[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0758788B2 - Method for manufacturing field effect transistor - Google Patents

Method for manufacturing field effect transistor

Info

Publication number
JPH0758788B2
JPH0758788B2 JP63114287A JP11428788A JPH0758788B2 JP H0758788 B2 JPH0758788 B2 JP H0758788B2 JP 63114287 A JP63114287 A JP 63114287A JP 11428788 A JP11428788 A JP 11428788A JP H0758788 B2 JPH0758788 B2 JP H0758788B2
Authority
JP
Japan
Prior art keywords
oxide film
gate oxide
effect transistor
field effect
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63114287A
Other languages
Japanese (ja)
Other versions
JPH01283873A (en
Inventor
優 築地
邦彦 笠間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63114287A priority Critical patent/JPH0758788B2/en
Publication of JPH01283873A publication Critical patent/JPH01283873A/en
Publication of JPH0758788B2 publication Critical patent/JPH0758788B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電界効果トランジスタの製造方法に関し、特に
耐放射線性の向上したゲート酸化膜の製造方法に関す
る。
The present invention relates to a method for manufacturing a field effect transistor, and more particularly to a method for manufacturing a gate oxide film having improved radiation resistance.

〔従来の技術〕[Conventional technology]

従来の電界効果トランジスタのゲート酸化膜の形成は、
石英管内にシリコン基板を置き、酸化雰囲気として乾燥
酸素あるいは酸素と水素の混合ガスを供給し、電熱線を
用いて900〜1200℃に加熱して行なわれる。そして、ゲ
ート酸化膜の耐放射線性を向上させるため酸化膜成長
後、酸素,アルゴン又は窒素等の雰囲気中で熱処理をす
ることにより、酸化膜中の正孔トラップ密度を減らし、
放射線照射による酸化膜の損傷(固定正電荷の蓄積と界
面準位の発生)を減少させている。
The formation of the gate oxide film of the conventional field effect transistor is
A silicon substrate is placed in a quartz tube, dry oxygen or a mixed gas of oxygen and hydrogen is supplied as an oxidizing atmosphere, and heating is performed at 900 to 1200 ° C. using a heating wire. Then, in order to improve the radiation resistance of the gate oxide film, after the oxide film is grown, a heat treatment is performed in an atmosphere of oxygen, argon, nitrogen or the like to reduce the hole trap density in the oxide film,
It reduces the damage of oxide film (accumulation of fixed positive charge and generation of interface state) due to radiation irradiation.

最近、ゲート酸化膜形成後、窒素雰囲気中でランプ加熱
による熱窒化を行ない、放射線照射時の界面準位発生量
を減少させたとの報告がアール サンダーソン(R.Sund
aresan)等によりアイイーイーイー トランザクション
ズ オン ニウクレアサイエンス(IEEE Transactions
on Nuchlear Science)NS−33巻12月1223頁(1986年)
に報告されている。
Recently, it was reported that thermal nitridation by lamp heating was performed in a nitrogen atmosphere after forming a gate oxide film, and the amount of interface states generated during irradiation was reduced.
aresan) et al. IEEE Transactions on Nieuclear Science (IEEE Transactions
on Nuchlear Science) NS-33, December 1223 (1986)
Has been reported to.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

電界効果トランジスタのゲート酸化膜を電子線,X線,ガ
ンマ線等の電離性放射線にさらすと、半導体基板とゲー
ト酸化膜の界面に界面準位が発生する。更に酸化膜内部
の正孔トラップに正電荷が捕獲され固定正電荷の蓄積が
起こる。ゲート酸化膜内部での界面準位の発生および固
定正電荷の蓄積は電界効果トランジスタの閾値電圧を変
動させる。この変動量が半導体装置の許容量を越えた
時、装置の機能が損なわれる。
When the gate oxide film of a field effect transistor is exposed to ionizing radiation such as electron beams, X-rays, and gamma rays, an interface level is generated at the interface between the semiconductor substrate and the gate oxide film. Further, positive charges are captured by the hole traps inside the oxide film, and fixed positive charges are accumulated. Generation of interface states and accumulation of fixed positive charges inside the gate oxide film changes the threshold voltage of the field effect transistor. When the variation exceeds the allowable amount of the semiconductor device, the function of the device is impaired.

