0.10を
越えると非晶質化が困難となる。
特にMが、Ni,Nb,Ta,Mo,Cr、V及びこ
れらの組合せの場合はその効果が大きく有用であ
る。
Si,Bは非晶質化のために含有される元素であ
り、Siの組成比xは5≦x≦20、Bの組成比yは
5≦y≦25の範囲に設定され、またSiとBの組成
比の合計x+yは20≦x+y≦30に設定される。
x+yが30を越えると非晶質化が困難となり、逆
に20未満では結晶化温度がキユリー温度より低く
なるため全体として低保磁力が得られ難くなる。
またFe系において、MがNiの場合Feに対する
Niの割合が増えると飽和磁束密度が減少し、こ
の割合が0.3の組成比で角形比が最大値を持ち、
その前後で減少する。従つてNiの組成比cを0.2
≦c≦0.4、好ましくは0.25≦c≦0.35にすると飽
和磁束密度と角形比が比較的高い非晶質合金材料
が得られる。
なお、MがNi以外の場合は同様に組成比cは
0.01≦c≦0.1、好ましくは0.02≦c≦0.07にする
とよい。
Si,Bに関しては前述と同じ理由による。
なお、この場合x+yは、15≦x+y≦25の範
囲が良い。
[発明の実施例]
次に本発明の実施例について説明する。
実施例 1
(Co0.91Fe0.06Nb0.03)75Si15B10からなる非晶質
合金材料を単ロール法により幅5mm、厚み15μm
のテープ状に成形した。この非晶質合金材料の結
晶化温度およびキユリー温度はそれぞれ543℃、
324℃であつた。得られたテープを酸化マグネシ
ウム粉末で層間絶縁し、直径25mmの石英管に20回
巻いてトロイダルコアとした。
次にコアを窒素中で温度450℃、時間10分間に
て歪取り熱処理を施し、室温まで急冷した後、第
1図に示す各温度で1時間、10エルステツドの交
流磁場中で熱処理した。得られたコアに一次およ
び二次巻線を施し、外部磁場1エルステツド下で
交流磁場測定装置を用いて50kHzにおける交流ヒ
ステリシス曲線を測定し、保磁力、角形比を求め
た。その結果を第1図に示した。なお図中実線は
角形比、点線は保磁力を表わす。
またこれらのコアを磁気増幅器の可飽和リアク
トルに適用し、この時のスイツチングレギユレー
タの50kHzにおける効率η(出力/入力)を求め、
結果を第2図に示した。
第1図および第2図から明らかなように、歪取
り熱処理およびその後の急冷を経て所定の温度範
囲で交流磁場中熱処理を施すことにより、50kHz
において角形比は最大で6%向上、保磁力は0.03
エルステツド低下し、しかも可飽和リアクトルと
して適用した時、その効率が78%と改善されるこ
とが判明した。
実施例 2
第1表に示した各種組成の非晶質合金材料をテ
ープ状に単ロール法により作成した。各テープの
幅は約5mmで厚さはいずれも18〜22μmの範囲に
あつた。これらテープを酸化マグネシウム粉末で
層間絶縁し、直径20mmのボビンに巻付けてトロイ
ダルコアを作成した。
次にこれをそれぞれ結晶化温度以下、キユーリ
温度以上の適宜な温度で歪取り熱処理した後、全
体を水中(25℃)に投入して急冷した。その後
150℃で1時間、10エルステツドの交流磁場中熱
処理を行なつた。得られたコアに一次および二次
巻線を施し、外部磁場1エルステツド下で交流磁
化測定装置を用いてヒステリシス曲線を測定し、
保磁力および角形化を求めた。
第1表に各組成の非晶質合金材料についての
50kHzにおける角形比の差、保磁力の差を示す。
第1表から明らかなように、本発明方法を用いる
ことにより各組成の非晶質合金材料において、よ
り小さな保磁力と高い角形比を得ることができ
る。
[Technical Field of the Invention] The present invention relates to a method for manufacturing a wound core made of an amorphous alloy material suitable for use in a high frequency region. [Technical background of the invention and its problems] Conventionally, switching regulators, etc.
