JPH0765348A - Intrasurface magnetic recording medium - Google Patents
Intrasurface magnetic recording mediumInfo
- Publication number
- JPH0765348A JPH0765348A JP20744893A JP20744893A JPH0765348A JP H0765348 A JPH0765348 A JP H0765348A JP 20744893 A JP20744893 A JP 20744893A JP 20744893 A JP20744893 A JP 20744893A JP H0765348 A JPH0765348 A JP H0765348A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- magnetic
- magnetic recording
- film
- recording medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Magnetic Record Carriers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、高密度磁気記録に好適
な面内磁気記録媒体に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an in-plane magnetic recording medium suitable for high density magnetic recording.
【0002】[0002]
【従来の技術】面内磁気記録方式は、磁気記録媒体面に
平行に、かつ磁極のN極とN極、S極とS極を互いに突
き合わせる方向に磁化して磁気記録を行うものである。
面内磁気記録において記録密度を上げるには、記録時の
反磁界の影響をするために記録媒体である磁性膜の膜厚
を小さくし、保磁力を増大する必要がある。また磁性膜
の磁化容易軸を基板面に平行に配向させる必要がある。
さらに望ましくは磁化容易軸は一様な方向に配向させ
る。2. Description of the Related Art In-plane magnetic recording is a method of performing magnetic recording by magnetizing in parallel to the surface of a magnetic recording medium and magnetizing the N poles and N poles of the magnetic poles and the S poles and S poles of the magnetic poles in abutting direction. .
In order to increase the recording density in the longitudinal magnetic recording, it is necessary to reduce the film thickness of the magnetic film that is the recording medium and increase the coercive force in order to influence the demagnetizing field during recording. Further, it is necessary to orient the easy axis of magnetization of the magnetic film parallel to the substrate surface.
More preferably, the easy axis is oriented in a uniform direction.
【0003】従来、面内磁気記録用媒体としては、Co
−Cr,Co−NiなどのCo基合金薄膜が用いられ、
中でもCo−Crを主成分とする合金にTa,Pt,M
o,Ru,Re,Feなどを添加したものが用いられて
いる。これら面内磁気記録用の磁性薄膜を構成するCo
基合金は稠密六方(h.c.p)格子構造を持ち、この
結晶のc軸、<001>、方向に磁化容易軸を持ち、磁
気特性を向上するためにはこれらCo基合金薄膜のc軸
を高配向させる必要がある。Conventionally, Co has been used as an in-plane magnetic recording medium.
Co-based alloy thin films such as -Cr and Co-Ni are used,
Above all, Ta, Pt, M is added to the alloy containing Co-Cr as a main component.
A material to which o, Ru, Re, Fe, etc. are added is used. Co constituting the magnetic thin film for in-plane magnetic recording
The base alloy has a dense hexagonal (hcp) lattice structure and has an easy axis of magnetization in the c-axis, <001>, direction of this crystal. The axis needs to be highly oriented.
【0004】現在用いられている面内磁気記録媒体は、
NiP被覆したAl基板、ガラス板、あるいはポリイミ
ド、ポリエチレンテレフタレートなどのプラスチックフ
ィルム類などの非磁性基板上にCo基合金薄膜を形成し
たものである。しかし、非磁性基板上に直接形成したC
o基合金薄膜は磁化容易軸であるc軸は全く不揃いであ
り、磁性膜の保磁力も1000 Oe(エルステッド)
以下と小さく、高密度磁気記録用媒体としての性能特性
が良くない。上記の磁性層であるCo基合金薄膜結晶の
c軸を基板面内に高配向化する目的から、基板上に体心
立方格子構造を有するCr下地層を形成し、その上にC
o基合金磁性薄膜を形成する方法が提案され、実用化さ
れている。基板上にCr下地層を直接形成した場合、薄
膜成長の初期にCrの微結晶核が形成されるが、この微
結晶粒は特別な方向に優先配向をしていない。Cr膜厚
の増大とともに結晶粒径が増大し、不規則な向きに配向
した結晶粒から成る初期成長層が形成される。この初期
成長層の厚さは、基板の種類や表面状態あるいは形成温
度やスパッタリングガスの圧力などの形成条件に依存す
るが、およそ50〜70nmである。さらに膜厚の増大
に伴って<110>あるいは<100>方位のCr結晶
粒が支配的になる。実用的に用いられるCr下地層の厚
さは100nm〜200nmである。この膜厚における
Cr下地層の結晶粒径は20〜200nmの範囲で不規
則な形で分布している。CoCrなどのCo基合金薄膜
は、上記Cr下地層の上にエピタキシャル的に成長す
る。Cr(100)面上にはCoCr結晶の(112
0)が平行に、すなわちCoCr結晶のc軸が下地層面
に平行にかつ互いに直交する形の薄膜が形成され、また
Cr(110)面にはCoCr結晶の(1010)面が
平行に形成される。このCoCrなどのCo基合金薄膜
の結晶粒は、粒径が20〜200nmの上記Cr下地層
結晶粒の上にエピタキシャル的に成長して形成される
が、一個のCr結晶粒の上に粒径10〜50nmの複数
個のCoCr結晶が成長する。このような構造をもつ記
録媒体を磁化すると、上記Cr結晶粒の上に形成された
複数個の磁性結晶粒群があたかも単一の磁気クラスタの
ように作用する。すなわち粒径が20〜200nmの一
個のCr結晶上に形成された数個の磁性結晶は、磁性粒
子間の磁気的な相互作用が強いためあたかも単一の磁気
クラスタのように磁化される。高密度磁気記録、特に1
Gb/in2以上の超高密度磁気記録では、ビット長が
数十ナノメートルのオーダまで小さくなることが予想さ
れ、超高密度磁気記録を再現性よく実現するためには、
磁化したとき個々の磁性結晶粒が単一の磁気クラスタと
して作用できるように各々が磁気的に孤立しており、ま
た磁性結晶粒径の均一性や結晶配向性を制御することが
重要になる。このためには基板上に形成するCr下地層
の粒径や結晶配向性を高度に制御する必要がある。すな
わち、従来用いられている磁気記録媒体では、Cr下地
層形成前の基板表面状態が特別に制御されてないため
に、この上に形成するCr結晶粒の大きさや成長方位が
不揃いになり、この上に形成する磁性粒子の粒径や結晶
配向等の微細構造を再現性よく制御できない問題があっ
た。The longitudinal magnetic recording medium currently used is
The Co-based alloy thin film is formed on a NiP-coated Al substrate, a glass plate, or a non-magnetic substrate such as a plastic film such as polyimide or polyethylene terephthalate. However, C formed directly on the non-magnetic substrate
In the o-based alloy thin film, the c-axis, which is the easy axis of magnetization, is completely uneven, and the coercive force of the magnetic film is 1000 Oe (oersted).
It is small as follows and the performance characteristics as a high density magnetic recording medium are not good. Of the above Co-based alloy thin film crystal that is the magnetic layer
For the purpose of highly orienting the c-axis in the plane of the substrate, a Cr underlayer having a body-centered cubic lattice structure is formed on the substrate, and C is formed thereon.
