[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0763380B2 - Method for producing eicosapentaenoic acid-containing lipid by microorganism - Google Patents

Method for producing eicosapentaenoic acid-containing lipid by microorganism

Info

Publication number
JPH0763380B2
JPH0763380B2 JP62049929A JP4992987A JPH0763380B2 JP H0763380 B2 JPH0763380 B2 JP H0763380B2 JP 62049929 A JP62049929 A JP 62049929A JP 4992987 A JP4992987 A JP 4992987A JP H0763380 B2 JPH0763380 B2 JP H0763380B2
Authority
JP
Japan
Prior art keywords
epa
microorganism
medium
lipid
eicosapentaenoic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62049929A
Other languages
Japanese (ja)
Other versions
JPS63216488A (en
Inventor
一良 矢沢
恵子 荒木
規理子 岡崎
長徳 沼尾
聖 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sagami Chemical Research Institute (Sagami CRI)
Original Assignee
Sagami Chemical Research Institute (Sagami CRI)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagami Chemical Research Institute (Sagami CRI) filed Critical Sagami Chemical Research Institute (Sagami CRI)
Priority to JP62049929A priority Critical patent/JPH0763380B2/en
Publication of JPS63216488A publication Critical patent/JPS63216488A/en
Publication of JPH0763380B2 publication Critical patent/JPH0763380B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、エイコサペンタエン酸(以下EPAという)含
有脂質の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a lipid containing eicosapentaenoic acid (hereinafter referred to as EPA).

(従来の技術) EPAに代表される多価不飽和脂肪酸は、生体膜の構成成
分として重要な役割を担っている。またこれまでに知ら
れているEPAの薬理作用には、以下のものが知られてい
る。血小板凝集抑制作用(血栓溶解作用)血液中の
中性脂肪低下作用血液のVLDL−コレステロール、LDL
−コレステロール低下作用、HDL−コレステロール増加
作用(抗動脈硬化作用)血液粘度低下作用血圧降下
作用抗炎症作用 抗腫瘍作用。さらに、プロスタグ
ランジン一族の生成に際し基質となり、ヒトを含む高等
ほ乳動物の体内で必須的な機能を発揮する。特にEPAは
タイプ3のプロスタングランジンの生成の際の基質とし
て重要であって、血小板の凝集抑制作用があり、血栓症
の治療及び予防剤としての応用が検討されている。さら
にEPAは、血漿コレステロールレベルの低下に寄与する
多価不飽和脂肪酸の中でも特にその活性が高く、通常の
植物油に含まれるリノール酸などよりも遥かに有効であ
る。また魚類等の必須栄養素としても知られている。
(Prior Art) Polyunsaturated fatty acids represented by EPA play an important role as constituents of biological membranes. Further, the following are known as the pharmacological actions of EPA known so far. Platelet aggregation inhibitory effect (thrombolytic effect) Neutral fat lowering effect in blood VLDL-cholesterol, LDL in blood
-Cholesterol lowering action, HDL-cholesterol increasing action (anti-atherogenic action) Blood viscosity lowering action Blood pressure lowering action Anti-inflammatory action Antitumor action. Furthermore, it serves as a substrate for the production of the prostaglandin family, and exerts an essential function in the body of higher mammals including humans. In particular, EPA is important as a substrate for the production of type 3 prostaglandins, has an inhibitory action on platelet aggregation, and its application as a therapeutic or prophylactic agent for thrombosis is being investigated. Furthermore, EPA has a particularly high activity among the polyunsaturated fatty acids that contribute to the reduction of plasma cholesterol level, and is far more effective than linoleic acid contained in ordinary vegetable oils. It is also known as an essential nutrient for fish and the like.

このように、EPAがその血栓防止作用あるいは脂質低下
作用に基づく健康食品あるいは医薬品としての可能性が
デンマークのダイヤーベルグ(Am.J.Clin.Nutr.,28,95
8,1975)の疫学調査により明らかにされているが、その
化学構造から明らかなように化学合成することは、極め
て困難である。このようなことから我が国においてもEP
Aを多く含有するイワシ、サバ、サンマ等の青背魚の摂
食が推奨されるようになってきた。
Thus, EPA is likely Denmark diamonds over Berg as health foods or medicines based on the thrombus inhibiting action or lipid-lowering action (Am.J.Clin.Nutr., 28, 95
8,1975), but it is extremely difficult to carry out chemical synthesis as is clear from its chemical structure. Because of this, EP also in Japan
It has become recommended to eat blue-backed fish such as sardines, mackerel, and saury, which contain a large amount of A.