Ni-Fe crystalline alloys such as permalloy and Sendelta have been widely used as materials for the iron cores of saturable reactors in magnetic amplifiers for equipment operating in the high frequency range of 50 kHz. However, in these alloy systems, the coercive force (Hc) is small in DC characteristics, and the squareness ratio (Br/B 1 ,
Br: residual magnetic flux density, B (magnetic flux density in a magnetic field of 1 :1 oersted) is large, but in the high frequency range, the coercive force is large and the hysteresis loss is large, so the temperature rise during operation is high, and it is difficult to incorporate it into the same device. For example, there was a risk that the performance of components such as diodes would deteriorate. For this reason, amorphous alloy materials composed of base materials such as Fe, Co, and Ni containing Si, B, etc. as amorphous elements have been developed to have excellent properties such as high magnetic permeability and low coercive force. It has recently attracted widespread attention because of its soft magnetic properties. However, not all of these amorphous alloy materials have a low coercive force in a high frequency region, and therefore do not have a small hysteresis loss. Furthermore, amorphous alloys are in a so-called metastable state, and there have been concerns about their thermal stability in view of changes over time. [Purpose of the Invention] The present inventors have conducted intensive research to manufacture a wound core made of an amorphous alloy material with a large squareness ratio and low coercive force. It has been found that a wound core with good characteristics can be obtained when heat treatment is performed, followed by a heat treatment step at 80 to 200° C. in an alternating current magnetic field as a magnetic property adjustment step. The present invention was made based on these findings, and provides a method for manufacturing a wound core made of an amorphous alloy material that has a high squareness ratio, low coercive force, and extremely high thermal stability. With the goal. [Summary of the Invention] That is, the method of the present invention comprises forming an amorphous alloy material into a wound core, performing a strain relief heat treatment, and then a heat treatment step at 80 to 200°C in an alternating current magnetic field as a magnetic property adjustment step. It is characterized by The reason why heat treatment in an alternating current magnetic field is adopted as the magnetic property adjustment step in the present invention is that heat treatment in a direct current magnetic field tends to increase the coercive force at high frequencies. This is because it leads to a decrease in efficiency. Note that an alternating magnetic field is usually a magnetic field from a commercial frequency.
Preferably in the 100KHz range. The strength of this magnetic field is 0.5
Ersted or higher is suitable. Also, increase the temperature to 80~
The reason for limiting the temperature to 200℃ is that below 80℃, the AC magnetic field has no effect, and above 200℃, Co and Fe or
This is because stronger induced magnetic anisotropy occurs due to Fe, Ni, etc., and the coercive force increases. The above heat treatment temperature range is close to the temperature inside the switching regulator during mounting, so its characteristics are extremely stable. Examples of the amorphous alloy material used in the present invention include Co-based, Fe-based, and Co-Fe-based. Particularly in the case of a Co system represented by the following formula, it is preferable to provide a quenching step before the heat treatment step in the alternating current magnetic field described above. (Co 1-a Fe a M b ) 100-xy Si x B y (However, in the formula, M is
Ti, V, Cr, Mn, Ni, Zr, Nb, Mo, Ru,
Hf, Ta, W, Re, at least one element selected from the group of rare earths, 0≦a≦0.1, 0≦b≦0.1,
20≦x+y≦30, 5≦x≦20, 5≦y≦25) In addition, in the Fe system expressed by the following formula, the Curie point is heated in a magnetic field of 40 oersted or less before the heat treatment process in the alternating current magnetic field mentioned above. It is more effective to perform high-temperature heat treatment at a temperature lower than or equal to the crystallization temperature. (Fe 1-c M c ) 100-xy Si x B y (However, in the formula, M is Ni, Ti, V, Cr, Mn,