A method for forming an o-based alloy magnetic thin film has been proposed and put to practical use. When the Cr underlayer is directly formed on the substrate, Cr microcrystal nuclei are formed at the initial stage of thin film growth, but the microcrystal grains are not preferentially oriented in a particular direction. The crystal grain size increases as the Cr film thickness increases, and an initial growth layer composed of crystal grains oriented in an irregular direction is formed. The thickness of this initial growth layer is about 50 to 70 nm, though it depends on the type and surface condition of the substrate, or the forming conditions such as the forming temperature and the pressure of the sputtering gas. Further, as the film thickness increases, Cr crystal grains in <110> or <100> orientation become dominant. The thickness of the Cr underlayer practically used is 100 nm to 200 nm. The crystal grain size of the Cr underlayer having this thickness is irregularly distributed in the range of 20 to 200 nm. A Co-based alloy thin film such as CoCr grows epitaxially on the Cr underlayer. On the Cr (100) plane, (112 of CoCr crystal is formed.
0) is parallel, that is, a thin film is formed in which the c-axis of the CoCr crystal is parallel to the surface of the underlayer and is orthogonal to each other, and the (1010) plane of the CoCr crystal is parallel to the Cr (110) plane. . The crystal grains of the Co-based alloy thin film such as CoCr are formed by epitaxial growth on the Cr underlayer crystal grains having a grain size of 20 to 200 nm, and the grain size is formed on one Cr crystal grain. A plurality of CoCr crystals of 10 to 50 nm grow. When a recording medium having such a structure is magnetized, a plurality of magnetic crystal grain groups formed on the Cr crystal grains act as if they were a single magnetic cluster. That is, several magnetic crystals formed on one Cr crystal having a grain size of 20 to 200 nm are magnetized as if they were a single magnetic cluster because of strong magnetic interaction between the magnetic grains. High density magnetic recording, especially 1
In Gb / in 2 or higher ultra-high density magnetic recording, the bit length is expected to be reduced to the order of several tens of nanometers. In order to realize ultra-high density magnetic recording with good reproducibility,
When magnetized, each magnetic crystal grain is magnetically isolated so that it can act as a single magnetic cluster, and it is important to control the uniformity of the crystal grain size and the crystal orientation. For this purpose, it is necessary to highly control the grain size and crystal orientation of the Cr underlayer formed on the substrate. That is, in the conventionally used magnetic recording medium, the state of the substrate surface before the formation of the Cr underlayer is not specially controlled, so that the size and growth orientation of the Cr crystal grains formed on the substrate are not uniform. There is a problem that the fine structure such as the particle size and crystal orientation of the magnetic particles formed above cannot be controlled with good reproducibility.
【0005】[0005]
【発明が解決しようとする課題】本発明の目的は、上述
した従来技術の欠点を解消したものであって、Crを主
成分とする合金から成る磁性薄膜の構造制御用薄膜を用
い、該構造制御用薄膜の上に磁性薄膜を形成することに
よって、磁気的に孤立した適正な粒径と結晶配向性をも
つCo基合金磁性薄膜の構造制御を行い、高保磁力など
の磁気特性に優れた超高密度磁気記録に好適な面内磁気
記録媒体を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned drawbacks of the prior art by using a structure controlling thin film of a magnetic thin film made of an alloy containing Cr as a main component. By forming a magnetic thin film on top of the control thin film, the structure of a Co-based alloy magnetic thin film with a magnetically isolated proper grain size and crystal orientation can be controlled, and the magnetic properties such as high coercive force can be controlled. An object is to provide an in-plane magnetic recording medium suitable for high-density magnetic recording.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
に、本発明においては薄膜の結晶核生成を促進するため
の核生成制御層を基板上に設ける手段、Crを主成分と
する体心立方格子構造の合金から成る磁性薄膜の構造制
御用薄膜を設ける手段、該構造制御用薄膜の上にCo基
合金からなる磁性薄膜をエピタキシャル的に形成する手
段により解決した。In order to achieve the above object, in the present invention, a means for providing a nucleation control layer for promoting crystal nucleation of a thin film on a substrate, a body core containing Cr as a main component This has been solved by means of providing a structure controlling thin film of a magnetic thin film made of an alloy having a cubic lattice structure and means of epitaxially forming a magnetic thin film made of a Co-based alloy on the structure controlling thin film.
【0007】本発明は、以下の知見に基づいて完成され
たものである。すなわち、稠密六方格子構造(以下hc
p構造という)のCo基合金はそのc軸方向に大きな結
晶磁気異方性を有し、面内磁気記録媒体はこのc軸を基
板面内に配向させる。このCo基合金のc軸を基板面内
に高配向させるために、基板上に体心立方格子構造(以
下bcc構造という)のCr下地層を形成し、この上に
Co基合金薄膜が形成される。このCo基合金薄膜のc
軸を面内配向させるには、<100>もしくは<110
>配向したCr下地層が必要とされる。このCr下地薄
膜の成長は、この薄膜を付着させる基板の表面状態によ
って大きく左右される。基板上に形成したCr薄膜の成
長形態を電子顕微鏡などで調べると、Cr薄膜の初期成
長段階においては不規則な方向に配向した微結晶の集合
体からなる初期成長層からなっており、膜厚の増大と共
に<110>または<100>方向に成長方位をもつC
r結晶粒が形成される。従って、Cr薄膜の結晶粒径や
結晶配向は薄膜の膜厚方向で変化している。従来、実用
的に用いられているCr下地層の膜厚(100〜200
nm)では、粒径は20〜200nmの範囲で不均一に
分布している。薄膜成長の初期からCr下地層薄膜の結
晶成長を制御する方法として基板とCr下地層の間にC
r結晶の核生成を制御する層を設けることが考えられ
る。Crやこれを主成分とするbcc構造の薄膜の核生
成を制御する方法としては、これと格子のマッチングの
良い、bcc構造、hcp構造あるいは酸化物材料等の
単結晶や多結晶薄膜を制御層として用いる方法が一般に
採用される。ところで磁気記録媒体用の基板は様々のプ
ロセスにより洗浄した後、真空装置に設置され、この上
に薄膜が形成される。この場合、基板表面のミクロな構
造や表面状態が不均一であるために、この上に形成され
る薄膜の結晶核生成も不揃いになる。本発明者等は、C
rまたはCr合金薄膜の結晶核生成を基板面上で均一に
行うためには、基板洗浄の後、真空装置の内部で基板の
表面状態を制御する必要があると考え、各種基板表面に
薄い核生成制御層を形成し、この上にCrまたはCr合
金薄膜を形成させ、その結晶成長状態を電子顕微鏡で詳
細に調べた。この薄い核生成制御層を形成する目的は、
粒径や結晶配向が一様に揃ったCrやCr合金の結晶が
成長し易い下地層の表面状態を実現させ、膜厚と共に膜
構造が変化する初期成長層の低減を図ることにある。そ
して、この薄い核生成制御層について検討した結果、S
i,Ge,C,Bなどを含む材料から成る薄膜を基板上
に形成すると、この上に形成するCrやCrを主成分と
する合金薄膜の結晶粒径分布や配向性が良くなることを
見出した。上記核生成層として用いるSi,Ge,C,
Bなどを含む材料の薄膜は、非晶質状の表面構造の時、
この上に形成するCrやCr合金薄膜の均一な核生成の
制御に有効であることが確認された。The present invention has been completed based on the following findings. That is, a dense hexagonal lattice structure (hc
The Co-based alloy having a p structure) has a large magnetocrystalline anisotropy in the c-axis direction, and the in-plane magnetic recording medium has the c-axis oriented in the plane of the substrate. In order to highly orient the c-axis of this Co-based alloy in the plane of the substrate, a Cr underlayer having a body-centered cubic lattice structure (hereinafter referred to as a bcc structure) is formed on the substrate, and a Co-based alloy thin film is formed on the Cr underlayer. It C of this Co-based alloy thin film