今日、健康食品として市販されているEPAは、そのほと
んどが煮取法によって得られた魚油の分別物であって、
そのEPA含量は10〜30%程度である。煮取法によって抽
出される魚油は構成脂肪酸として多種類の脂肪酸を含む
混合グリセリドであって、各成分を単離精製することが
困難であるばかりでなく、EPAはすべてシス形の二重結
合を5個有する炭素数20の直鎖の多価不飽和脂肪酸であ
る為に、極めて酸化され易い不安定な脂肪酸であり、魚
油からEPAを濃縮する場合には酸素・光・熱等を避けて
行なう必要がある。さらに、これら魚油EPAの分別に使
用されたアセトン、メチルエチルケトン等各種の有機溶
剤は通常減圧下に除去されるが、その完全除去は技術的
及びコスト的に問題点が多い。
Most of the EPAs marketed today as health foods are fish oil fractions obtained by the boiling method,
Its EPA content is about 10-30%. The fish oil extracted by the boil-off method is a mixed glyceride containing many kinds of fatty acids as constituent fatty acids, and not only is it difficult to isolate and purify each component, but EPA has all five cis-type double bonds. Since it is a linear polyunsaturated fatty acid with 20 carbon atoms, it is an unstable fatty acid that is extremely easily oxidized. When concentrating EPA from fish oil, it is necessary to avoid oxygen, light, heat, etc. There is. Furthermore, various organic solvents such as acetone and methyl ethyl ketone used for the separation of these fish oil EPAs are usually removed under reduced pressure, but their complete removal has many technical and cost problems.

医薬品としてのEPAは、様々な方法によって抽出された
魚油を酵素的にもしくはアルカリ条件下で処理して遊離
脂肪酸まで加水分解するか又は該遊離酸をメチルもしく
はエチルエステルに変じた後、これらを低温分別、結晶
法、尿素付加法、減圧蒸留法又は、逆相クロマト法等に
より更に精製してEPA濃度を90%以上としたものが多
い。
EPA as a pharmaceutical agent treats fish oils extracted by various methods enzymatically or under alkaline conditions to hydrolyze them into free fatty acids, or after converting the free acids into methyl or ethyl esters, these are treated at low temperature. In many cases, the EPA concentration is 90% or more after further purification by fractionation, crystallization method, urea addition method, vacuum distillation method, or reverse phase chromatography method.

しかし、これらの方法を用いて得られたEPA濃縮物は、
工程中に各種の有機溶剤が使用されたりまたは、200℃
近い高熱を加えられたりするため、有機溶剤の残留やEP
Aの重合、異性化あるいは酸化等による変質の懸念をは
らんでいる。更に、魚油等をEPAの原料として用いた場
合、心臓疾患の原因の一つとして疑われているドコセン
酸等の除去が困難であるため、健康食品、医薬品等に利
用する上で問題点を残している。
However, the EPA concentrate obtained using these methods is
Various organic solvents are used in the process, or 200 ℃
Since high heat is applied to it, residual organic solvent and EP
There is concern about alteration of A due to polymerization, isomerization, or oxidation. Furthermore, when fish oil or the like is used as a raw material for EPA, it is difficult to remove docosenoic acid, which is suspected as one of the causes of heart disease, so there is a problem in using it in health foods, pharmaceuticals, etc. ing.

一方、最近、不完全な精製・濃縮では、魚臭が残るなど
の欠点を有した魚油からの抽出法を改善することを目的
として、クロレラ、単細胞藻類モノダス、ユーグレナあ
るいはけい藻等微生物を用いたEPAの生産方法が散見さ
れる様になり、微生物を利用したEPA生産が注目されて
きている。最近では、ゲラーマンとシュレンク(J.L.Ge
llerman and H.Schlenk,BBA,573,23,1979)及び、山
田等(昭和61年度日本醗酵工学会大会、1986)の発表
で、EPAを産生するかび(糸状菌)についての報告がな
された。
On the other hand, recently, in incomplete purification / concentration, microorganisms such as Chlorella, unicellular alga Monodas, Euglena or diatom were used for the purpose of improving the extraction method from fish oil, which had the drawback that fish odor remained. As EPA production methods are becoming more and more popular, EPA production using microorganisms is drawing attention. Recently, Gellerman and Schlenk (JLGe
llerman and H. Schlenk, BBA, 573 , 23, 1979) and Yamada et al. (1986 Japan Society for Fermentation Engineering, 1986) reported on EPA-producing fungi.