更にゲート酸化膜内に水素が含まれていると、界面準位
および正孔トラップの発生量が著しく増加し、耐放射線
性が低下するため、ゲート酸化膜内部の水素量を減少さ
せる酸化膜成長プロセスの採用が必要である。そのため
酸化雰囲気は酸素と水素の混合ガスよりも、水素を含ま
ない乾燥酸素が望ましいと言われている。しかし、乾燥
酸素も酸化膜形成時に水素混入が避けられず、酸化膜中
に水素が取り込まれる。
Further, if hydrogen is contained in the gate oxide film, the amount of generated interface states and hole traps is significantly increased and the radiation resistance is deteriorated. Adoption of process is necessary. Therefore, it is said that dry oxygen containing no hydrogen is more preferable than the mixed gas of oxygen and hydrogen as the oxidizing atmosphere. However, dry oxygen is inevitably mixed with hydrogen when the oxide film is formed, and hydrogen is taken into the oxide film.

この様に、従来の製造方法で形成したゲート酸化膜は、
その成長過程において、内部に水素を取り込むため放射
線照射時に多量の界面準位発生および固定正電荷蓄積が
起こり、ゲート酸化膜の耐放射線性が低下するという欠
点がある。界面準位および正孔トラップの発生過程にお
ける水素の役割については、いくつかのモデルが提案さ
れているが、その概略は以下の通りである。
In this way, the gate oxide film formed by the conventional manufacturing method is
In the growth process, since hydrogen is taken into the inside, a large amount of interface states are generated and fixed positive charges are accumulated at the time of irradiation with radiation, and the radiation resistance of the gate oxide film is deteriorated. Several models have been proposed for the role of hydrogen in the generation of interface states and hole traps, but the outline is as follows.

酸化膜の形成過程で膜内に混入した水素は、Si−Hある
いはSi−OHの形で存在する。電離放射線の入射により酸
化膜内には電子−正孔対が発生し、膜内の電界によって
ドリフト移動する。この時正孔はSi−H,Si−OH結合を切
断し、H2あるいはH+の形で水素を膜中に放出する。この
水素が拡散あるいはドリフトにより、基板シリコンと酸
化膜の界面に到達したところで、界面との相互作用によ
り界面準位の形成や、固定電荷蓄積の原因である正孔ト
ラップの形成を行う。
Hydrogen mixed in the film during the formation of the oxide film exists in the form of Si-H or Si-OH. Electron-hole pairs are generated in the oxide film by the incidence of ionizing radiation, and drift movement is caused by the electric field in the film. In this case the holes were cut Si-H, a Si-OH bond, to release hydrogen in the form of H 2 or H + in the film. When this hydrogen reaches the interface between the substrate silicon and the oxide film by diffusion or drift, the interface level is formed by the interaction with the interface, and the hole trap that causes the fixed charge accumulation is formed.

他に、正孔あるいは水素(H2又はH+)がシリコン/酸化
膜界面のSi−H,Si−OH結合を切断して、直接界面準位を
形成するという説もある。いずれにしても、酸化膜に含
まれる水素が界面準位の発生に寄与することが知られて
いる。
There is also a theory that holes or hydrogen (H 2 or H + ) cuts Si—H and Si—OH bonds at the silicon / oxide film interface to directly form an interface level. In any case, it is known that hydrogen contained in the oxide film contributes to the generation of the interface state.

この様に、従来の電界効果トランジスタの製造方法で形
成したゲート酸化膜は、成長過程において水素を取り込
むため、放射線にさらされた時多量の界面準位および固
定電荷を発生するので、耐放射性が低下するという欠点
を有する。
As described above, since the gate oxide film formed by the conventional method for manufacturing a field effect transistor takes in hydrogen during the growth process, a large amount of interface states and fixed charges are generated when exposed to radiation, so that the radiation resistance is high. It has the drawback of being reduced.

本発明の目的は、上記欠点を除去し、耐放射線性の向上
したゲート酸化膜を有する電界効果トランジスタの製造
方法を提供することにある。
It is an object of the present invention to provide a method for manufacturing a field effect transistor having a gate oxide film with improved radiation resistance by eliminating the above drawbacks.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明の電界効果トランジスタの製造方法は、シリコン
基板上にゲート酸化膜を形成したのちランプ加熱を行な
う電界効果型トランジスタの製造方法であって、前記シ
リコン基板のランプ加熱をフッ素化合物のガス雰囲気中
で行なうものである。
A method of manufacturing a field effect transistor according to the present invention is a method of manufacturing a field effect transistor in which a gate oxide film is formed on a silicon substrate and then lamp heating is performed. The lamp heating of the silicon substrate is performed in a fluorine compound gas atmosphere. It is done in.

