[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH076711B2 - Refrigerant recovery device - Google Patents

Refrigerant recovery device

Info

Publication number
JPH076711B2
JPH076711B2 JP2641589A JP2641589A JPH076711B2 JP H076711 B2 JPH076711 B2 JP H076711B2 JP 2641589 A JP2641589 A JP 2641589A JP 2641589 A JP2641589 A JP 2641589A JP H076711 B2 JPH076711 B2 JP H076711B2
Authority
JP
Japan
Prior art keywords
recovery
refrigerant
refrigerant circuit
compressor
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2641589A
Other languages
Japanese (ja)
Other versions
JPH02208465A (en
Inventor
潔 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2641589A priority Critical patent/JPH076711B2/en
Publication of JPH02208465A publication Critical patent/JPH02208465A/en
Publication of JPH076711B2 publication Critical patent/JPH076711B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/002Collecting refrigerant from a cycle

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、カーエアコン等の被回収側冷媒回路に充填さ
れた冷媒を、交換等のために回収する冷媒回収装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant recovery device for recovering a refrigerant filled in a recovery side refrigerant circuit such as a car air conditioner for replacement.

(従来の技術) 従来、米国特許第4,539,817号に開示され且つ第4図に
示すように、圧縮機(C)に、吐出切換弁(J)と吸入
切換弁(K)とを介して、空気熱交換器(D)と、第1,
第2膨張機構(M)(N)、及び、回収タンク(T)に
配設する熱交換管(E)を接続すると共に、回収タンク
(T)に開閉弁(Q)(R)をもつ接続路(A)(B)
を介して被回収側冷媒回路(W)を接続し、熱交換管
(E)を蒸発器として作用させて回収タンク(T)の内
部を冷却及び減圧し、該タンク(T)に被回収側冷媒回
路(W)に充填された冷媒を回収できるようにしてい
る。
(Prior Art) Conventionally, as disclosed in U.S. Pat. No. 4,539,817 and as shown in FIG. 4, air is supplied to a compressor (C) through a discharge switching valve (J) and an intake switching valve (K). Heat exchanger (D), first,
The second expansion mechanism (M) (N) and the heat exchange pipe (E) arranged in the recovery tank (T) are connected, and the recovery tank (T) is provided with an opening / closing valve (Q) (R). Road (A) (B)
The recovery side refrigerant circuit (W) is connected via the heat exchanger tube (E) to act as an evaporator to cool and decompress the inside of the recovery tank (T), and the recovery side is connected to the tank (T). The refrigerant filled in the refrigerant circuit (W) can be recovered.

尚、この例では、冷媒回収の他に、熱交換管(E)を凝
縮器として作用させ回収タンク(T)を加熱及び加圧す
ることにより、該タンク(T)を貯溜した冷媒を被回収
側冷媒回路(W)に充填できるようにしている。
In this example, in addition to the refrigerant recovery, the heat exchange tube (E) acts as a condenser to heat and pressurize the recovery tank (T) so that the refrigerant stored in the tank (T) is recovered. The refrigerant circuit (W) can be filled.

(発明が解決しようとする問題点) しかし、以上の回収装置では、圧縮機(C)側の冷媒配
管系統と被回収側冷媒回路(W)とは冷媒の流れが独立
しており、回収操作時、回収タンク(T)の内部を冷却
及び減圧し、主にその差圧で被回収側冷媒回路(W)の
冷媒を引込むだけだから、被回収側冷媒回路(W)に液
状態として残存する冷媒はなかなか回収できない問題が
ある。すなわち、残存する液冷媒の蒸発気化は、低い圧
力とれた回収タンク(T)からの減圧作用と、外気から
の吸熱作用とにより行わざるを得ず、特に加熱源が外気
のみであることから、蒸発気化のために供給される熱量
が極めて小さく、このため、残存冷媒の気化が促進され
ず、回収時間が長時間となるのである。
(Problems to be solved by the invention) However, in the recovery device described above, the refrigerant flow system of the compressor (C) side and the recovered side refrigerant circuit (W) are independent of each other, and the recovery operation is performed. At this time, the inside of the recovery tank (T) is cooled and decompressed, and the refrigerant in the recovered side refrigerant circuit (W) is mainly drawn in by the differential pressure, so that it remains in the recovered side refrigerant circuit (W) as a liquid state. There is a problem that the refrigerant cannot be recovered easily. That is, the evaporation and vaporization of the remaining liquid refrigerant must be performed by the depressurizing action from the recovery tank (T) at a low pressure and the endothermic action from the outside air, and in particular, since the heating source is only the outside air, The amount of heat supplied for evaporation and vaporization is extremely small, so that the vaporization of the residual refrigerant is not promoted and the recovery time becomes long.