At least one element selected from the group of Zn, Nb, Mo, Ru, Hf, Ta, W, Re, and rare earth elements, and when M is Ni, 0.2≦c≦0.4, 20≦x+y
≦30, 5≦x≦20, 5≦y≦25, if M is other than Ni, 0.01≦c≦0.1, 15≦x+y≦25, 5≦x
≦20, 5≦y≦20) In other words, the amorphous alloy material is melted, rapidly cooled and formed into a wound core, and then heated for about 5 to 40 minutes at a temperature higher than the Curie temperature and lower than the crystallization temperature. After applying strain relief heat treatment, Co-based amorphous alloy materials are rapidly cooled and then heat-treated in an alternating current magnetic field, and Fe-based amorphous alloy materials are subjected to high-temperature heat treatment in a magnetic field and then heat treated in an alternating current magnetic field. It is desirable to carry out heat treatment. In the case of Co-based alloys in the present invention, Fe contributes to increasing the magnetic flux density and zeroing magnetostriction of the obtained alloy, and its composition ratio a is set in the range of 0≦a≦0.10. If a exceeds 0.10, the overall magnetostriction will increase and the coercive force will also increase, which is not preferable. M is involved in the thermal stability of the alloy, and its composition ratio b
is set in the range of 0≦b≦0.10. When b exceeds 0.10, it becomes difficult to make it amorphous. In particular, when M is Ni, Nb, Ta, Mo, Cr, V, or a combination thereof, the effect is large and useful. Si and B are elements contained for amorphization, and the composition ratio x of Si is set in the range of 5≦x≦20, and the composition ratio y of B is set in the range of 5≦y≦25. The total composition ratio x+y of B is set to 20≦x+y≦30.
When x+y exceeds 30, it becomes difficult to make the material amorphous, while when it is less than 20, the crystallization temperature becomes lower than the Curie temperature, making it difficult to obtain a low coercive force as a whole. In addition, in the Fe system, when M is Ni,
As the proportion of Ni increases, the saturation magnetic flux density decreases, and when this proportion is 0.3, the squareness ratio has the maximum value.
It decreases before and after that. Therefore, the Ni composition ratio c is 0.2
When ≦c≦0.4, preferably 0.25≦c≦0.35, an amorphous alloy material with relatively high saturation magnetic flux density and squareness ratio can be obtained. In addition, when M is other than Ni, the composition ratio c is similarly
0.01≦c≦0.1, preferably 0.02≦c≦0.07. Regarding Si and B, the reason is the same as mentioned above. In this case, x+y is preferably in the range of 15≦x+y≦25. [Embodiments of the Invention] Next, embodiments of the present invention will be described. Example 1 An amorphous alloy material consisting of (Co 0.91 Fe 0.06 Nb 0.03 ) 75 Si 15 B 10 was made into a material with a width of 5 mm and a thickness of 15 μm by a single roll method.
It was formed into a tape shape. The crystallization temperature and Curie temperature of this amorphous alloy material are 543℃ and 543℃, respectively.
It was 324℃. The resulting tape was interlayer insulated with magnesium oxide powder and wound 20 times around a 25 mm diameter quartz tube to form a toroidal core. Next, the core was subjected to strain relief heat treatment in nitrogen at a temperature of 450°C for 10 minutes, and after being rapidly cooled to room temperature, it was heat treated in an alternating current magnetic field of 10 oersteds at each temperature shown in Fig. 1 for 1 hour. The obtained core was provided with primary and secondary windings, and an AC hysteresis curve at 50kHz was measured using an AC magnetic field measuring device under an external magnetic field of 1 oersted to determine the coercive force and squareness ratio. The results are shown in Figure 1. In the figure, the solid line represents the squareness ratio, and the dotted line represents the coercive force. Also, by applying these cores to the saturable reactor of a magnetic amplifier, find the efficiency η (output/input) of the switching regulator at 50kHz,
The results are shown in Figure 2. As is clear from Fig. 1 and Fig. 2, the 50kHz
The squareness ratio is improved by up to 6%, and the coercive force is 0.03.