この方法で形成したゲート酸化膜はフッ素を含む。フッ
素は主にSi−F結合の形で存在し、−O−F結合はわず
かであることが知られている。Si−F結合は極めて安定
な状態であり、また放射線照射により分解してもフッ素
は化学的に非常に活性な状態で容易に再結合し、放射線
損傷が起こらない。また、酸化膜中に水素が存在しても
電気陰極度の高いフッ素が近接して結合すればプロトン
(H+)の分解、およびSiO2/Si界面への移動を抑制でき
る。同様な理由でSiO2/Si界面にSi−Fができれば界面
準位すなわちSiダングリングボンド(Si・)の発生を
抑えることができる。
The gate oxide film formed by this method contains fluorine. Fluorine is known to exist mainly in the form of Si-F bonds, and few -O-F bonds are known. The Si-F bond is in an extremely stable state, and even if it is decomposed by irradiation with radiation, fluorine is easily chemically recombined in a highly active state and radiation damage does not occur. Further, even if hydrogen is present in the oxide film, decomposition of protons (H + ) and migration to the SiO 2 / Si interface can be suppressed if fluorine having a high electrocathode degree is closely bound to the oxide film. For the same reason, if Si—F is formed at the SiO 2 / Si interface, the interface state, that is, the generation of Si dangling bonds (Si ·) can be suppressed.

この様にゲート酸化膜をフッ素化合物のガス雰囲気内で
ランプ加熱処理を行い、膜内にフッ素を取り込むことに
より、放射線照射時の界面準位発生と、固定正電荷蓄積
が抑制されるため耐放射線性が向上する。しかし加熱時
の雰囲気ガスが炭素を含むと酸化膜に炭素が入り、酸化
膜の耐圧が劣化するので、炭素を含むフッ素化合物の使
用は好ましくない。
In this way, the gate oxide film is subjected to a lamp heat treatment in a gas atmosphere of a fluorine compound, and fluorine is incorporated into the film, so that the generation of interface states during radiation irradiation and the fixed positive charge accumulation are suppressed. The property is improved. However, if the atmospheric gas at the time of heating contains carbon, carbon enters the oxide film and the withstand voltage of the oxide film deteriorates. Therefore, the use of a fluorine compound containing carbon is not preferable.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明す
る。
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の第1の実施例に用いるランプ加熱器の
断面図である。
FIG. 1 is a sectional view of a lamp heater used in the first embodiment of the present invention.

まず従来の製造方法と同様の操作により950℃の乾燥酸
素雰囲気中でシリコン基板を加熱し、厚さ250Åのゲー
ト酸化膜を形成する。次で、このシリコン基板3を第1
図に示したランプ加熱器の石英管1内に石英トレイ5を
用いて挿入し、雰囲気ガスとして500℃で分解する六フ
ッ化硫黄(SF6)4を供給しながらハロゲンランプ2に
よって、1100℃で30秒間加熱する。この加熱によりゲー
ト酸化膜内にはフッ素が取り込まれる。
First, a silicon substrate is heated in a dry oxygen atmosphere at 950 ° C. to form a gate oxide film having a thickness of 250 Å by the same operation as the conventional manufacturing method. Next, this silicon substrate 3 is first
Insert into the quartz tube 1 of the lamp heater shown in the figure using the quartz tray 5, and supply sulfur hexafluoride (SF 6 ) 4 which decomposes at 500 ° C as an atmospheric gas, and at 1100 ° C by the halogen lamp 2. Heat for 30 seconds. By this heating, fluorine is incorporated into the gate oxide film.

ランプ加熱後のゲート酸化膜中のフッ素,シリコン,酸
素の各濃度の深さ方向の分布をオージェ分光法で求め
た。その結果を第2図に示す。
The depth distributions of fluorine, silicon, and oxygen concentrations in the gate oxide film after lamp heating were obtained by Auger spectroscopy. The results are shown in FIG.