これら微生物によるEPA生産は、その脂肪酸組成から、
分離精製が比較的容易なこと、また培養制御により、EP
A生産をコントロールしやすい等の長所がある。しかし
ながらこれら糸状菌を用いた場合には、バクテリア等に
比較して、培養時間が長く(7日〜1ケ月程度)、生産
性の向上が大きな問題点として残っている。
EPA production by these microorganisms is due to its fatty acid composition,
Due to the relative ease of separation and purification, and culture control, EP
A. It has advantages such as easy control of production. However, when these filamentous fungi are used, the culturing time is longer (about 7 days to 1 month) than that of bacteria and the like, and improvement in productivity remains a major problem.

(本発明が解決しようとする問題点) 以上述べて来た様に、健康食品または、医薬品として考
えられているEPAの、魚油からの抽出生産、あるいは、
藻類やかび等の培養による生産には、いくつかの問題点
が有る。これらのことから、本発明の目的は、精製が容
易で純度の高いものが得られ、かつ培養時間が短く培養
制御が容易な、バクテリアを利用したEPA含有脂質の醗
酵生産方法を見出す事にある。
(Problems to be Solved by the Present Invention) As described above, extraction production from fish oil of EPA, which is considered as a health food or a drug, or
There are some problems in producing algae, molds and the like by culture. From these, an object of the present invention is to find a method of fermentative production of EPA-containing lipids using bacteria, which is easy to purify and can be obtained with high purity, and whose culture time is short and culture control is easy. .

(問題点を解決するための手段) 本発明者等は、EPA産生能を有するバクテリアを、広く
海洋に求めて鋭意研究した結果、デレヤ(Deleya)属に
属するバクテリアがEPAを生産することを見出し、この
知見に基づいて本発明を完成した。
(Means for Solving Problems) The present inventors have conducted extensive research on bacteria having EPA-producing ability widely in the ocean and found that bacteria belonging to the genus Deleya produce EPA. The present invention has been completed based on this finding.

従って、本発明は、デレヤ属に属し、エイコサペンタエ
ン酸含有脂質を生産することが出来る微生物を培養する
事によってエイコサペンタエン酸含有脂質を生成蓄積せ
しめ、次いで該脂質を採取することを特徴とする、エイ
コサペンタエン酸含有脂質の製造方法を提供するもので
ある。
Accordingly, the present invention is characterized in that the eicosapentaenoic acid-containing lipid is produced and accumulated by culturing a microorganism belonging to the genus Dereya and capable of producing an eicosapentaenoic acid-containing lipid, and then the lipid is collected. Provided is a method for producing a lipid containing eicosapentaenoic acid.

(具体的な説明) (1)微生物 本発明において使用する微生物は、デレヤ属に属し、EP
A又はこれを含有する脂質を生産する事が出来るもので
あればよく、このような微生物は自然界から新たに分離
する事が出来る。
(Specific Description) (1) Microorganism The microorganism used in the present invention belongs to the genus Dereya and is EP
It is only necessary that A or a lipid containing it can be produced, and such a microorganism can be newly isolated from the natural world.

デレヤに属する微生物の例として、新菌株として本発明
者が分離した、デレヤ・サガマリニイ(Deleya sagama
rinii)SCRC−1432を挙げる事が出来る。
As an example of a microorganism belonging to Dereya, Deleya sagama, which the present inventor has isolated as a new strain,
rinii) SCRC-1432 can be mentioned.

この菌株は次のように分離した。This strain was isolated as follows.

次の第一表に示す組成の培地を調整した。A medium having the composition shown in Table 1 below was prepared.

この寒天平板培地に各地の海洋より採取した海洋性生物
体サンプルを滅菌した生理食塩水で適度に希釈したもの
を接種し、25℃で1〜2日間培養した。この寒天平板培
地に出現したコロニーを同じ培地組成の斜面培地に釣菌
した。
This agar plate medium was inoculated with a sample of marine organisms collected from various oceans, diluted appropriately with sterilized physiological saline, and cultured at 25 ° C for 1 to 2 days. The colonies appearing on this agar plate medium were picked up on a slant medium having the same medium composition.