It was found that when the reactor was applied as a saturable reactor, the efficiency was improved to 78%. Example 2 Amorphous alloy materials having various compositions shown in Table 1 were made into tape shapes by a single roll method. The width of each tape was about 5 mm, and the thickness ranged from 18 to 22 μm. These tapes were interlayer insulated with magnesium oxide powder and wound around a bobbin with a diameter of 20 mm to create a toroidal core. Next, this was subjected to strain relief heat treatment at an appropriate temperature below the crystallization temperature and above the Cuyuri temperature, respectively, and then the whole was put into water (25° C.) and rapidly cooled. after that
Heat treatment was carried out at 150°C for 1 hour in an alternating current magnetic field of 10 oersted. Primary and secondary windings were applied to the obtained core, and the hysteresis curve was measured using an AC magnetization measuring device under an external magnetic field of 1 oersted.
Coercive force and squareness were determined. Table 1 shows the information on amorphous alloy materials of each composition.
Shows the difference in squareness ratio and coercive force at 50kHz.
As is clear from Table 1, by using the method of the present invention, smaller coercive force and higher squareness ratio can be obtained in amorphous alloy materials of various compositions.
【表】
次に第1表のいくつかの組成の非晶質合金材料
の50kHzにおける交流磁気特性を80%Ni−Fe合金
と比較して第2表に示す。[Table] Next, Table 2 shows the AC magnetic properties at 50kHz of the amorphous alloy materials having several compositions shown in Table 1 in comparison with that of the 80% Ni-Fe alloy.
【表】
この表から本発明方法によれば、80%Ni−Fe
合金に比べて角形比および保磁力ともに優れた巻
鉄心が得られる。
実施例 3
(Fe0.7Ni0.3)78Si8B14の組成の母合金を溶解し、
幅5mmの石英ノズルから2000rpmで回転する直径
30cmのロールに噴出させて幅5mm、厚み17μmの
テープ状非晶質合金を得た。次いでこのテープを
トロイダル状コアに巻回した後に真空中で420℃、
5分間の歪取り熱処理を施した後、真空中、4エ
ルステツドの磁場中で390℃、30分間の熱処理を
行なつた。この後10エルステツドの交流磁場中で
第3図に示す各温度において1時間の熱処理を施
した。得られたコアに一次および二次巻線を施
し、外部磁場1エルステツド下で交流磁化測定装
置を用いて20kHzにおける交流ヒステリシス曲線
を測定し、保磁力、角形比を求めた。その結果を
第3図に示す。
また、これらのコアを磁気増幅器の可飽和リア
クトルに適用し、この時のスイツチングレギユレ
ータの20kHzにおける効率η(出力/入力)およ
び動作時のコアの温度上昇ΔTを求め、結果を第
4図に示した。
図から明らかなように、非晶質合金材料を歪取
り熱処理し、390℃の高温で熱処理を行ない、次
いで所定の温度範囲で交流磁場中、熱処理を施す
ことにより角形化は最大で3.5%向上、保磁力は
0.09エルステツド低下し、しかも可飽和リアクト
ルとして適用した時、その効率が77.5%と改善さ
れ、またコアの温度上昇も約10℃下がることが判
明した。
また本発明の有効性を確認するために(Fe0.7
Ni0.3)78Si8B14非晶質合金材料と50%Ni−Fe合金
の20kHzの磁気特性を比較して第3表に示す。[Table] From this table, according to the method of the present invention, 80%Ni-Fe
A wound core with superior squareness and coercive force can be obtained compared to alloys. Example 3 A master alloy with a composition of (Fe 0.7 Ni 0.3 ) 78 Si 8 B 14 was melted,
Diameter rotating at 2000rpm from a 5mm wide quartz nozzle
A tape-shaped amorphous alloy having a width of 5 mm and a thickness of 17 μm was obtained by ejecting it onto a 30 cm roll. Next, this tape was wound around a toroidal core and then heated at 420℃ in a vacuum.