第2図からフッ素が特に基板シリコンとゲート酸化膜の
界面に高濃度で分布していることがわかる。
It can be seen from FIG. 2 that fluorine is distributed at a high concentration especially at the interface between the substrate silicon and the gate oxide film.

酸化膜内のフッ素は主にSi−Fの形で存在する。Si−F
結合は安定な結合であり、またフッ素は電気陰性度が高
くプロトン(H+)の移動を抑制する。したがって水素が
界面準位や正電荷の蓄積に関与することを妨げる。
Fluorine in the oxide film mainly exists in the form of Si-F. Si-F
The bond is stable, and fluorine has high electronegativity and suppresses proton (H + ) transfer. Therefore, it prevents hydrogen from participating in the interface state and the accumulation of positive charges.

この様にフッ素を含むゲート酸化膜においては、界面準
位の発生や固定正電化の蓄積が抑制される。従ってこの
様なゲート酸化膜を用いた電界効果型トランジスタは放
射線照射を行った時の閾値変動量が小さく、耐放射線性
が高い。
Thus, in the gate oxide film containing fluorine, the generation of interface states and the accumulation of fixed positive charge are suppressed. Therefore, the field-effect transistor using such a gate oxide film has a small amount of threshold variation when irradiated with radiation and has high radiation resistance.

第3図に本発明の第1の実施例の製造方法を用いて形成
したゲート酸化膜を有するNチャネル電界効果トランジ
スタにガンマ線を照射した時の閾値電圧の変動量△VT
吸収ガンマ線量との関係を示す。ただし照射時のゲート
バイアスは5Vである。なお比較のために従来の方法で製
造したNチャネルトランジスタの場合を第4図に示し
た。
FIG. 3 shows the fluctuation amount ΔV T of the threshold voltage and the absorbed gamma dose when an N-channel field effect transistor having a gate oxide film formed by the manufacturing method of the first embodiment of the present invention is irradiated with gamma rays. Shows the relationship. However, the gate bias during irradiation is 5V. For comparison, the case of an N-channel transistor manufactured by the conventional method is shown in FIG.

閾値電圧の変動量は、界面準位発生に起因する成分Aと
固定電荷蓄積に起因する成分Bの和である。固定電荷に
基づく成分Bは、吸収線量の増加に伴い負方向にシフト
する。一方Nチャネルトランジスタでは線量の増加と共
に負に荷電した界面準位のアクセプタタイプが増加する
ため、界面準位に基づく成分Aは正方向にシフトする。
この和である△VTは、見かけ上低線量領域で負方向にシ
フトし、線量の増加に伴い正方向へシフトする。
The variation amount of the threshold voltage is the sum of the component A caused by the generation of the interface state and the component B caused by the fixed charge accumulation. The component B based on the fixed charge shifts in the negative direction as the absorbed dose increases. On the other hand, in the N-channel transistor, the acceptor type of the negatively charged interface state increases as the dose increases, so that the component A based on the interface state shifts in the positive direction.
This sum ΔV T shifts in the negative direction in the apparently low dose region, and shifts in the positive direction as the dose increases.

第3図及び第4図に示したように、本第1の実施例で製
造したトランジスタの閾値電圧変動量は、従来の製造方
法で製造したトランジスタの閾値電圧変動量に較べ、界
面準位に基づく成分Aも、固定電荷に基づく成分Bも供
に小さな値をとり、特に界面準位に基づく成分Aにおい
て本実施例の効果が大きいことがわかる。
As shown in FIGS. 3 and 4, the threshold voltage fluctuation amount of the transistor manufactured in the first embodiment has a higher interface level than the threshold voltage fluctuation amount of the transistor manufactured by the conventional manufacturing method. Both the component A based on the fixed charge and the component B based on the fixed charge have small values, and it can be seen that the effect of the present embodiment is particularly large in the component A based on the interface state.

この様にゲート酸化膜内にフッ素を導入することによ
り、放射線照射による界面準位発生と固定正電荷蓄積、
特に界面準位の発生を効果的に抑制し、耐放射線性向上
させることができる。
In this way, by introducing fluorine into the gate oxide film, generation of interface states and fixed positive charge accumulation due to radiation irradiation,
In particular, the generation of interface states can be effectively suppressed and radiation resistance can be improved.