このようにして各地の海洋より採取した海洋性生物体サ
ンプルから多数の菌株を分離した。次に表の培地より寒
天を抜いたものを試験管に5mlずつ分注し、同様に滅菌
した。それぞれの菌株をこの培地で25℃、1〜2日間培
養した。得られた培養液より、後記の方法によりEPA産
生能を検定した。このようにして、EPAを顕著に生産す
る下記の菌株を相模湾より採取した海洋性生物体サンプ
ルより得た。
In this way, a large number of strains were isolated from marine organism samples collected from the oceans of various regions. Next, 5 ml of the medium obtained by removing agar from the medium in the table was dispensed into test tubes and sterilized in the same manner. Each strain was cultured in this medium at 25 ° C for 1 to 2 days. From the obtained culture solution, EPA production ability was assayed by the method described below. In this way, the following strains that significantly produce EPA were obtained from a marine organism sample collected from Sagami Bay.

この新規な菌株は、次のような菌学的性質を有する。This new strain has the following mycological properties.

観察項目 a) 形態 1 細胞の形 短かん菌 大きさ 1.0×2.0μm 2 多形性の有無 無 3 運転性の有無 有 鞭毛の着生状態 周毛 4 胞子の有無 無 5 グラム染色 陰性 6 抗酸性 陰性 b) 各培地に於ける生育状態 1 肉汁寒天平板培養(25℃,2日間) イ)コロニー形状(直径) 0.6〜0.8mm ロ)コロニーの形 円形 ハ)コロニー表面の形状 平滑 ニ)コロニーの隆起状態 台状 ホ)コロニーの周縁 全縁 ヘ)コロニーの色調 淡黄色 ト)コロニーの透明度 半透明 チ)コロニーの光沢 鈍光 リ)可溶性色素の生成 無 2 肉汁寒天斜面培養(25℃,2日間) イ)生育の良否 良好 ロ)コロニーの光沢 鈍光 3 肉汁液体培地(25℃,2日間) イ)表面の生育 無 ロ)濁度 濁る ハ)沈殿 粉状 ニ)ガス発生 無 4 肉汁ゼラチン(25℃,2日間) ゼラチン液化 液化 5 リトマスミルク 変化しない c) 生理学的性質 1 硝酸塩の還元 + 2 脱窒 − 3 MR − 4 VP − 5 インドール生成 − 6 硫化水素の生成 + 7 デンプンの加水分解 − 8 クエン酸利用 イ)Koser − ロ)Christensen − 9 硝酸塩の利用 − 10 色素生成 イ)King A 培地 − ロ)King B 培地 − 11 ウレアーゼ − 12 オキシダーゼ + 13 カタラーゼ + 14 生育の範囲 イ)pH 6〜9 ロ)温度 5℃〜30℃ 15 酸素に対する態度 好気性 16 O−F テスト(グルコース) − 17 糖類から酸及びガス生成 1. L−アラビノース − 2. D−キシロース − 3. D−グルコース + 4. D−マンノース − 5. D−フラクトース − 6. D−ガラクトース − 7. 麦芽糖 − 8. ショ糖 − 9. 乳糖 − 10. トレハロース − 11. D−ソルビット − 12. D−マンニット − 13. イノシット − 14. グリセリン − 15. デンプン − (ただしガスの生成 全項目−) d) その他の諸性質 SS寒天培地での生育 + マッコンキー寒天培地での生育 + 6.5%NaCl耐塩性 + DNase + オルニチンの分解 − アルギニンの分解 − Na+要求性 + 以上のような諸性質から、本菌株 SCRC−1432は下記の
大きな特徴を持つ。
Observation items a) Morphology 1 Cell morphology Short bacterium Size 1.0 × 2.0 μm 2 Presence or absence of polymorphism 3 Presence / absence of operability Yes Epiphytic state of flagella 4 Presence or absence of spores 5 Gram stain Negative 6 Acidic Negative b) Growth condition in each medium 1 Meat agar plate culture (25 ° C, 2 days) a) Colony shape (diameter) 0.6 to 0.8 mm b) Colony shape circular c) Colony surface shape smooth d) Colony shape Raised state Trapezoid e) Periphery of colony f) Color tone of colony Light yellow g) Transparency of colony translucent h) Luster of colony dull light r) Soluble pigment formation None 2 Beef agar slope culture (25 ° C, 2 days) ) B) Good or bad growth b) Luster of colony dull light 3 Broth liquid medium (25 ° C, 2 days) b) Surface growth no b) Turbidity turbidity c) Precipitation powder d) No gas generation 4 Meat juice gelatin (4) 25 ° C, 2 days) Gelatin liquefaction liquefaction 5 Litmus No change c) Physiological properties 1 Reduction of nitrate + 2 Denitrification − 3 MR − 4 VP − 5 Indole production − 6 Hydrogen sulfide production + 7 Starch hydrolysis − 8 Citric acid utilization a) Koser − Ro) Christensen −9 Utilization of nitrate −10 Pigment formation a) King A medium − b) King B medium − 11 Urease − 12 Oxidase + 13 Catalase + 14 Growth range a) pH 6-9 b) Temperature 5 ° C-30 ° C 15 Oxygen Attitude toward aerobic 16 O-F test (glucose) -17 Acid and gas production from sugars 1. L-arabinose-2. D-xylose-3. D-glucose + 4. D-mannose-5. D-fructose- 6. D-Galactose-7. Maltose-8. Sucrose-9. Lactose-10. Trehalose-11. D-sorbit-12. D-mannite-13. Inosit-14. Glycerin-15. Starch- However gas generation all items of -) d) Other Growth + Growth in MacConkey agar + 6.5% NaCl salt tolerance + DNase + decomposition of ornithine in properties SS agar - decomposition of arginine - Na + requirement + more Due to such properties, this strain SCRC-1432 has the following major features.