After performing strain relief heat treatment for 5 minutes, heat treatment was performed for 30 minutes at 390° C. in a magnetic field of 4 oersted in a vacuum. Thereafter, heat treatment was performed for 1 hour at each temperature shown in FIG. 3 in an alternating current magnetic field of 10 oersted. Primary and secondary windings were applied to the obtained core, and an AC hysteresis curve at 20kHz was measured using an AC magnetization measuring device under an external magnetic field of 1 oersted to determine the coercive force and squareness ratio. The results are shown in FIG. In addition, these cores are applied to the saturable reactor of a magnetic amplifier, and the efficiency η (output/input) of the switching regulator at 20kHz and the temperature rise ΔT of the core during operation are calculated, and the results are used in the fourth section. Shown in the figure. As is clear from the figure, the squareness can be improved by up to 3.5% by heat-treating the amorphous alloy material to remove strain, heat-treating it at a high temperature of 390°C, and then heat-treating it in an alternating magnetic field at a predetermined temperature range. , the coercive force is
When applied as a saturable reactor, the efficiency was improved to 77.5%, and the core temperature rise was also reduced by about 10°C. In addition, in order to confirm the effectiveness of the present invention (Fe 0.7
Table 3 shows a comparison of the magnetic properties at 20 kHz of the Ni 0.3 ) 78 Si 8 B 14 amorphous alloy material and the 50% Ni-Fe alloy.
【表】
第3表において、(Fe0.7Ni0.3)78Si8B14非晶質合
金材料と50%Ni−Feの飽和磁束密度Bは両方と
も11KG以上であり、また角形比に関しても95%
以上であり、実用上有効である。保磁力に関して
は(Fe0.7Ni0.3)78Si8B14非晶質合金材料の方が50
%Ni−Fe合金より半分以下と小さく、実用上非
常に有効である。
また、これらの材料の磁気増幅器用コアの有効
性を確認するために、それぞれの合金を高周波用
コアとして用いた。その結果(Fe0.7Ni0.3)
78Si8B14が50Ni−Fe合金に比べて電源効率で2.5
%向上し、動作時の鉄心の温度上昇値で25℃低減
された。
さらにスイツチングレギユレータ用磁気増幅器
に用いた場合も、特性上良好であり、温度上昇に
よるダイオードの破壊もなかつた。
実施例 4
(Fe0.96Nb0.04)82Si5B13の組成の母合金を溶解
し幅5mmの石英ノズルから2000rpmで回転する直
径30cmのロールに噴出させて幅5mm、厚み20μm
のテープ状非晶質合金を得た。次いでこのテープ
をトロイダル状コアに巻回した後、不活性ガス雰
囲気中で450℃、30分歪取り熱処理した後、キユ
リー温度直下で20エルステツドの磁場中熱処理を
30分間施した。この後180℃で2時間、20エルス
テツドの交流磁場中熱処理を行なつた。
この熱処理前後においてコアに一次および二次
巻線を施し印加磁場1エルステツド下で交流磁化
測定装置を用いて20kHzにおける交流ヒステリシ
ス曲線を測定し保磁力、角形化を求めた。
その結果を第4表に示す。[Table] In Table 3, the saturation magnetic flux density B of the (Fe 0.7 Ni 0.3 ) 78 Si 8 B 14 amorphous alloy material and 50% Ni-Fe are both 11 KG or more, and the squareness ratio is also 95%.
The above is practically effective. Regarding coercive force (Fe 0.7 Ni 0.3 ) 78 Si 8 B 14 amorphous alloy material has 50
%Ni-Fe alloy, less than half that, and is very effective in practice. In addition, in order to confirm the effectiveness of these materials in magnetic amplifier cores, each alloy was used as a high-frequency core. The result (Fe 0.7 Ni 0.3 )
78 Si 8 B 14 has a power efficiency of 2.5 compared to 50Ni-Fe alloy.
%, and the temperature rise of the iron core during operation was reduced by 25℃. Furthermore, when used in a magnetic amplifier for a switching regulator, the characteristics were good and the diode was not destroyed due to temperature rise. Example 4 A master alloy with a composition of (Fe 0.96 Nb 0.04 ) 82 Si 5 B 13 was melted and sprayed from a 5 mm wide quartz nozzle onto a 30 cm diameter roll rotating at 2000 rpm to form a 5 mm wide and 20 μm thick roll.