更にランプアニーラによる加熱は、基板のみを短時間で
加熱できるため、六フッ化硫黄と、石英炉中に混入した
水素との反応によるフッ化水素(HF)の発生が少く、炉
の浸食が少いという利点を有する。又、六フッ化硫黄は
室温において極めて安定で無害な物質であるため、保管
が容易である。
In addition, heating with a lamp annealer can heat only the substrate in a short time, so there is less generation of hydrogen fluoride (HF) due to the reaction between sulfur hexafluoride and hydrogen mixed in the quartz furnace, and less furnace erosion. Has the advantage. Further, since sulfur hexafluoride is an extremely stable and harmless substance at room temperature, it is easy to store.

次に本発明の第2の実施例について説明する。Next, a second embodiment of the present invention will be described.

まず第1の実施例と同様にして乾燥酸素雰囲気中950℃
でシリコン基板上に厚さ250Åのゲート酸化膜を形成す
る。その後ランプ加熱器を用い、1200℃以下で分解する
フッ素化合物、例えば500℃で分解する三フッ化窒素ガ
スを雰囲気ガスとして供給し、1000〜1100℃で50秒間加
熱する。これによりゲート酸化膜内に、第1の実施例と
同様にフッ素が主にSi−Fの形で取り込まれる。
First, in the same manner as in the first embodiment, 950 ° C. in a dry oxygen atmosphere.
Then, a 250 Å thick gate oxide film is formed on the silicon substrate. Then, using a lamp heater, a fluorine compound that decomposes at 1200 ° C. or lower, for example, nitrogen trifluoride gas that decomposes at 500 ° C. is supplied as an atmospheric gas, and heated at 1000 to 1100 ° C. for 50 seconds. As a result, fluorine is mainly incorporated into the gate oxide film in the form of Si-F, as in the first embodiment.

Si−F結合は安定な結合であり、放射線照射により分解
しても容易に再結合しやすい。さらに電気陰性度の高い
フッ素原子は近傍に発生したプロトン(H+)の移動を抑
える働きもする。したがって固定電荷の蓄積、界面準位
の発生は大幅に減少する。
The Si-F bond is a stable bond and easily recombined even if decomposed by irradiation with radiation. Furthermore, the fluorine atom, which has a high electronegativity, also functions to suppress the movement of protons (H + ) generated in the vicinity. Therefore, the accumulation of fixed charges and the generation of interface states are greatly reduced.

この様に、三フッ化窒素雰囲気中でランプ加熱すること
により、ゲート酸化膜内にフッ素を導入することによ
り、放射線照射時の界面準位の発生および固定正電荷蓄
積を抑制し、膜の耐放射線性を向上させることができ
る。三フッ化窒素も温室で極めて安定であるため、保管
が容易である。
In this way, by heating the lamp in a nitrogen trifluoride atmosphere to introduce fluorine into the gate oxide film, generation of interface states and fixed positive charge accumulation during irradiation of radiation are suppressed, and the resistance of the film is improved. Radioactivity can be improved. Nitrogen trifluoride is also very stable in the greenhouse and therefore easy to store.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明は、シリコン基板上にゲート
酸化膜を形成したのち、フッ素化合物のガス雰囲気中で
ランプ加熱することにより、耐放射線性の向上した電界
効果トランジスタを得ることができる。
As described above, according to the present invention, after forming a gate oxide film on a silicon substrate and performing lamp heating in a gas atmosphere of a fluorine compound, a field effect transistor having improved radiation resistance can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の第1の実施例に用いるランプ加熱器の
断面図、第2図は第1の実施例により形成されたゲート
酸化膜中のフッ素,シリコン,酸素の分布を示す図、第
3図及び第4図は第1の実施例及び従来例により製造さ
れた電界効果トランジスタの吸収ガンマ線量と閾値電圧
変動量との関係を示す図である。 1……石英管、2……ハロゲンランプ、3……シリコン
基板、4……六フッ化硫黄、5……石英トレイ、6……
容器、7……シャッター。
FIG. 1 is a sectional view of a lamp heater used in the first embodiment of the present invention, and FIG. 2 is a diagram showing distributions of fluorine, silicon and oxygen in a gate oxide film formed in the first embodiment, FIG. 3 and FIG. 4 are diagrams showing the relationship between the absorbed gamma dose and the threshold voltage fluctuation amount of the field effect transistor manufactured according to the first embodiment and the conventional example. 1 ... Quartz tube, 2 ... Halogen lamp, 3 ... Silicon substrate, 4 ... Sulfur hexafluoride, 5 ... Quartz tray, 6 ...
Container, 7 ... Shutter.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】シリコン基板上にゲート酸化膜を形成した
のちランプ加熱を行なう電界効果型トランジスタの製造
方法において、前記シリコン基板のランプ加熱をフッ素
化合物のガス雰囲気中で行なうことを特徴とする電界効
果トランジスタの製造方法。
1. A method of manufacturing a field effect transistor in which a gate oxide film is formed on a silicon substrate and then lamp heating is performed. The lamp heating of the silicon substrate is performed in a fluorine compound gas atmosphere. Effect transistor manufacturing method.
JP63114287A 1988-05-10 1988-05-10 Method for manufacturing field effect transistor Expired - Lifetime JPH0758788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63114287A JPH0758788B2 (en) 1988-05-10 1988-05-10 Method for manufacturing field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63114287A JPH0758788B2 (en) 1988-05-10 1988-05-10 Method for manufacturing field effect transistor