To align the axis in the plane, <100> or <110
> An oriented Cr underlayer is required. The growth of this Cr underlayer thin film is largely influenced by the surface condition of the substrate to which this thin film is attached. When the growth morphology of the Cr thin film formed on the substrate is examined by an electron microscope or the like, the initial growth stage of the Cr thin film shows that the initial growth layer is composed of aggregates of microcrystals oriented in irregular directions. C with growth direction in <110> or <100> direction with increasing
r crystal grains are formed. Therefore, the crystal grain size and crystal orientation of the Cr thin film change in the film thickness direction of the thin film. The thickness of the Cr underlayer that has been conventionally used practically (100 to 200
nm), the particle size is non-uniformly distributed in the range of 20 to 200 nm. As a method for controlling the crystal growth of the Cr underlayer thin film from the initial stage of thin film growth, C between the substrate and Cr underlayer
It is conceivable to provide a layer that controls the nucleation of r crystals. As a method for controlling the nucleation of Cr or a bcc structure thin film containing Cr as a main component, a single crystal or polycrystalline thin film such as a bcc structure, an hcp structure or an oxide material having a good lattice matching with Cr is used as a control layer. The method used as is generally adopted. By the way, a substrate for a magnetic recording medium is cleaned by various processes and then placed in a vacuum device, and a thin film is formed thereon. In this case, since the microscopic structure and surface state of the substrate surface are non-uniform, the crystal nucleation of the thin film formed thereon is also uneven. The present inventors
In order to uniformly generate the crystal nuclei of the r or Cr alloy thin film on the substrate surface, it is considered necessary to control the surface condition of the substrate inside the vacuum device after cleaning the substrate. A generation control layer was formed, a Cr or Cr alloy thin film was formed on the formation control layer, and the crystal growth state thereof was examined in detail by an electron microscope. The purpose of forming this thin nucleation control layer is
It is intended to realize a surface state of a base layer in which crystals of Cr or a Cr alloy having uniform grain size and crystal orientation are easily grown, and to reduce the initial growth layer in which the film structure changes with the film thickness. As a result of studying this thin nucleation control layer, S
It has been found that when a thin film made of a material containing i, Ge, C, B, etc. is formed on a substrate, the crystal grain size distribution and orientation of Cr or an alloy thin film containing Cr as a main component is improved. It was Si, Ge, C used as the nucleation layer,
When a thin film of a material containing B has an amorphous surface structure,
It was confirmed that it is effective for controlling uniform nucleation of Cr or Cr alloy thin film formed on this.
【0008】上記Cr合金薄膜は、この上に形成するC
o基磁性薄膜の結晶粒径や結晶配向を制御するための構
造制御用薄膜として作用する。また、この構造制御用薄
膜はCrを主成分とする合金薄膜を用いることにより、
Cr単独の薄膜の場合に比べて結晶粒径を小さくでき、
従って、この上に形成する磁性薄膜の結晶粒径も小さく
制御できる利点がある。高密度磁気記録に適した磁性薄
膜としては、磁化容易軸のc軸が基板面に平行に配向し
ており、また磁性粒子が夫れ夫れ磁気的に孤立している
ことが望ましく、このためには構造制御用薄膜を構成す
る一個の結晶粒の上に各々一個の磁性結晶が形成される
のが好適である。また1Gb/in2以上の高密度記録
用の媒体としては、磁性薄膜の粒径は10〜50nmの
範囲で均一であり、磁性粒子が孤立していることが望ま
しい。このためには磁性膜の構造制御用薄膜として作用
するCrを主成分とする合金下地薄膜の結晶粒径も10
〜50nmの範囲で均一に分布しており、また<110
>もしくは<100>方位に配向していることが望まし
い。各種材料の磁性膜の構造制御用薄膜を基板上に形成
し、電子顕微鏡とX線回折などによりその構造を調べた
結果、Crを主成分とし、これにHf,Ir,Mo,P
d,Pt,Re,Ta,Ti,Zrの内から選ばれた少
なくとも1種以上の元素を添加して構成された体心立方
格子構造の材料がCr単独の材料薄膜に比べて粒径が小
さく、均一な薄膜が得られることが見出された。上記H
f,Ir,Mo,Pd,Pt,Re,Ta,Ti,Zr
等の添加元素は、Cr粒子の粒界に偏析する傾向が認め
られ、これがこの上にエピタキシャル成長的に形成され
る磁性薄膜の磁気的な孤立化を促進するのに有効な作用
をする。上記添加元素の量は5〜30at%程度が好適
であり、形成条件により任意に選択できる。The above-mentioned Cr alloy thin film is formed on this C thin film.
It acts as a structure controlling thin film for controlling the crystal grain size and crystal orientation of the o-based magnetic thin film. Further, by using an alloy thin film containing Cr as a main component, the structure controlling thin film is
The grain size can be made smaller than that of a thin film of Cr alone,
Therefore, there is an advantage that the crystal grain size of the magnetic thin film formed thereon can be controlled to be small. As a magnetic thin film suitable for high density magnetic recording, it is desirable that the c-axis of the easy axis of magnetization is oriented parallel to the substrate surface and that magnetic particles are magnetically isolated. It is preferable that one magnetic crystal is formed on each crystal grain forming the structure controlling thin film. Further, as a medium for high density recording of 1 Gb / in 2 or more, it is preferable that the magnetic thin film has a uniform particle size within a range of 10 to 50 nm and the magnetic particles are isolated. For this purpose, the crystal grain size of the alloy base thin film containing Cr as a main component, which acts as a structure controlling thin film of the magnetic film, is also 10
Uniformly distributed in the range of up to 50 nm, and <110
> Or <100> orientation. A thin film for controlling the structure of a magnetic film of various materials was formed on a substrate, and its structure was examined by an electron microscope and X-ray diffraction. As a result, Cr was the main component, and Hf, Ir, Mo, P
A material having a body-centered cubic lattice structure formed by adding at least one element selected from d, Pt, Re, Ta, Ti, and Zr has a smaller grain size than a material thin film of Cr alone. It has been found that a uniform thin film can be obtained. H above
f, Ir, Mo, Pd, Pt, Re, Ta, Ti, Zr
It is recognized that the additional elements such as Se tend to segregate at the grain boundaries of the Cr grains, and this acts effectively to promote the magnetic isolation of the magnetic thin film formed on the Cr grains by epitaxial growth. The amount of the additional element is preferably about 5 to 30 at% and can be arbitrarily selected depending on the forming conditions.