この問題を回避するには、冷媒充填操作の原理を利用
し、まずタンク(T)を加熱して被回収側冷媒回路
(W)を加熱すことも考えられるが、このためには、回
収タンク(T)内に予め冷媒液を充填する必要が生じる
等、新たな制約がつく他、加熱運転と回収運転とを別個
に行う必要があり回収時間の短縮効果も十分に果たせな
い問題が残る。
In order to avoid this problem, it is conceivable to first heat the tank (T) to heat the recovered side refrigerant circuit (W) by using the principle of the refrigerant filling operation. In addition to new restrictions such as the need to fill the refrigerant liquid in (T) in advance, it is necessary to separately perform the heating operation and the recovery operation, and there is a problem that the effect of shortening the recovery time cannot be sufficiently achieved.

本発明の目的は、被回収側冷媒回路を積極的に加熱して
被冷媒の蒸発気化を促進し、冷媒回収時間の短縮化を図
り得る冷媒回収装置を提供するにある。
An object of the present invention is to provide a refrigerant recovery device that can positively heat the recovery target side refrigerant circuit to promote the evaporation and vaporization of the refrigerant to be recovered and shorten the refrigerant recovery time.

(課題を解決するための手段) そこで、本発明では、圧縮機(1)と回収タンク(4)
とを備え、被回収側冷媒回路(W)の冷媒を前記回収タ
ンク(4)に回収する構成において、前記圧縮機(1)
の吐出側に、凝縮器(2)を介して前記回収タンク
(4)に延びる回収路(5)と、チャージポート(6)
を介して前記被回収側冷媒回路(W)に吐出ガスを注入
する加熱路(7)とを接続すると共に、前記圧縮機
(1)の吸入側に、回収ポート(8)を介して前記被回
収側冷媒回路(W)の冷媒を引込む引込路(9)を接続
する一方、前記加熱路(7)に、前記被回収側冷媒回路
(W)への吐出ガスの注入を遮断する遮断手段を介装す
ることにした。
(Means for Solving the Problem) Therefore, in the present invention, the compressor (1) and the recovery tank (4) are used.
And a configuration in which the refrigerant in the recovery target refrigerant circuit (W) is recovered in the recovery tank (4), the compressor (1)
A discharge path (5) extending to the recovery tank (4) through a condenser (2) and a charge port (6) on the discharge side of
Is connected to a heating passage (7) for injecting discharge gas into the recovered side refrigerant circuit (W) via the recovery side refrigerant circuit (W), and the recovery side refrigerant circuit (W) is connected to the intake side of the compressor (1) via the recovery port (8) A shutoff means for shutting off the injection of the discharge gas to the recovered side refrigerant circuit (W) is connected to the heating path (7) while connecting the drawing path (9) for drawing in the refrigerant of the collecting side refrigerant circuit (W). I decided to intervene.

又、前記回収路(5)と加熱路(7)との接続部に、開
度調節可能な三方弁(3)を配設し、前記引込路(9)
での冷媒の過熱度が一定になるように前記三方弁(3)
の開度調節を行う弁開度制御手段(10)を設けることに
した。
Further, a three-way valve (3) whose opening degree can be adjusted is arranged at the connecting portion between the recovery passageway (5) and the heating passageway (7), and the withdrawal passageway (9) is provided.
The three-way valve (3) so that the degree of superheat of the refrigerant in the
A valve opening control means (10) for adjusting the opening of the valve is provided.