Publications (2)

Publication Number Publication Date
JPH01283873A JPH01283873A (en) 1989-11-15
JPH0758788B2 true JPH0758788B2 (en) 1995-06-21

Family

ID=14634070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63114287A Expired - Lifetime JPH0758788B2 (en) 1988-05-10 1988-05-10 Method for manufacturing field effect transistor

Country Status (1)

Country Link
JP (1) JPH0758788B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69125886T2 (en) 1990-05-29 1997-11-20 Semiconductor Energy Lab Thin film transistors
JP2007142450A (en) * 2000-03-22 2007-06-07 Matsushita Electric Ind Co Ltd Manufacturing method of nonvolatile semiconductor storage
JP4466809B2 (en) * 2001-07-18 2010-05-26 日本電気株式会社 Silicon insulating film, manufacturing method thereof, and termination method of silicon dangling bond
JP4622318B2 (en) * 2004-06-04 2011-02-02 セイコーエプソン株式会社 Manufacturing method of semiconductor device
JP5641537B2 (en) * 2011-03-22 2014-12-17 グローバルウェーハズ・ジャパン株式会社 Heat treatment method for silicon wafer

Also Published As

Publication number Publication date
JPH01283873A (en) 1989-11-15

Similar Documents

Publication Publication Date Title
US6087229A (en) Composite semiconductor gate dielectrics
EP0886308A2 (en) Plasma nitridation of a silicon oxide film
US4447272A (en) Method for fabricating MNOS structures utilizing hydrogen ion implantation
JPS63174355A (en) Semiconductor device
US5219773A (en) Method of making reoxidized nitrided oxide MOSFETs
Viswanathan et al. Model for thickness dependence of radiation charging in MOS structures
JPH0758788B2 (en) Method for manufacturing field effect transistor
JP2005045012A (en) Manufacturing method of semiconductor device
Pejović et al. Creation and passivation of interface traps in irradiated MOS transistors during annealing at different temperatures
JPS6295820A (en) Ion implanting method
JP3256059B2 (en) Method for manufacturing semiconductor device
Emms et al. Gamma and vacuum ultraviolet irradiations of ion implanted SiO 2 for MOS dielectrics
JP2949947B2 (en) Semiconductor device
JPH09266308A (en) Method of manufacturing semiconductor device
JPS6068621A (en) Manufacture of semiconductor device
JP3195422B2 (en) Semiconductor device and manufacturing method thereof
Batyrev et al. The role of water in the radiation response of wet and dry oxides
Kassabov et al. UV radiation effects of argon plasma on Si− SiO2 structures
Mattauch et al. The effects of Co60 gamma radiation on MOS diodes
JP4267810B2 (en) Method for manufacturing silicon carbide semiconductor device
JPS6170763A (en) Manufacture of semiconductor memory storage
JPH03185735A (en) Manufacture of semiconductor device
Akinwande Modeling the process dependence of electrical charges associated with the silicon/silicon dioxide interface
JP2914026B2 (en) Semiconductor device
Young Charge Trapping in SiO2

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term