【0009】1Gb/in2以上の超高密度磁気記録を
実現するには記録媒体表面と磁気ヘッドとの間のスペー
シングは数十ナノメートルと小さく設定されるため、磁
性膜表面の起伏は出来るだけ小さく、望ましくは10n
m以下が良い。このためには上記核生成制御層や磁性膜
の構造制御層の厚さは出来るだけ薄いことが好適であ
り、5nm以上100nm以下が良い。実用的に高い再
現性を得るには10〜50nmが望ましい。In order to realize ultra-high density magnetic recording of 1 Gb / in 2 or more, the spacing between the recording medium surface and the magnetic head is set as small as several tens of nanometers, so that the surface of the magnetic film can be undulated. Only small, preferably 10n
m or less is good. For this purpose, the thickness of the nucleation control layer and the structure control layer of the magnetic film is preferably as thin as possible, preferably 5 nm or more and 100 nm or less. To obtain practically high reproducibility, 10 to 50 nm is desirable.
【0010】[0010]
【作用】Crを主成分とする合金からなる上記構造制御
用薄膜は、体心立方構造を有し、その<110>方向ま
たは<100>方向に配向しているのが望ましく、この
上にCo基合金磁性薄膜の(1010)面または(11
20)面がエピタキシャル的に形成されているのが好適
である。The thin film for structure control made of an alloy containing Cr as a main component preferably has a body-centered cubic structure and is oriented in the <110> direction or the <100> direction. The (1010) plane or (11) of the base alloy magnetic thin film
It is preferable that the 20) plane is formed epitaxially.
【0011】磁性薄膜はCoCrを主成分とするCo基
合金薄膜を用い、これにPt,Ta,Ni,Re,R
u,Mo,Hf,Wなどを添加して用いても良く、また
磁性薄膜は上記合金薄膜の単層で用いても良い。さらに
は上記の磁性薄膜を多層に積層して用いることができ、
これにより磁性膜の保磁力向上したり、あるいは再生信
号のノイズを低減する効果が得られる。As the magnetic thin film, a Co-based alloy thin film containing CoCr as a main component is used. Pt, Ta, Ni, Re, R
u, Mo, Hf, W or the like may be added and used, and the magnetic thin film may be a single layer of the above alloy thin film. Furthermore, the above magnetic thin films can be used by laminating in multiple layers,
As a result, the effect of improving the coercive force of the magnetic film or reducing the noise of the reproduced signal can be obtained.
【0012】本発明の磁気記録媒体における薄膜の形成
方法は、真空蒸着法、高周波スパッタリング法、イオン
ビームスパッタリング法、などの物理蒸着法を用いるこ
とができる。As a method of forming a thin film on the magnetic recording medium of the present invention, a physical vapor deposition method such as a vacuum vapor deposition method, a high frequency sputtering method and an ion beam sputtering method can be used.
【0013】[0013]
【実施例】以下に本発明の一実施例を挙げ、図面を参照
しながら詳細に説明する。図において、同一の符号を付
したものは、同じ性能特性を有する部分を示す。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings. In the figure, components with the same reference numerals indicate parts having the same performance characteristics.
【0014】(実施例1)図1に示すごとく、ガラス基
板1上に磁性膜の構造制御用薄膜2を形成し、この上に
Co基磁性膜3を設けた面内磁気記録媒体を、以下に示
す手順で作製した。Example 1 As shown in FIG. 1, an in-plane magnetic recording medium in which a structure controlling thin film 2 of a magnetic film was formed on a glass substrate 1 and a Co-based magnetic film 3 was provided thereon was prepared as follows. It was produced by the procedure shown in.
【0015】同一条件で洗浄したガラス基板1をスパッ
タリング装置に設置し、2x10-7Torrの真空まで
排気した。続いて基板を250℃に加熱して、厚さ15
0nmの磁性膜の構造制御用薄膜2を形成した。この上
に引き続き同一真空中で膜厚30nmのCoCrTa系
磁性膜3を形成し、この上に膜厚10nmの保護膜4を
形成した。構造制御用薄膜2はCrを主成分とした合金
薄膜であり、Crに10at%のHf,Ir,Mo,P
d,Pt,Re,Ta,Ti,Zrなどの元素を添加し
たものと、比較用として他の元素を添加しないCr単独
からなる薄膜を形成した。薄膜の形成条件は、スパッタ
リングArガスの圧力10mTorrとし、DCマグネ
トロンスパッタリング法とした。磁性膜はCo−15a
t%Cr−4at%Ta合金を用いた。The glass substrate 1 washed under the same conditions was placed in a sputtering apparatus and evacuated to a vacuum of 2 × 10 -7 Torr. Subsequently, the substrate is heated to 250 ° C. to a thickness of 15
A thin film 2 for controlling the structure of a 0 nm magnetic film was formed. A CoCrTa-based magnetic film 3 having a film thickness of 30 nm was subsequently formed thereon in the same vacuum, and a protective film 4 having a film thickness of 10 nm was formed thereon. The structure controlling thin film 2 is an alloy thin film whose main component is Cr, and contains 10 at% of Hf, Ir, Mo and P in Cr.
A thin film was formed by adding elements such as d, Pt, Re, Ta, Ti, and Zr and by comparison with Cr alone without adding other elements. The thin film was formed under a DC magnetron sputtering method with a sputtering Ar gas pressure of 10 mTorr. The magnetic film is Co-15a
A t% Cr-4at% Ta alloy was used.
【0016】薄膜の構造(結晶配向、粒径)は電子顕微
鏡観察法とX線回折法により調べ、また磁性膜の磁気特
性は振動試料型磁化測定装置(VSM)により測定し、
その結果の一例を表1に比較して示す。The structure (crystal orientation, grain size) of the thin film was examined by an electron microscope observation method and an X-ray diffraction method, and the magnetic characteristics of the magnetic film were measured by a vibrating sample magnetization measuring device (VSM).
An example of the result is shown in comparison with Table 1.
【0017】[0017]
【表1】 [Table 1]
【0018】表1には、上記磁性膜を面内方向に磁化し
たときに形成される磁気クラスタ(磁化したときに隣接
した磁性粒子が磁気的に結合して形成される結晶粒群)
の径を磁気力顕微鏡とスピン偏極走査電子顕微鏡で観察
し計測した結果も示した。Table 1 shows a magnetic cluster formed when the above magnetic film is magnetized in the in-plane direction (a crystal grain group formed by magnetically coupling adjacent magnetic particles when magnetized).