グラム陰性 周毛性の鞭毛及び運動性を持つ 非胞子形成の好気性かん菌 O−Fテスト陰性 カタラーゼ、オキシダーゼ陽性 Na+要求性 硝酸塩還元能陽性 35℃において生育する ゼラチンを液化する このような諸性質を有する本菌株 SCRC−1432株の分類
学的な一はバージイズ・マニュアル・オブ・システマテ
ィック・バクテリオロジー(Bergey′s Manual of
Systematic Bacteriology)第1巻、352頁、1984年に
基づいて、上記からの項目よりアルカリゲネス(Al
caligenes)属に類縁の菌であると同定出来る。
Gram-negative periflagellate flagella and motile non-sporulating aerobic bacillus OF test negative catalase, oxidase positive Na + auxotrophic nitrate-reducing capacity positive Gelatin grown at 35 ° C The taxonomic one of this characteristic strain SCRC-1432 is the Bergey's Manual of Systematic Bacteriology.
Based on Systematic Bacteriology, Vol. 1, p. 352, 1984.
can be identified as a bacterium related to the genus caligenes).

しかしながら、インターナショナル・ジャーナル・オブ
・システマティック・バクテリオロジー(Internationa
l Jounal of Systematic Bacteriology)33(4),
793−802(1983)においてボーマンら(L.Baumann,R.D.
Bowditch,and P.Baumann)は、Na+要求性(上記の項
目)のアルカリゲネス属をデレヤ(Deleya)属とする事
を提唱している。
However, the International Journal of Systematic Bacteriology (Internationa
l Jounal of Systematic Bacteriology) 33 (4) ,
793-802 (1983) Bowman et al. (L. Baumann, RD
Bowditch, and P. Baumann) have proposed that the Na + auxotrophic genus Alcaligenes (Deceya genus) be a genus Deleya.

従って、以上の事から本菌株 SCRC−1432はデレヤ(De
leya)属に属すると考えられる。
Therefore, from the above, this strain SCRC-1432 was
leya) is considered to belong to the genus.

しかしながらデレヤ属に属する微生物として、デレヤ・
アエスタ(Deleya aesta)デレヤ・キューピダ(Deley
a cupida)デレヤ・パシフィカ(Deleya pacifica)
デレヤ・ベヌスタ(Deleya venusta)及びデレヤ・マ
リナ(Deleya marina)があり、硝酸塩還元能、35℃で
の成育、ゼラチン液化能(上記からまでの項目)に
おいて、本菌株 SCRC−1432は、デレヤ属の上記菌種と
は明らかに異なる。
However, as a microorganism belonging to the genus Dereya,
Deleya aesta Deleya Cupida
a cupida) Deleya pacifica
There are Deleya venusta and Deleya marina, and this strain SCRC-1432 is Clearly different from the above strains.

以上の知見に基づき、本菌株 SCRC−1432をデレヤ属に
属するデレヤ・サガマリニイ(Deleya sagamarinii)
と同定、命名した。
Based on the above findings, this strain SCRC-1432 was identified as Deleya sagamarinii.
Was identified and named.