A tape-shaped amorphous alloy was obtained. This tape was then wound around a toroidal core, subjected to strain relief heat treatment at 450°C for 30 minutes in an inert gas atmosphere, and then heat treated in a magnetic field of 20 oersteds just below the Curie temperature.
It was applied for 30 minutes. Thereafter, heat treatment was performed at 180° C. for 2 hours in an alternating current magnetic field of 20 oersted. Before and after this heat treatment, primary and secondary windings were applied to the core, and an AC hysteresis curve at 20kHz was measured using an AC magnetization measuring device under an applied magnetic field of 1 oersted to determine the coercive force and squareness. The results are shown in Table 4.
【表】
これらのコアの磁気増幅器としての有効性を確
認するために、スイツチングレギユレータに適用
した。その結果本発明の熱処理を施したコアは効
率で2%向上し、動作時のコアの温度上昇も15℃
低減することができた。
さらに、第5表に示す各組成についても同様の
熱処理を行なつた。その熱処理前後での保磁力と
角形比の改善された値を示す。[Table] In order to confirm the effectiveness of these cores as magnetic amplifiers, we applied them to a switching regulator. As a result, the efficiency of the core treated with the heat treatment of the present invention was improved by 2%, and the temperature of the core during operation increased by 15℃.
We were able to reduce this. Furthermore, the same heat treatment was performed for each composition shown in Table 5. The improved values of coercive force and squareness ratio before and after the heat treatment are shown.
【表】【table】
【表】
この表からも明らかなように、本発明方法を用
いることにより各組成の非晶質金属においてより
小さな保磁力と高い角形比を得ることができる。
実施例 5
実施例1および実施例3で用いたコアをそれぞ
れ50KHz、20KHzで動作するスイツチング電源に
組み込み150℃で実動エージングを行なつた。そ
の結果を電源効率について第5図に示すが、いず
れの場合も極めて安定した値を示しており可飽和
リアクトルとしてすぐれた特性をもつていること
がわかる。
なお、第5図中実施例1のものを1、実施例3
のものを3で示す。
[発明の効果]
以上説明したように本発明方法によれば、高角
形比、低保磁力を有する巻鉄心が得られる。従つ
て、動作時の温度上昇が比較的低く、同一装置内
に組込まれている部品の性能を劣化させるおそれ
がない。そのため各種可飽和リアクトル等の巻鉄
心として、なかでも高周波域での使用に有効であ
り、特にスイツチングレギユレータ用磁気増幅器
用巻鉄心として有効である。[Table] As is clear from this table, by using the method of the present invention, a smaller coercive force and a higher squareness ratio can be obtained in amorphous metals of various compositions. Example 5 The cores used in Example 1 and Example 3 were incorporated into switching power supplies operating at 50 KHz and 20 KHz, respectively, and subjected to actual aging at 150°C. The results are shown in FIG. 5 regarding the power supply efficiency, and it can be seen that in all cases the values are extremely stable, indicating that the reactor has excellent characteristics as a saturable reactor. In addition, in FIG. 5, 1 is for Example 1, and 1 is for Example 3.
3 indicates that. [Effects of the Invention] As explained above, according to the method of the present invention, a wound core having a high squareness ratio and a low coercive force can be obtained. Therefore, the temperature rise during operation is relatively low, and there is no risk of deteriorating the performance of components incorporated in the same device. Therefore, it is effective as a wound core for various saturable reactors, etc., especially in high frequency ranges, and is particularly effective as a wound core for magnetic amplifiers for switching regulators.