(作用) 加熱路(7)を介して吐出ガスが被回収側冷媒回路
(W)に供給され、該回路(W)での冷媒が加熱されそ
の蒸発気化が促進される。そして、この気化された冷媒
が、引込路(9)を介して、圧縮機(1)に直接吸入さ
れ、回収路(5)に経て凝縮器(2)で液化され、回収
タンク(4)に回収される。圧縮機(1)による比較的
大きな熱供給により、被回収側冷媒回路(W)の気化促
進がなされるため、該回路(W)に冷媒が長時間寝込む
ことがない。最終的には、遮断手段により加熱路(7)
から被回収側冷媒回路(W)への吐出ガスの注入を遮断
することにより、該被回収側冷媒回路(W)の冷媒は全
量、回収タンク(4)に回収されることになる。
(Operation) The discharge gas is supplied to the recovered side refrigerant circuit (W) via the heating passage (7), the refrigerant in the circuit (W) is heated, and its evaporation and vaporization is promoted. Then, the vaporized refrigerant is directly sucked into the compressor (1) through the intake passage (9), liquefied in the condenser (2) through the recovery passage (5), and then stored in the recovery tank (4). Be recovered. The relatively large amount of heat supplied by the compressor (1) accelerates the vaporization of the recovery-side refrigerant circuit (W), so that the refrigerant does not stay in the circuit (W) for a long time. Finally, the heating means (7) is provided by the shutoff means.
By blocking the injection of the discharge gas from the recovery target side refrigerant circuit (W) into the recovery target side refrigerant circuit (W), the entire amount of the refrigerant in the recovery target side refrigerant circuit (W) is recovered in the recovery tank (4).

このとき、引込路(9)に流通する吸入ガスの過熱度が
一定になるように三方弁(3)の開度制御を行えば、加
熱路(7)と回収路(5)への冷媒量の振り分けが適正
になされ、被回収側冷媒回路(W)での過剰な加熱や不
十分な加熱を排除でき、回収時間が最短にできると共
に、圧縮機(1)での過度の加熱運転や湿り運転を回避
でき、その保護をも図り得る。
At this time, if the opening degree of the three-way valve (3) is controlled so that the degree of superheat of the intake gas flowing through the intake passage (9) is constant, the amount of refrigerant flowing into the heating passage (7) and the recovery passage (5) is increased. Is properly distributed, excessive heating and insufficient heating in the recovered side refrigerant circuit (W) can be eliminated, and the recovery time can be minimized, and excessive heating operation and wetness in the compressor (1) can be achieved. You can avoid driving and protect it.

(実施例) 第1図に示すものは、圧縮機(1)の吐出側に、吐出ガ
スを所定比率で分流若しくは一方のみに流通させる三方
弁(3)を接続し、一方の出口側に、ファン(20)をも
つ凝縮器(2)を介して回収タンク(4)に延びる回収
路(5)を接続すると共に、他方の出口側に、チャージ
ポート(6)を介して被回収側冷媒回路(W)に吐出ガ
スを注入する加熱路(7)を接続する一方、前記圧縮機
(1)の吸入側に、回収ポート(8)を介して前記冷媒
回路(W)の冷媒を引込む引込路(9)を接続したもの
である。
(Example) In what is shown in FIG. 1, a three-way valve (3) for branching a discharge gas at a predetermined ratio or for distributing the discharge gas to only one side is connected to the discharge side of a compressor (1), and one outlet side is connected to A recovery passageway (5) extending to a recovery tank (4) is connected via a condenser (2) having a fan (20), and a recovery target side refrigerant circuit is connected to the other outlet side via a charge port (6). A drawing path for drawing in the refrigerant of the refrigerant circuit (W) through a recovery port (8) to the suction side of the compressor (1) while connecting a heating path (7) for injecting discharge gas to (W). (9) is connected.

回収タンク(4)の上部は、減圧管(40)を介して前記
引込路(9)に接続し、内部圧力を低減して、凝縮器
(2)から流れ出る液冷媒の流下を促進できるようにし
ている。
The upper part of the recovery tank (4) is connected to the inlet passage (9) via the pressure reducing pipe (40) to reduce the internal pressure so that the liquid refrigerant flowing out of the condenser (2) can be accelerated. ing.