なお、糖からの酸及びガスの生成テストの項目の中に必
ずしも文献記載のそれと一致しない項目があるが、これ
らは分類学上さほど重要な項目ではなく、同一種でも一
般的によく変化するものであり、これらの記載に必ずし
も規定されるものではない。
Some of the items of the acid and gas production test from sugar do not necessarily match those described in the literature, but these items are not so important in terms of taxonomy and generally change even with the same species. However, they are not necessarily specified in these descriptions.

以上、自然界から分離したこの新菌株について詳細に記
載したが、これらの菌に変異を生じさせて一層生産性の
高い菌株を得ることも出来る。
As described above, this new strain isolated from nature was described in detail, but it is also possible to obtain a strain with higher productivity by mutating these strains.

この発明の菌株は、常法に従って保存することが出来、
例えば寒天スラント培地上で、または凍結乾燥法により
保存することが出来る。寒天スラント培地としては、デ
レヤ属細菌の保存に常用されている培地、例えば菌の分
離に関して前記した培地を使用することが出来る。ま
た、凍結乾燥保存も常法に従って行なうことができる。
The strain of this invention can be stored according to a conventional method,
For example, it can be stored on an agar slant medium or by a freeze-drying method. As the agar slant medium, it is possible to use the medium which is commonly used for the preservation of the bacterium of the genus Dereya, for example the medium described above for the isolation of the bacterium. Also, freeze-drying can be preserved according to a conventional method.

上記の新規微生物 デレヤ・サガマリニイSCRC−1432は
工業技術院微生物工業技術研究所に微工研菌寄第9211号
(FERM P−9211)として寄託されている。
The above-mentioned novel microorganism Dereya sagamilinii SCRC-1432 has been deposited at the Institute of Microbial Science and Technology of the Agency of Industrial Science and Technology as Microindustry Research Institute No. 9211 (FERM P-9211).

(2)EPA含有脂質の製造方法 前記微生物を培養してEPA含有脂質を製造しようとする
場合、基礎栄養培地として、この発明の微生物が増殖し
うるものであればいずれを使用しても良い。
(2) Method for producing EPA-containing lipid When EPA-containing lipid is produced by culturing the microorganism, any basal nutrient medium may be used as long as the microorganism of the present invention can grow therein.

この培地は、窒素源として例えば酵母エキス、ペプト
ン、肉エキス等の1種類または複数種類を含有する。ま
たこの培地には必要に応じて炭素源として各種の糖類を
加えることが出来る。この培地には、塩化ナトリウム、
もしくは天然海水や人工海水を加えることが必要であ
る。
This medium contains, as a nitrogen source, one or more kinds of yeast extract, peptone, meat extract and the like. If necessary, various sugars can be added to this medium as a carbon source. This medium contains sodium chloride,
Alternatively, it is necessary to add natural seawater or artificial seawater.

培養は固体培地または液体培地のいずれを用いても良い
が、目的とするEPA含有脂質を多量に得る為には、液体
培地を用い、静地培養もしくは振とう培養、通気、撹拌
培養等により好気条件下で培養を行なうのが好ましい。
培養温度は菌が生育し、EPAが生産される温度範囲であ
ればいずれの温度でも良く、好ましくは5〜30℃であ
り、より好ましくは15〜25℃である。pHは6〜9、好ま
しくは、7〜8の範囲である。培養時間は採取し得る量
のEPA含有脂質が生産される時間を選べば良く、好まし
くは8〜48時間である。
The culture may use either a solid medium or a liquid medium, but in order to obtain a large amount of the desired EPA-containing lipid, a liquid medium is used, and static culture or shaking culture, aeration, stirring culture, etc. are preferable. It is preferable to carry out the culture under atmospheric conditions.
The culture temperature may be any temperature within the temperature range in which the bacteria grow and EPA is produced, preferably 5 to 30 ° C, more preferably 15 to 25 ° C. The pH is in the range of 6-9, preferably 7-8. The culture time may be selected such that a harvestable amount of EPA-containing lipid is produced, and preferably 8 to 48 hours.