第1図および第3図は交流磁場中での熱処理の
温度を変化させた時の角形比および保磁力の変化
を示すグラフ、第2図は第1図の各温度で熱処理
した試料を磁気増幅器の可飽和リアクトルに適用
した時のスイツチングレギユレータの50kHzにお
ける効率ηを示すグラフ、第4図は第3図の各温
度で熱処理した試料を磁気増幅器の可飽和リアク
トルに適用した時のスイツチングレギユレータの
20kHzにおける効率ηと動作時のコアの温度上昇
ΔTを示すグラフである。第5図は、スイツチン
グ電源に巻鉄心を組み込み、エージングを行なつ
た際の電源効率を示すグラフである。
Figures 1 and 3 are graphs showing changes in squareness ratio and coercive force when the temperature of heat treatment in an alternating magnetic field is changed, and Figure 2 is a graph showing the changes in squareness ratio and coercive force when the temperature of heat treatment in an alternating current magnetic field is changed. Figure 4 is a graph showing the efficiency η at 50kHz of a switching regulator when applied to a saturable reactor of a magnetic amplifier. Angular regulator
It is a graph showing the efficiency η at 20kHz and the temperature rise ΔT of the core during operation. FIG. 5 is a graph showing power supply efficiency when a wound core is incorporated into a switching power supply and aging is performed.
Claims (1)
熱処理を施し、次いで磁気特性調整工程として交
流磁場中で80〜200℃の熱処理工程を具備するこ
とを特徴とする巻鉄心の製造方法。 2 非晶質合金材料は (Co1-aFeaMb)100-x-ySixBy (但し、式中MはTi,V,Cr,Mn,Ni,Zr,
Nb,Mo,Ru,Hf,W,Ta,Re、希土類元素
の群から選ばれる少なくとも1種の元素、0≦a
≦0.1,0≦b≦0.1、20≦x+y≦30,5≦x
20,5≦y≦25)で表わされる特許請求の範囲第
1項記載の巻鉄心の製造方法。 3 磁気特性調整工程として交流磁場中の熱処理
工程の前段階に急冷工程を設ける特許請求の範囲
第2項記載の巻鉄心の製造方法。 2 非晶質合金材料は (Fe1-cMc)100-x-ySixBy (但し、式中MはNi,Ti,V,Cr,Mn,Zn,
Nb,Mo,Ru,Hf,W,Ta,Re、希土類元素
の群から選ばれる少なくとも1種の元素であつ
て、MがNiの場合は0.2≦c≦0.4,20≦x+y≦
30,5≦x≦20,5≦y≦25、MがNi以外の場
合は0.01≦c≦0.1,15≦x+y≦25,5≦x≦
20,5≦y≦20)で表わされる特許請求の範囲第
1項記載の巻鉄心の製造方法。 5 磁気特性調整工程として交流磁場中の熱処理
工程の前段階に磁場中高温熱処理工程を設ける特
許請求の範囲第3項記載の巻鉄心の製造方法。[Claims] 1. Amorphous alloy material is formed into a wound core, subjected to strain relief heat treatment, and then includes a heat treatment step at 80 to 200°C in an alternating current magnetic field as a magnetic property adjustment step. Manufacturing method of wound iron core. 2 The amorphous alloy material is (Co 1-a Fe a M b ) 100-xy Si x B y (where M is Ti, V, Cr, Mn, Ni, Zr,
At least one element selected from the group of Nb, Mo, Ru, Hf, W, Ta, Re, and rare earth elements, 0≦a
≦0.1, 0≦b≦0.1, 20≦x+y≦30, 5≦x
20, 5≦y≦25) The method for manufacturing a wound core according to claim 1. 3. The method for manufacturing a wound core according to claim 2, wherein a quenching step is provided as a magnetic property adjustment step before the heat treatment step in an alternating current magnetic field. 2 The amorphous alloy material is (Fe 1-c M c ) 100-xy Si x B y (where M is Ni, Ti, V, Cr, Mn, Zn,
At least one element selected from the group of Nb, Mo, Ru, Hf, W, Ta, Re, and rare earth elements, and when M is Ni, 0.2≦c≦0.4, 20≦x+y≦
30, 5≦x≦20, 5≦y≦25, 0.01≦c≦0.1 when M is other than Ni, 15≦x+y≦25, 5≦x≦
20, 5≦y≦20) The method for manufacturing a wound core according to claim 1. 5. The method for manufacturing a wound core according to claim 3, wherein a high temperature heat treatment step in a magnetic field is provided as a magnetic property adjustment step before the heat treatment step in an alternating current magnetic field.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57227219A JPS59121805A (en) | 1982-12-28 | 1982-12-28 | Manufacture of wound core |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57227219A JPS59121805A (en) | 1982-12-28 | 1982-12-28 | Manufacture of wound core |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59121805A JPS59121805A (en) | 1984-07-14 |