又、回収路(5)と加熱路(7)との接続部に配設され
た前記三方弁(3)は、弁開度制御手段(10)からの指
令により開度調節可能としており、引込路(9)から圧
縮機(1)に吸入される吸入ガスの過熱度(α)を、該
引込路(9)に介装した温度検出器(11)及び圧力検出
器(12)の各検出値により、第2図に示すように一定に
なるように制御している。すなわち、圧力検出器(12)
での検出圧力相当の飽和温度(t1)と温度検出器(11)
の検出値(t2)との差が実際の過熱度(α)となり、こ
の過熱度が、設定過熱度(例えば5℃)より大きくなる
と、吸入ガスの過熱が過大であることから、加熱路
(7)を介した被回収側冷媒回路(W)への吐出ガスの
供給量を少なくし、逆に回収路(5)への流量を増大さ
せるのである。一方、過熱度(α)が、設定過熱度(5
℃)より小さくなると、吸入ガスの過熱ひいては被回収
側冷媒回路(W)の残留冷媒の加熱が不十分であること
から、加熱路(7)を介して被回収側冷媒回路(W)へ
の吐出ガスの供給量を増し、逆に回収路(5)への流量
を減少させるのである。そして、回収終了直前には、吐
出ガスを全量、回収路(5)に流し、加熱路(7)側へ
の流通は遮断して、被回収側冷媒回路(W)の冷媒を全
量、回収タンク(4)に回収できるようにするのであ
る。
The opening of the three-way valve (3) arranged at the connection between the recovery passage (5) and the heating passage (7) can be adjusted by a command from the valve opening control means (10). The degree of superheat (α) of the suction gas sucked into the compressor (1) from the passage (9) is detected by the temperature detector (11) and the pressure detector (12) provided in the intake passage (9). The value is controlled to be constant as shown in FIG. That is, pressure detector (12)
Saturation temperature (t1) equivalent to the detected pressure and temperature detector (11)
The difference from the detected value (t2) of is the actual superheat degree (α). When this superheat degree exceeds the set superheat degree (for example, 5 ° C), the superheat of the intake gas is excessive, so the heating path ( The amount of discharge gas supplied to the recovered side refrigerant circuit (W) via 7) is reduced, and conversely the flow rate to the recovery passageway (5) is increased. On the other hand, the superheat degree (α) is equal to the set superheat degree (5
C)), the intake gas is overheated, and thus the residual refrigerant in the recovered side refrigerant circuit (W) is insufficiently heated. The amount of discharge gas supplied is increased, and conversely the flow rate to the recovery passageway (5) is decreased. Immediately before the end of recovery, the discharge gas is entirely supplied to the recovery passageway (5), the flow to the heating passageway (7) side is blocked, and the entire amount of the refrigerant in the recovered side refrigerant circuit (W) is recovered in the recovery tank. It should be possible to collect in (4).

以上の構成で冷媒回収運転を行うと、圧縮機(1)から
吐出された吐出ガス(第2図中、d)の一部は、加熱路
(7)を介して被回収側冷媒回路(W)に供給され
(a)、該回路(W)での冷媒(b:冷媒回路(W)中の
冷媒の蒸発気化が促進される。そして、この加熱により
ガス化した冷媒(m)が、引込路(9)を介して、圧縮
機(1)に直接吸入され、加熱路(7)へ導入される分
を除いた冷媒が凝縮器(2)で液化して(q)、回収タ
ンク(4)に回収される。
When the refrigerant recovery operation is performed with the above configuration, a part of the discharge gas (d in FIG. 2) discharged from the compressor (1) is partially recovered side refrigerant circuit (W) via the heating path (7). (A), the refrigerant (b) in the circuit (W) is accelerated to evaporate and vaporize the refrigerant in the refrigerant circuit (W), and the refrigerant (m) gasified by this heating is drawn in. Refrigerant excluding the amount that is directly sucked into the compressor (1) through the path (9) and introduced into the heating path (7) is liquefied (q) in the condenser (2), and the recovery tank (4 ) Is collected.

この場合、第3図に示すように、回収運転当初は、加熱
路(7)からの吐出ガスの供給により、回収タンク
(4)への回収冷媒量は従来に比べて鈍化する場合があ
るが、加熱路(7)から圧縮機(1)による比較的大き
な熱供給により、冷媒押し出し側の被回収側冷媒回路
(W)の圧力は高く維持できると共に、残存する液冷媒
は良好に気化できる。このため、回収側冷媒回路(W)
に冷媒が長時間寝込むことがなく、結果として回収時間
の短縮化が図れることになる。
In this case, as shown in FIG. 3, at the beginning of the recovery operation, the amount of the recovered refrigerant to the recovery tank (4) may be slower than in the conventional case due to the supply of the discharge gas from the heating passage (7). The relatively large amount of heat supplied by the compressor (1) from the heating passage (7) makes it possible to maintain a high pressure in the recovery target refrigerant circuit (W) on the refrigerant extrusion side and to favorably vaporize the remaining liquid refrigerant. Therefore, the recovery side refrigerant circuit (W)
The refrigerant does not lie down for a long time, and as a result, the recovery time can be shortened.