次に得られた培養物からEPA含有脂質が採取される。精
製法として通常の脂質精製法を用いることが出来る。例
えば、培養液から遠心分離、ろ過等の常用の集菌手段に
よって菌体を集める。次に、この菌体を所望により水、
食塩水、又は緩衝液、例えばリン酸緩衝液等により洗浄
した後、これらの液中に再懸濁する。この懸濁液を、脂
質の抽出のために常用されている溶剤、例えばクロロホ
ルム/メタノール混合液により抽出し、相分離してクロ
ロホルム相を得る。次に、このクロロホルム相を蒸発除
去することによりEPA含有脂質を含む材料が得られる。
常法によりこれをけん化することにより遊離のEPA又は
その塩を得る事が出来る。
Next, the EPA-containing lipid is collected from the obtained culture. As a purification method, a usual lipid purification method can be used. For example, the cells are collected from the culture solution by a conventional cell-collecting means such as centrifugation or filtration. Next, if desired, the bacterial cells are treated with water,
After washing with a saline solution or a buffer solution such as a phosphate buffer solution, the cells are resuspended in these solutions. The suspension is extracted with a solvent commonly used for lipid extraction, for example, a chloroform / methanol mixture, and the phases are separated to obtain a chloroform phase. Then, the chloroform phase is removed by evaporation to obtain a material containing EPA-containing lipid.
Free EPA or its salt can be obtained by saponifying this by a conventional method.

かくして、本発明によれば上記のバクテリアを使用して
醗酵生産することにより、精製が容易でかつ短時間で多
量にEPA含有脂質及びEPAを得ることが出来る。
Thus, according to the present invention, a large amount of EPA-containing lipid and EPA can be obtained in a short period of time, which is easy to purify by fermentation production using the above bacteria.

次に本発明のEPA含有脂質の製造方法の具体的な1例を
示す。
Next, a specific example of the method for producing the EPA-containing lipid of the present invention will be shown.

実施例 1 デレヤ・サガマリニイ SCRC−1432からのEPA含有脂質
の生産 肉エキス 1.0%,ペプトン 1.0%,NaCl 0.5%を含有
し、pH7.0に調整した培地20を121℃、15分間加熱殺菌
した後、デレヤ・サガマリニイ SCRC−1432(微工研菌
寄第9211号)を接種し、25℃で24時間好気的に培養し
た。培養後、遠心分離機で菌体を摂取し湿重量約108g
(乾燥重量で19.8g)菌体を得た。菌体を0.85%の食塩
水で1回洗浄した後、1に懸濁した。この菌体懸濁液
を1のクロロホルム−メタノール溶液(2:1 v/v)で
良く振とう抽出した後、遠心分離し、クロロホルム相を
得た。更に水相及び菌体をクロロホルム600mlで振とう
抽出したのち遠心分離し、クロロホルム相を得た。クロ
ロホルム抽出画分を濃縮乾固して得られた脂質画分は1.
65g(乾燥菌体当たり8.33%)であった。この画分を0.3
N−NaOHを含有する95%エタノール中で80℃にて1時間
鹸化し、これを6N−HClにより中和し、遊離脂肪酸混合
物を得た。
Example 1 Production of EPA-Containing Lipids from Dereya Sagamarinii SCRC-1432 A medium 20 containing meat extract 1.0%, peptone 1.0%, NaCl 0.5% and adjusted to pH 7.0 was sterilized by heating at 121 ° C. for 15 minutes. , Dereya Sagamarinii SCRC-1432 (Microtechnical Research Institute No. 9211) were inoculated and cultured aerobically at 25 ° C for 24 hours. After culturing, inoculate the cells with a centrifuge to obtain a wet weight of approximately 108g.
(19.8 g dry weight) bacterial cells were obtained. The cells were washed once with 0.85% saline and then suspended in 1. The cell suspension was well shake-extracted with a chloroform-methanol solution of 1 (2: 1 v / v) and then centrifuged to obtain a chloroform phase. Further, the aqueous phase and the cells were shake-extracted with 600 ml of chloroform and then centrifuged to obtain a chloroform phase. The lipid fraction obtained by concentrating the chloroform extraction fraction to dryness was 1.
The amount was 65 g (8.33% per dry cell). 0.3 for this fraction
It was saponified in 95% ethanol containing N-NaOH at 80 ° C for 1 hour and neutralized with 6N-HCl to obtain a free fatty acid mixture.

この遊離脂肪酸混合物をジアゾメタンによりメチルエス
テル化した後、ガスクロマトグラフにて分析して、測定
した所0.203g(脂質画分の12.6%,乾燥菌体の1.03%)
のEPAが含まれていることが分かった。
This free fatty acid mixture was methyl esterified with diazomethane and then analyzed by gas chromatography to measure 0.203 g (12.6% of lipid fraction, 1.03% of dried cells).
Found to contain EPA.