The results of observation and measurement of the diameter of the magnetic field with a magnetic force microscope and a spin polarization scanning electron microscope are also shown.
【0019】上記の構造制御用薄膜は、体心立方構造を
有しその成長方位はいずれも<110>と<100>方
位が混在している。The above structure controlling thin film has a body-centered cubic structure, and the growth directions thereof are both <110> and <100> directions.
【0020】表1に示すごとく、磁性膜の構造制御用薄
膜としてCrを主成分とする合金を用いた場合、Cr単
独の薄膜に比べて構造制御用薄膜の結晶粒径を小さく出
来る。Cr単独の薄膜により構造制御用薄膜2を構成し
た時、この上には複数個の磁性結晶粒が境界を接して形
成され易い。これに対してCrを主成分とする合金から
なる構造制御用薄膜2では粒径が小さいため、一つの構
造制御用薄膜の結晶粒の上には一つの磁性結晶粒が形成
される傾向がある。その結果、媒体を磁化したときの磁
気クラスタの径が小さくなる傾向が認められた。このこ
とは記録ビット長のより小さな高密度磁気記録を行うの
に好適であることを示す。またCr合金構造制御用薄膜
を用いた媒体は、隣接する磁性結晶粒が互いに孤立して
相互作用が小さくなり、保磁力も大きくできる効果があ
る。As shown in Table 1, when an alloy containing Cr as a main component is used as the structure controlling thin film of the magnetic film, the crystal grain size of the structure controlling thin film can be made smaller than that of the Cr alone thin film. When the structure controlling thin film 2 is composed of a thin film of Cr alone, a plurality of magnetic crystal grains are likely to be formed on the structure controlling thin film 2 with their boundaries in contact with each other. On the other hand, since the grain size of the structure control thin film 2 made of an alloy containing Cr as a main component is small, one magnetic crystal grain tends to be formed on the crystal grain of one structure control thin film. . As a result, it was confirmed that the diameter of magnetic clusters tended to be smaller when the medium was magnetized. This indicates that it is suitable for high density magnetic recording with a smaller recording bit length. Further, in the medium using the Cr alloy structure controlling thin film, the adjacent magnetic crystal grains are isolated from each other, the interaction is reduced, and the coercive force can be increased.
【0021】Crを主成分とする合金を用いた構造制御
用薄膜のさらなる効果を調べるために、薄膜の断面試料
を作製し、電子顕微鏡により観察した結果をCr単独の
薄膜と比較して図2に模式的に示す。基板界面付近の初
期成長段階においては不規則な方向に配向した微結晶の
集合体からなる初期成長層5が形成されており、この領
域では膜厚の増大と共に結晶粒径や成長方位などの構造
変化が起きている。膜厚の増大と共に結晶粒の成長が起
き、<110>または<100>方向に成長方位をもつ
結晶粒が支配的に形成されている。上記初期成長層5の
厚さは、Cr単独の場合とCr合金を用いた場合で顕著
な差はなく、およそ80nmである。しかし、Cr合金
を用いた構造制御用薄膜(a)はCr単独の構造制御用
薄膜(b)に比べて粒径が小さい傾向が認められた。In order to investigate the further effect of the structure controlling thin film using an alloy containing Cr as a main component, a cross-section sample of the thin film was prepared and the result of observation by an electron microscope was compared with the thin film of Cr alone. Is schematically shown in. At the initial growth stage near the substrate interface, an initial growth layer 5 made of an aggregate of microcrystals oriented in an irregular direction is formed. In this region, the film thickness increases and the structure such as the crystal grain size and the growth orientation is increased. Changes are happening. Crystal grains grow as the film thickness increases, and crystal grains having a growth orientation in the <110> or <100> direction are predominantly formed. The thickness of the initial growth layer 5 is about 80 nm without any significant difference between the case of using Cr alone and the case of using the Cr alloy. However, it was confirmed that the grain size of the structure control thin film (a) using the Cr alloy was smaller than that of the structure control thin film (b) of Cr alone.
【0022】Crを主成分とする合金を用いた構造制御
用薄膜の効果をさらに調べるために、構造制御用薄膜の
平面構造を透過電子顕微鏡で調べた結果の一例を図3に
模式的に示す。スパッタリング法や真空蒸着法で薄膜を
形成する場合、非平衡状態で薄膜が形成されるために、
過剰な添加元素は結晶粒の外側に析出傾向がある。透過
電子顕微鏡像のコントラスト変化と微小電子線プローブ
による組成分析から、上記Cr合金構造制御用薄膜では
Cr過剰領域6と、添加元素過剰領域7が存在している
ものと考えられた。前記添加元素過剰領域7の厚さは
0.5nm〜2nm程度であり、この厚さは添加元素の
種類と、添加量および薄膜の形成条件により制御でき
る。In order to further investigate the effect of the structure controlling thin film using an alloy containing Cr as a main component, an example of the result of a transmission electron microscope examination of the planar structure of the structure controlling thin film is shown in FIG. . When a thin film is formed by the sputtering method or the vacuum deposition method, the thin film is formed in a non-equilibrium state.
Excessive additive elements tend to precipitate outside the crystal grains. From the change in contrast of the transmission electron microscope image and the composition analysis by the fine electron beam probe, it was considered that the Cr alloy structure controlling thin film had the Cr excess region 6 and the additive element excess region 7. The thickness of the additional element excess region 7 is about 0.5 nm to 2 nm, and this thickness can be controlled by the type of the additional element, the addition amount and the thin film forming conditions.