又、この回収時に、吸入ガスの過熱度(α)を一定に制
御する場合には、加熱路(7)と回収路(5)への冷媒
量の振り分けが適正になされ、被回収側冷媒回路(W)
での過剰な加熱や不十分な加熱を排除でき、回収時間が
最短にできると共に、吸入ガスの過剰過熱による加熱運
転や、逆に湿り運転による液圧縮等を回避できて圧縮機
(1)の保護が図れる利点も得られる。
Further, when the superheat degree (α) of the suction gas is controlled to be constant during the recovery, the amount of the refrigerant is properly distributed to the heating path (7) and the recovery path (5), and the recovery-side refrigerant circuit (W)
It is possible to eliminate excessive heating and insufficient heating in the compressor, and to minimize the recovery time, and to avoid heating operation due to excessive overheating of the suction gas, and conversely liquid compression due to wet operation, so that the compressor (1) There is also the advantage of protection.

(発明の効果) 以上、本発明によれば、加熱路(7)からの吐出ガスの
供給により被回収側冷媒回路(W)での液冷媒の蒸発気
化を促進できると共に、この被回収側冷媒回路(W)の
冷媒を引込路(9)を介して直接的に圧縮機(1)に吸
入し、回収路(5)を介して回収タンク(4)に冷媒回
収を行うから、被回収側冷媒回路(W)の冷媒回収を短
時間で行えるのである。
As described above, according to the present invention, the supply of the discharge gas from the heating passage (7) can accelerate the evaporation and vaporization of the liquid refrigerant in the recovered side refrigerant circuit (W), and the recovered side refrigerant. The refrigerant in the circuit (W) is directly sucked into the compressor (1) through the intake passage (9) and is recovered in the recovery tank (4) through the recovery passage (5). The refrigerant in the refrigerant circuit (W) can be recovered in a short time.

そして、この場合、引込路(9)での冷媒の過熱度が一
定になるように、三方弁(3)を介して回収路(5)と
加熱路(7)への吐出ガスの振り分けを行う場合には、
回収時間を最短にできると共に、圧縮機(1)の保護を
も図り得るのである。
Then, in this case, the discharge gas is distributed to the recovery passageway (5) and the heating passageway (7) via the three-way valve (3) so that the degree of superheat of the refrigerant in the intake passageway (9) becomes constant. in case of,
The recovery time can be minimized and the compressor (1) can be protected.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明冷媒回収装置の配管系統図、第2図は同
作用を説明するモリエル線図、第3図は従来例との対比
で本発明の効果を説明する図、第4図は従来例の配管系
統図である。 (1)……圧縮機 (2)……凝縮器 (3)……三方弁 (4)……回収タンク (5)……回収路 (6)……チャージポート (7)……加熱路 (8)……回収ポート (9)……引込路 (10)……弁開度制御手段 (W)……被回収側冷媒回路
FIG. 1 is a piping system diagram of the refrigerant recovery device of the present invention, FIG. 2 is a Mollier diagram for explaining the same action, FIG. 3 is a diagram for explaining the effect of the present invention in comparison with a conventional example, and FIG. It is a piping system figure of a prior art example. (1) …… Compressor (2) …… Condenser (3) …… Three-way valve (4) …… Collection tank (5) …… Collection path (6) …… Charge port (7) …… Heating path ( 8) ...... Recovery port (9) ...... Intake path (10) ...... Valve opening control means (W) ...... Refrigerant circuit to be recovered side