JPH0257683B2 true JPH0257683B2 (en) | 1990-12-05 |
Family
ID=16857357
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57227219A Granted JPS59121805A (en) | 1982-12-28 | 1982-12-28 | Manufacture of wound core |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59121805A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0733564B2 (en) * | 1986-08-30 | 1995-04-12 | 株式会社トーキン | Method for producing C-bottom 0-based amorphous alloy |
JP2562463B2 (en) * | 1987-10-23 | 1996-12-11 | 日立金属株式会社 | Amorphous alloy core |
US5151137A (en) * | 1989-11-17 | 1992-09-29 | Hitachi Metals Ltd. | Soft magnetic alloy with ultrafine crystal grains and method of producing same |
CN110438418A (en) * | 2019-08-05 | 2019-11-12 | 哈尔滨工业大学 | A kind of Co base amorphous fiber and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53111427A (en) * | 1977-03-09 | 1978-09-29 | Noboru Tsuya | Transformer for switching |
JPS57210612A (en) * | 1981-06-19 | 1982-12-24 | Hitachi Metals Ltd | Switching regulator |
JPS57210613A (en) * | 1981-06-19 | 1982-12-24 | Hitachi Metals Ltd | Switching regulator |
-
1982
- 1982-12-28 JP JP57227219A patent/JPS59121805A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53111427A (en) * | 1977-03-09 | 1978-09-29 | Noboru Tsuya | Transformer for switching |
JPS57210612A (en) * | 1981-06-19 | 1982-12-24 | Hitachi Metals Ltd | Switching regulator |
JPS57210613A (en) * | 1981-06-19 | 1982-12-24 | Hitachi Metals Ltd | Switching regulator |
Also Published As
Publication number | Publication date |
---|---|
JPS59121805A (en) | 1984-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4268325A (en) | Magnetic glassy metal alloy sheets with improved soft magnetic properties | |
JPS5933183B2 (en) | Low loss amorphous alloy | |
JP2007107096A (en) | Soft magnetic alloy, its production method and magnetic component | |
JPH0277105A (en) | Magnetic core component and manufacture thereof | |
JPH0219179B2 (en) | ||
JP3719449B2 (en) | Nanocrystalline alloy, method for producing the same, and magnetic core using the same | |
JP2011102438A (en) | Iron-based amorphous alloy having linear bh loop | |
JPS6328483B2 (en) | ||
JPH08188858A (en) | Glass alloy having permimber characteristic | |
JPH07320920A (en) | Nano-crystal alloy magnetic core and heat-treatment method thereof | |
JP3856245B2 (en) | Method for producing high permeability nanocrystalline alloy | |
JPH01247557A (en) | Manufacture of hyperfine-crystal soft-magnetic alloy | |
JPS6332244B2 (en) | ||
JPH0257683B2 (en) | ||
JPH01290744A (en) | Fe-base soft-magnetic alloy | |
JPH0123926B2 (en) | ||
JPS6070157A (en) | Amorphous alloy and its manufacture | |
JPH0549742B2 (en) | ||
JP2513645B2 (en) | Amorphous magnetic core excellent in effective pulse magnetic permeability and manufacturing method thereof | |
JPH053126A (en) | Manufacture of wound magnetic core of large squareness ratio in high frequency and wound magnetic core | |
JPH0323614B2 (en) | ||
JP2859286B2 (en) | Manufacturing method of ultra-microcrystalline magnetic alloy | |
JP2000252111A (en) | High-frequency saturable magnetic core and device using the same | |
JPS6012423B2 (en) | Manufacturing method of low coercive force and high angularity amorphous alloy | |
JP2719978B2 (en) | Amorphous alloy for high frequency magnetic core |