【0023】(実施例2)真空蒸着法やスパッタリング
法で基板上に薄膜を形成する場合、(実施例1)で述べ
たごとく、膜厚と共に粒径や結晶配向が変化する初期成
長層が形成される。高密度の面内磁気記録では、媒体面
と磁気ヘッド間のスペーシングは50nm以下まで低減
されるものと予想され、このためには媒体表面の起伏は
10nm以下まで小さくするすることが要求される。こ
のためには薄膜の膜厚、特に制御層の厚さはできるだけ
薄いことが望ましい。また記録時の反磁界の影響を少な
くするために、媒体の保磁力は出来るだけ大きく、望ま
しくは2000 Oe以上が必要とされ、磁性結晶粒径
も50nm以下で、互いに磁気的に孤立しているのが望
ましい。これらの要求に対しては、前記したような構造
制御用薄膜の初期成長層を小さくすることが好適であ
る。このために、本発明では構造制御用薄膜形成のとき
の結晶核生成を促進するための核生成制御層をもちいる
ことを考案した。図4のごとく、洗浄した基板1の上に
厚さ10nmのSi薄膜から成る核生成制御層8を形成
する(核生成制御層としては、Siの他にGe,C,B
を用いても同様の効果を得られるがここではSiを例に
挙げて説明する)。このSi薄膜は、多結晶膜、または
酸化膜のいずでも良いが、薄膜の平坦性やこの上に形成
する薄膜の自由核生成の促進効果を向上するには非晶質
状がよい。同一真空中でこの上に膜厚50nmの構造制
御用薄膜2を形成した。構造制御用薄膜2としては、
(実施例1)で説明したHf,Ir,Mo,Pd,P
t,Re,Ta,Ti,Zrなどの元素を添加したいず
れのCr合金薄膜を用いても同様の効果を得ることがで
きるのは言うまでもない。ここでは一例としてCrを主
成分とし、これに8at%のTiを添加した構造制御用
薄膜で説明する。比較用として核生成制御層8を設けな
いで基板上に直接CrおよびCr−8at%Tiからな
る構造制御用薄膜2をそれぞれ厚さ50nm形成した試
料を用意した。上記いずれの試料でも同一真空中で膜厚
20nmのCoCrPt系の磁性膜3を形成し、さらに
厚さ10nmの保護層4を形成した。これらの試料の性
能比較の一例を表2に示す。(Embodiment 2) When a thin film is formed on a substrate by a vacuum vapor deposition method or a sputtering method, as described in (Embodiment 1), an initial growth layer whose grain size and crystal orientation change with film thickness is formed. To be done. In high-density longitudinal magnetic recording, it is expected that the spacing between the medium surface and the magnetic head will be reduced to 50 nm or less. For this purpose, the undulation of the medium surface is required to be reduced to 10 nm or less. . For this purpose, it is desirable that the thickness of the thin film, especially the thickness of the control layer, be as thin as possible. In order to reduce the influence of the demagnetizing field during recording, the coercive force of the medium is as large as possible, preferably 2000 Oe or more, and the magnetic crystal grain size is 50 nm or less, which are magnetically isolated from each other. Is desirable. To meet these requirements, it is preferable to make the initial growth layer of the structure controlling thin film small. For this reason, the present invention has devised to use a nucleation control layer for promoting the formation of crystal nuclei when forming a structure controlling thin film. As shown in FIG. 4, a nucleation control layer 8 made of a Si thin film having a thickness of 10 nm is formed on the cleaned substrate 1 (as the nucleation control layer, Si, Ge, C, B are used.
The same effect can be obtained by using, but here, Si will be described as an example). The Si thin film may be either a polycrystalline film or an oxide film, but an amorphous state is preferable in order to improve the flatness of the thin film and the effect of promoting the free nucleation of the thin film formed thereon. In the same vacuum, a structure controlling thin film 2 having a film thickness of 50 nm was formed thereon. As the structure control thin film 2,
Hf, Ir, Mo, Pd, P described in (Example 1)
Needless to say, the same effect can be obtained by using any Cr alloy thin film to which an element such as t, Re, Ta, Ti, or Zr is added. Here, as an example, a structure control thin film containing Cr as a main component and 8 at% of Ti added thereto will be described. For comparison, a sample was prepared in which the structure control thin film 2 made of Cr and Cr-8 at% Ti was formed in a thickness of 50 nm directly on the substrate without providing the nucleation control layer 8. In each of the above samples, a CoCrPt-based magnetic film 3 having a thickness of 20 nm was formed in the same vacuum, and a protective layer 4 having a thickness of 10 nm was further formed. An example of performance comparison of these samples is shown in Table 2.
【0024】[0024]
【表2】 [Table 2]
【0025】表2に示した核生成制御層および構造制御
用薄膜の性能効果は、核生成制御層としてSiの他にG
e,C,B、構造制御用薄膜としてTiの他にHf,I
r,Mo,Pd,Pt,Re,Ta,Zrなどの元素を
Crに添加して用いてもほぼ同じ特性が得られ、添加元
素の量は2〜30at%の範囲で変化することができ、
添加量により粒子間の孤立化条件を制御でき、添加量が
多いほど孤立化が促進される傾向がある。構造制御用薄
膜は何れも体心立方構造をもつことがX線回折により確
認された。The performance effect of the nucleation control layer and the structure controlling thin film shown in Table 2 is that the nucleation control layer is not limited to Si in addition to G.
e, C, B, Hf, I in addition to Ti as a structure control thin film
Almost the same characteristics can be obtained even when elements such as r, Mo, Pd, Pt, Re, Ta and Zr are added to Cr, and the amount of the added element can be changed in the range of 2 to 30 at%.
The isolation condition between particles can be controlled by the addition amount, and the isolation tends to be promoted as the addition amount increases. It was confirmed by X-ray diffraction that all the structure control thin films had a body-centered cubic structure.
【0026】上記の比較から明らかなように、磁性膜の
構造制御用薄膜としてCr主成分とする合金系材料用い
ることにより、磁性膜の結晶配向や粒径、保磁力などの
磁気特性の性能向上が促進できる。さらに基板上に核生
成制御層を設けることにより、薄い膜厚の構造制御用薄
膜でも面内配向性の良い磁性膜が作製でき、高い保磁力
と小さな磁気クラスタを形成できる高密度面内磁気記録
に好適な媒体が作製できる。As is clear from the above comparison, by using an alloy material containing Cr as a main component for the structure control thin film of the magnetic film, the performance of magnetic properties such as crystal orientation, grain size and coercive force of the magnetic film is improved. Can be promoted. Furthermore, by providing a nucleation control layer on the substrate, a magnetic film with a good in-plane orientation can be produced even with a thin structure control thin film, and high coercive force and small magnetic clusters can be formed. A medium suitable for can be produced.
【0027】核生成制御層の効果を調べるために、薄膜
の断面試料を作製し電子顕微鏡で観察した結果を図5に
模式的に示す。図に示した様に、核生成制御層の上に形
成した構造制御用薄膜は、初期成長段階から均一な粒径
の結晶成長が実現されており、薄膜の構造が変化する初
期成長層が小さくなっていることが確認された。In order to examine the effect of the nucleation control layer, a cross-section sample of a thin film was prepared and observed by an electron microscope. The results are schematically shown in FIG. As shown in the figure, the structure control thin film formed on the nucleation control layer achieves crystal growth with a uniform grain size from the initial growth stage, and the initial growth layer where the thin film structure changes is small. It has been confirmed that
【0028】(実施例3)図6は、本発明の他の応用例
を説明する図である。基板1の上に膜厚10nmのGe
薄膜よりなる核生成制御層8を形成し、この上にCr−
8at%Taからなる膜厚50nmの構造制御用薄膜2
形成した。さらに同一真空中でCoCrPtSi磁性層
9とCoCrTa磁性層10をそれぞれ10nmずつ積
層下構造からなる2層構造の磁性膜を形成し、この上に
10nmのC保護層4付着した。X線回折による構造解
析によれば、薄膜の形成温度が200℃以下の時には、
構造制御用薄膜2の結晶方位は<110>方位が主に検
出され、200℃〜400℃では<100>方位の結晶
成長が主に検出された。この上に形成した磁性膜は面内
方向に大きな磁気異方性を有し、磁化容易軸のc軸は基
板面にほぼ平行である。比較のために、基板1の上に膜
厚50nmのCr下地層を形成し、この上に前記と同様
の磁性膜および保護層を形成した試料を用意した。その
結果、本発明による核生成制御層とCr合金からなる構
造制御用薄膜を設けた媒体は、2000〜2500 O
eの高い保磁力をもち、核生成制御層とCr合金からな
る構造制御用薄膜を用いない媒体(1500〜1700
Oe)に比べて優れた磁気特性発揮できることが明ら
かになった。さらに組成の異なる磁性膜を積層すること
により、単一の磁性膜を用いたときに比べて約20%保
磁力を向上できることが確認された。(Embodiment 3) FIG. 6 is a diagram for explaining another application example of the present invention. Ge with a thickness of 10 nm is formed on the substrate 1.