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】圧縮機(1)と回収タンク(4)とを備
え、被回収側冷媒回路(W)の冷媒を前記回収タンク
(4)に回収する冷媒回収装置であって、前記圧縮機
(1)の吐出側に、凝縮器(2)を介して前記回収タン
ク(4)に延びる回収路(5)と、チャージポート
(6)を介して前記被回収側冷媒回路(W)に吐出ガス
を注入する加熱路(7)とを接続すると共に、前記圧縮
機(1)の吸入側に、回収ポート(8)を介して前記被
回収側冷媒回路(W)の冷媒を引込む引込路(9)を接
続する一方、前記加熱路(7)に、前記被回収側冷媒回
路(W)への吐出ガスの注入を遮断する遮断手段を介装
していることを特徴とする冷媒回収装置。
1. A refrigerant recovery device, comprising a compressor (1) and a recovery tank (4), for recovering the refrigerant in a recovery target side refrigerant circuit (W) to the recovery tank (4), the compressor comprising: On the discharge side of (1), discharge to the recovery side refrigerant circuit (W) via a recovery passage (5) extending to the recovery tank (4) via a condenser (2) and a charge port (6). A lead-in path (for connecting the heating path (7) for injecting the gas, and for drawing in the refrigerant of the recovered side refrigerant circuit (W) through the recovery port (8) to the suction side of the compressor (1). 9) is connected, while the heating passage (7) is provided with a shutoff means for shutting off the injection of the discharge gas into the recovered side refrigerant circuit (W).
【請求項2】前記回収路(5)と加熱路(7)との接続
部に、開度調節可能な三方弁(3)を配設し、前記引込
路(9)での冷媒の過熱度が一定になるように前記三方
弁(3)の開度調節を行う弁開度制御手段(10)を設け
た請求項1記載の冷媒回収装置。
2. A three-way valve (3) whose opening degree can be adjusted is provided at the connection between the recovery passage (5) and the heating passage (7), and the degree of superheat of the refrigerant in the intake passage (9). 2. The refrigerant recovery device according to claim 1, further comprising a valve opening control means (10) for adjusting the opening of the three-way valve (3) so that the temperature is constant.
JP2641589A 1989-02-03 1989-02-03 Refrigerant recovery device Expired - Lifetime JPH076711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2641589A JPH076711B2 (en) 1989-02-03 1989-02-03 Refrigerant recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2641589A JPH076711B2 (en) 1989-02-03 1989-02-03 Refrigerant recovery device

Publications (2)

Publication Number Publication Date
JPH02208465A JPH02208465A (en) 1990-08-20
JPH076711B2 true JPH076711B2 (en) 1995-01-30

Family

ID=12192912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2641589A Expired - Lifetime JPH076711B2 (en) 1989-02-03 1989-02-03 Refrigerant recovery device

Country Status (1)

Country Link
JP (1) JPH076711B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220390159A1 (en) * 2020-04-27 2022-12-08 Daikin Industries, Ltd. Air-conditioning management system and refrigerant recovery management apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3496510B2 (en) * 1998-03-19 2004-02-16 株式会社日立製作所 Refrigerant recovery method and refrigerant recovery device
US7010927B2 (en) * 2003-11-07 2006-03-14 Carrier Corporation Refrigerant system with controlled refrigerant charge amount
JP7151394B2 (en) * 2018-11-08 2022-10-12 株式会社デンソー refrigeration cycle equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220390159A1 (en) * 2020-04-27 2022-12-08 Daikin Industries, Ltd. Air-conditioning management system and refrigerant recovery management apparatus
US12066227B2 (en) * 2020-04-27 2024-08-20 Daikin Industries, Ltd. Air-conditioning management system and refrigerant recovery management apparatus

Also Published As

Publication number Publication date
JPH02208465A (en) 1990-08-20

Similar Documents

Publication Publication Date Title
US6931880B2 (en) Method and arrangement for defrosting a vapor compression system
JPH09178274A (en) Refrigerating system
JP2010532462A (en) High temperature gas defrosting method and apparatus
KR960004254B1 (en) Refrigerating system with compressor cooled by liquid refrigerant
US5172564A (en) Integrated heat pump with restricted refrigerant feed
US20210341192A1 (en) Heat pump device
US2353240A (en) Air conditioning apparatus
JPH076711B2 (en) Refrigerant recovery device
JPH04320762A (en) Freezing cycle
JPH1163769A (en) Refrigerator for refrigerated container
US6053000A (en) Refrigeration unit
US3014349A (en) Method of operation of an absorption refrigeration system
JP2000146319A (en) Heat pump type air conditioner
JP3349251B2 (en) Refrigeration equipment
JPH076710B2 (en) Refrigerant recovery device
JPH11248261A (en) Compressor refrigerant supplementation refrigerating machine
JP2639135B2 (en) Vehicle air conditioner
EP4390273A1 (en) Method for managing a refrigerating plant and refrigerating plant
JP3048776B2 (en) Refrigeration equipment
JPH08136089A (en) Refrigerant recovering device
KR0136083Y1 (en) Refrigeration cycle apparatus
JPH08313074A (en) Refrigerating apparatus
JPH07849Y2 (en) Air-cooled absorption chiller / heater
JPH0275861A (en) Method and apparatus for preventing refrigerant gas of evaporator and refrigerating compressor from abnormally overheating
JPH07159006A (en) Refrigerant-collecting device