このEPAを含む遊離脂肪酸混合物を、シリカゲルカラム
を用い、メタノールを溶出液としてカラム逆相分配クロ
マトグラフィーを行なうことにより精製されたEPA0.189
gを得た。
The free fatty acid mixture containing EPA was purified by column reverse-phase partition chromatography using a silica gel column with methanol as the eluent.
got g.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】デレヤ(Deleya)属に属し、エイコサペン
タエン酸含有脂質を生産することができる微生物を培養
することによって、エイコサペンタエン酸含有脂質を生
成蓄積せしめ、次いで該脂質を採取することを特徴とす
る、エイコサペンタエン酸含有脂質の製造方法。
1. A method of culturing a microorganism belonging to the genus Deleya and capable of producing a lipid containing eicosapentaenoic acid, thereby producing and accumulating the lipid containing eicosapentaenoic acid, and then collecting the lipid. And a method for producing a lipid containing eicosapentaenoic acid.
【請求項2】微生物がデレヤ・サガマリニイ(Deleya
sagamarinii)である特許請求の範囲第1項に記載の製
造方法。
2. The microorganism is Deleya sagamilinii.
sagamarinii) The manufacturing method according to claim 1.
JP62049929A 1987-03-06 1987-03-06 Method for producing eicosapentaenoic acid-containing lipid by microorganism Expired - Lifetime JPH0763380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62049929A JPH0763380B2 (en) 1987-03-06 1987-03-06 Method for producing eicosapentaenoic acid-containing lipid by microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62049929A JPH0763380B2 (en) 1987-03-06 1987-03-06 Method for producing eicosapentaenoic acid-containing lipid by microorganism

Publications (2)

Publication Number Publication Date
JPS63216488A JPS63216488A (en) 1988-09-08
JPH0763380B2 true JPH0763380B2 (en) 1995-07-12

Family

ID=12844705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62049929A Expired - Lifetime JPH0763380B2 (en) 1987-03-06 1987-03-06 Method for producing eicosapentaenoic acid-containing lipid by microorganism

Country Status (1)

Country Link
JP (1) JPH0763380B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0324018A (en) * 1989-06-22 1991-02-01 Tosoh Corp Lipid metabolic improver
WO1998016625A1 (en) * 1996-10-16 1998-04-23 International Reagents Corporation Microorganism which produces enzyme acting on phosphorylated 1,5-anhydroglycitol, enzyme produced by said microorganism, and method for quantitatively determining phosphorylated 1,5-anhydroglycitol using the same

Also Published As

Publication number Publication date
JPS63216488A (en) 1988-09-08

Similar Documents

Publication Publication Date Title
EP0273708B1 (en) Process for production of eicosapentaenoic acid
US5246841A (en) Microbial process for production of eicosapentaenoic acid
KR19990046733A (en) Manufacturing Method for Docosa Hexaenoic Acid using Pseudomonas sp. YS-180
JPS59118090A (en) Preparation of wax ester, higher fatty alcohol and higher fatty acid
EP0969086A1 (en) Microorganisms producing docosahexaenoic acid and process for the production of docosahexaenoic acid
EP1608731A2 (en) A method of enhancing levels of polyunsaturated fatty acids in thraustochytrid protists
JPH0763382B2 (en) Method for producing lipid containing eicosapentaenoic acid by microorganism
JPH0763381B2 (en) Method for producing lipid containing eicosapentaenoic acid by microorganism
JPH0763380B2 (en) Method for producing eicosapentaenoic acid-containing lipid by microorganism
JPH0761272B2 (en) Method for producing lipid containing eicosapentaenoic acid
JP2698052B2 (en) Eicosapentaenoic acid-producing microorganism
JPH0761271B2 (en) Method for producing lipid containing eicosapentaenoic acid using microorganism
JPS6314697A (en) Production of eicosapentaenoic acid
JPH01304892A (en) Production of highly unsaturated fatty acid enriched fats and oils
JPH012587A (en) Method for producing eicosapentaenoic acid-containing lipid using microorganisms
JP4045403B2 (en) Method for producing hydroxy fatty acid and γ-lactone
JPS6314696A (en) Production of bishomo gamma-linolenic acid
JP4505620B2 (en) Microorganism producing icosapentaenoic acid and method for producing icosapentaenoic acid
JPS6314695A (en) Production of gamma-linolenic acid
JP4012955B2 (en) Microorganism producing docosahexaenoic acid and method for producing docosahexaenoic acid
JPH06327464A (en) Culture of marine microalga
JPH0378106B2 (en)
JPH08294384A (en) Cultivation of seed of marine microalga
JPH0866186A (en) New lipase and its production
JPS6368090A (en) Production of lipid containing arachidonic acid