A nucleation control layer 8 composed of a thin film is formed, and Cr-
Structure control thin film 2 made of 8 at% Ta and having a film thickness of 50 nm
Formed. Further, in the same vacuum, a CoCrPtSi magnetic layer 9 and a CoCrTa magnetic layer 10 of 10 nm each were laminated to form a two-layer structure magnetic film, and a C protective layer 4 of 10 nm was deposited thereon. According to the structural analysis by X-ray diffraction, when the thin film formation temperature is 200 ° C or lower,
Regarding the crystal orientation of the structure controlling thin film 2, the <110> orientation was mainly detected, and at 200 ° C. to 400 ° C., crystal growth in the <100> orientation was mainly detected. The magnetic film formed on this has a large magnetic anisotropy in the in-plane direction, and the c-axis of the easy axis of magnetization is substantially parallel to the substrate surface. For comparison, a sample was prepared in which a Cr underlayer having a film thickness of 50 nm was formed on the substrate 1, and a magnetic film and a protective layer similar to the above were formed on the Cr underlayer. As a result, the medium provided with the nucleation control layer according to the present invention and the structure control thin film made of a Cr alloy was 2000 to 2500 O.
A medium having a high coercive force (e) and not using a structure control thin film composed of a nucleation control layer and a Cr alloy (1500-1700).
It has been revealed that it is possible to exert excellent magnetic characteristics as compared with Oe). Further, it was confirmed that by stacking magnetic films having different compositions, the coercive force can be improved by about 20% as compared with the case where a single magnetic film is used.
【0029】本実施例では、磁性膜としてCoCrPt
SiとCoCrTa系の薄膜を用いて説明したが、同様
の効果はCr,V,Mo,W,Ru,Re,Ta,P
t,Ni,Hf,の内から選ばれる少なくとも1種以上
の元素を含んでなるCo基合金面内磁気記録媒体でも得
られることは言うまでもない。In this embodiment, CoCrPt is used as the magnetic film.
Although description has been made using Si and CoCrTa-based thin films, similar effects can be obtained with Cr, V, Mo, W, Ru, Re, Ta, P.
It goes without saying that a Co-based alloy in-plane magnetic recording medium containing at least one element selected from t, Ni, and Hf can also be obtained.
【0030】[0030]
【発明の効果】以上詳細に説明したごとく、本発明の面
内磁気記録媒体によれば、Co基合金磁性膜を形成する
に先立って、基板上にHf,Ir,Mo,Pd,Pt,
Re,Ta,Ti,Zrの少なくとも一種の元素を添加
したCr合金からなる磁性膜の構造制御用薄膜を設け、
さらには基板と上記構造制御用薄膜の間にSi,Ge,
C,B,の内から選ばれた1種以上の元素からなる非晶
質状薄膜で構成された核生成制御層を設けることによ
り、この上に形成されるCo基合金磁性薄膜の結晶粒径
や面内配向性の制御性が向上し、その波及効果として磁
気的に孤立した適正な粒径の磁性膜が得られ、この薄膜
を磁化したときに形成される磁気クラスタの径を小さく
でき、さらには高保磁力などの磁気特性に優れた超高密
度磁気記録に好適な面内磁気記録媒体を提供できる効果
があり、工業上の利用価値は極めて大きい。As described in detail above, according to the in-plane magnetic recording medium of the present invention, prior to forming the Co-based alloy magnetic film, Hf, Ir, Mo, Pd, Pt,
Providing a structure control thin film of a magnetic film made of a Cr alloy to which at least one element of Re, Ta, Ti and Zr is added,
Furthermore, between the substrate and the structure controlling thin film, Si, Ge,
By providing a nucleation control layer composed of an amorphous thin film composed of one or more elements selected from C and B, the crystal grain size of the Co-based alloy magnetic thin film formed thereon is provided. And the controllability of in-plane orientation are improved, and as a ripple effect thereof, magnetically isolated magnetic films having an appropriate grain size are obtained, and the diameter of magnetic clusters formed when this thin film is magnetized can be reduced, Further, there is an effect that an in-plane magnetic recording medium excellent in magnetic properties such as high coercive force and suitable for ultra-high density magnetic recording can be provided, and its industrial utility value is extremely large.
【図1】本発明の面内磁気記録媒体の基本的な構成を説
明する図である。FIG. 1 is a diagram illustrating a basic configuration of an in-plane magnetic recording medium of the present invention.
【図2】磁性膜の構造制御用薄膜の断面構造を説明する
図である((a)本発明のCr合金構造制御用薄膜の断
面構造の模式図、(b)Cr薄膜を用いた従来の構造制
御用薄膜の断面構造の模式図)。FIG. 2 is a diagram illustrating a cross-sectional structure of a thin film for controlling the structure of a magnetic film ((a) a schematic view of the cross-sectional structure of a thin film for controlling a Cr alloy structure of the present invention, (b) a conventional thin film using a Cr thin film Schematic diagram of the cross-sectional structure of the structure control thin film).
【図3】Cr合金構造制御用薄膜の組成分布構造を説明
する図である。FIG. 3 is a diagram illustrating a composition distribution structure of a Cr alloy structure control thin film.
【図4】本発明の核生成制御層を用いた媒体の構成を説
明する図である。FIG. 4 is a diagram illustrating a configuration of a medium using the nucleation control layer of the present invention.
【図5】核生成制御層を用いた薄膜の断面構造を説明す
る図である。FIG. 5 is a diagram illustrating a cross-sectional structure of a thin film using a nucleation control layer.
【図6】本発明を2層磁性膜構造面内記録媒体への応用
例を説明する図である。FIG. 6 is a diagram illustrating an application example of the present invention to an in-plane recording medium having a two-layer magnetic film structure.
1…基板、2…構造制御用薄膜、3…磁性膜、4…保護
膜、5…初期成長層、6…Cr過剰領域、7…添加元素
過剰領域、8…核生成制御層、9…CoCrPtSi磁
性膜、10…CoCrTa磁性膜。1 ... Substrate, 2 ... Structural control thin film, 3 ... Magnetic film, 4 ... Protective film, 5 ... Initial growth layer, 6 ... Cr excess region, 7 ... Additive element excess region, 8 ... Nucleation control layer, 9 ... CoCrPtSi Magnetic film, 10 ... CoCrTa magnetic film.
フロントページの続き (72)発明者 松田 好文 東京都国分寺市東恋ヶ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 二本 正昭 東京都国分寺市東恋ヶ窪1丁目280番地 株式会社日立製作所中央研究所内Front page continuation (72) Inventor Yoshifumi Matsuda 1-280, Higashi Koigakubo, Kokubunji, Tokyo Inside Central Research Laboratory, Hitachi, Ltd. (72) Inventor Masaaki Nihon 1-280, Higashi Koigakubo, Kokubunji, Tokyo Hitachi Central Research Co., Ltd. In-house
Claims (8)
から成る磁性薄膜の構造制御用薄膜を形成し、該構造制
御用薄膜の上に磁性薄膜を形成することを特徴とする面
内磁気記録媒体。1. A surface characterized in that a structure controlling thin film of a magnetic thin film made of an alloy containing Cr as a main component is formed on a predetermined substrate, and the magnetic thin film is formed on the structure controlling thin film. Internal magnetic recording medium.
成分とし、これにHf,Ir,Mo,Pd,Pt,R
e,Ta,Ti,Zrの内から選ばれた少なくとも1種
以上の元素を添加して構成された体心立方格子構造を有
することを特徴とする請求項1記載の面内磁気記録媒
体。2. The structure controlling thin film of the magnetic thin film contains Cr as a main component, and Hf, Ir, Mo, Pd, Pt, R
The in-plane magnetic recording medium according to claim 1, having a body-centered cubic lattice structure formed by adding at least one element selected from e, Ta, Ti, and Zr.
成分とし、これに2〜30at%のHf,Ir,Mo,
Pd,Pt,Re,Ta,Ti,Zrの内から選ばれた
少なくとも1種以上の元素を添加して構成された体心立
方格子構造を有することを特徴とする請求項1記載の面
内磁気記録媒体。3. The structure controlling thin film of the magnetic thin film contains Cr as a main component, and contains 2 to 30 at% of Hf, Ir, Mo,
2. The in-plane magnetism according to claim 1, which has a body-centered cubic lattice structure formed by adding at least one element selected from Pd, Pt, Re, Ta, Ti, and Zr. recoding media.
の上に該構造制御用薄膜と磁性薄膜を順次形成して成る
ことを特徴とする請求項1から3のいずれかに記載の面
内磁気記録媒体。4. The nucleation control layer is formed on a predetermined substrate, and the structure controlling thin film and the magnetic thin film are sequentially formed on the nucleation controlling layer. In-plane magnetic recording medium.
ことを特徴とする請求項4記載の面内磁気記録媒体。5. The longitudinal magnetic recording medium according to claim 4, wherein the nucleation control layer is made of an amorphous thin film.
の内から選ばれた1種以上の元素からなる非晶質状薄膜
からなることを特徴とする請求項4または5記載の面内
磁気記録媒体。6. The nucleation control layer comprises Si, Ge, C, B,
The in-plane magnetic recording medium according to claim 4 or 5, wherein the in-plane magnetic recording medium comprises an amorphous thin film made of one or more elements selected from the above.
成制御層の厚さは5〜100nmであることを特徴とす
る請求項1から6のいずれかに記載の面内磁気記録媒
体。7. The longitudinal magnetic recording medium according to claim 1, wherein the structure controlling thin film of the magnetic thin film and the nucleation controlling layer have a thickness of 5 to 100 nm.
Cr,V,Mo,W,Ru,Re,Ta,Pt,Ni,
Hf,の内から選ばれる少なくとも1種以上の元素を含
んでなることを特徴とする請求項1から7のいずれかに
記載の面内磁気記録媒体。8. The magnetic thin film contains Co as a main component, and Cr, V, Mo, W, Ru, Re, Ta, Pt, Ni,
The in-plane magnetic recording medium according to any one of claims 1 to 7, comprising at least one element selected from Hf.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20744893A JPH0765348A (en) | 1993-08-23 | 1993-08-23 | Intrasurface magnetic recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20744893A JPH0765348A (en) | 1993-08-23 | 1993-08-23 | Intrasurface magnetic recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0765348A true JPH0765348A (en) | 1995-03-10 |
Family
ID=16539947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20744893A Pending JPH0765348A (en) | 1993-08-23 | 1993-08-23 | Intrasurface magnetic recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0765348A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6071607A (en) * | 1996-04-26 | 2000-06-06 | Fujitsu Limited | Magnetic recording medium and magnetic disk device |
-
1993
- 1993-08-23 JP JP20744893A patent/JPH0765348A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6071607A (en) * | 1996-04-26 | 2000-06-06 | Fujitsu Limited | Magnetic recording medium and magnetic disk device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4019703B2 (en) | Perpendicular magnetic recording medium and manufacturing method thereof | |
JP3143611B2 (en) | Ultrathin nucleation layer for magnetic thin film media and method of making the layer | |
EP1031143B1 (en) | Highly oriented magnetic thin films, recording media, transducers, devices made therefrom and methods of making | |
US4722869A (en) | Magnetic recording medium | |
WO2002039433A1 (en) | Magnetic recording medium and magnetic recording apparatus | |
JP2006244684A (en) | Magnetic recording medium and its manufacturing method, and magnetic storage device | |
JP2003217107A (en) | Magnetic recording medium | |
JP2009059433A (en) | Perpendicular magnetic recording medium, its manufacturing method, and magnetic recording and reproducing device | |
JP2003123239A (en) | Perpendicular magnetic recording medium | |
US20070072012A1 (en) | Magnetic recording medium using grain isolation type film as under layer, method of manufacturing the same, and magnetic recording/reproducing apparatus using the same | |
JP4534711B2 (en) | Perpendicular magnetic recording medium | |
JP3612087B2 (en) | Magnetic recording medium | |
US7521136B1 (en) | Coupling enhancement for medium with anti-ferromagnetic coupling | |
US7407685B2 (en) | Magnetic recording medium and the method of manufacturing the same | |
JP2006185489A (en) | Magnetic recording medium and magnetic storage device | |
US7267894B2 (en) | Magnetic recording medium and magnetic recording apparatus | |
US8012613B2 (en) | Magnetic recording medium, process for producing same, and magnetic recording reproducing apparatus | |
JP2003203330A (en) | Magnetic recording medium | |
KR20060043755A (en) | Magnetic recording dedium and magnetic storage apparatus | |
JPH0765348A (en) | Intrasurface magnetic recording medium | |
US20060177701A1 (en) | Magnetic recording medium, method of producing the same, and magnetic storage apparatus | |
JP2967070B2 (en) | Perpendicular magnetic recording medium, method of manufacturing the same, and magnetic recording device | |
JP2003242623A (en) | Magnetic recording medium | |
JP2001503180A (en) | Magnetic recording media comprising an underlayer of nickel-aluminum or iron-aluminum | |
WO2005006310A1 (en) | Magnetic recording medium using grain isolation type film as under layer, method of manufacturing the same, and magnetic recording/reproducing apparatus using the same |