JPH075453A - Liquid crystal display device and method for correcting defect of liquid crystal display device - Google Patents
Liquid crystal display device and method for correcting defect of liquid crystal display deviceInfo
- Publication number
- JPH075453A JPH075453A JP5144752A JP14475293A JPH075453A JP H075453 A JPH075453 A JP H075453A JP 5144752 A JP5144752 A JP 5144752A JP 14475293 A JP14475293 A JP 14475293A JP H075453 A JPH075453 A JP H075453A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- transparent substrate
- side transparent
- display device
- crystal display
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Liquid Crystal (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、一対の透明基板間に液
晶が封入され、表示用の絵素がマトリクス状に配列され
た透過型液晶パネルにおいて、照明光入射側透明基板に
マイクロレンズアレイ基板が貼り合わされた高輝度液晶
表示装置及び液晶表示装置の輝点欠陥を修正する方法に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transmissive liquid crystal panel in which liquid crystal is enclosed between a pair of transparent substrates and display picture elements are arranged in a matrix, and a microlens array is provided on the transparent substrate on the illumination light incident side. The present invention relates to a high-brightness liquid crystal display device in which substrates are bonded together and a method for correcting bright spot defects in the liquid crystal display device.
【0002】[0002]
【従来の技術】プロジェクション型液晶表示装置に使用
されるアクティブマトリクス駆動方式の液晶パネルは、
一対のガラス基板の一方のガラス基板上にマトリクス状
に配設した絵素電極と、各絵素電極にそれぞれ接続され
るTFT(薄膜トランジスタ)を備え、このTFTのス
イッチング動作により各絵素電極に電圧印加の選択、非
選択を行って表示動作を行う。2. Description of the Related Art An active matrix drive type liquid crystal panel used in a projection type liquid crystal display device is
A pixel electrode arranged in a matrix on one glass substrate of a pair of glass substrates and a TFT (thin film transistor) connected to each pixel electrode are provided, and a voltage is applied to each pixel electrode by the switching operation of this TFT. The display operation is performed by selecting or deselecting the application.
【0003】ところでTFTはガラス基板上にゲ−ト電
極やソ−ス電極およびドレイン電極、絶縁層、半導体層
等を積層した多層構造であるため、これらの各層をガラ
ス基板上に積層する工程と、これら各層をパタ−ニング
する工程が繰り返し行われる。このため欠陥のない完全
なTFTを作製するには、製造工程において各種条件を
厳しく維持、管理するために非常な努力を要する。By the way, since the TFT has a multi-layered structure in which a gate electrode, a source electrode, a drain electrode, an insulating layer, a semiconductor layer and the like are laminated on a glass substrate, a process of laminating each of these layers on the glass substrate is required. The step of patterning each of these layers is repeated. Therefore, in order to manufacture a perfect TFT without defects, great effort is required to strictly maintain and control various conditions in the manufacturing process.
【0004】それ故、場合によっては正常なTFT特性
が得られていない欠陥TFTを発生することもあり、欠
陥が修復可能ものはその欠陥の種類により、それぞれの
修正技術を用いて修復が図られる。このようなTFTの
欠陥の一例として、回路形成パタ−ン上での修復ができ
ず表示駆動した場合に、TFTに接続された絵素が輝点
となって表示画面上で認識される輝点欠陥がある。Therefore, in some cases, a defective TFT in which normal TFT characteristics are not obtained may be generated, and a defect that can be repaired can be repaired by using a respective repair technique depending on the type of the defect. . As an example of such a defect of the TFT, when the display cannot be repaired on the circuit forming pattern and the display is driven, the picture element connected to the TFT becomes a bright point which is recognized on the display screen. There is a defect.
【0005】この輝点欠陥の修正方法として、本件出願
人が出願した特願平3−36279号があり、図10に
示す。この構成は輝点絵素9を照射する照明光12の照
射経路上に位置する出射側の透明基板11の表面付近
(修正部31)に凹部32が形成され、該凹陥加工部3
2の底面32A、および側面32Bを粗面化処理するこ
とにより輝点絵素の透過光を抑制し、該輝点絵素の輝度
低減を行うものである。As a method of correcting this bright spot defect, there is Japanese Patent Application No. 3-36279 filed by the applicant of the present application, which is shown in FIG. In this structure, a concave portion 32 is formed near the surface (correction portion 31) of the transparent substrate 11 on the emitting side located on the irradiation path of the illumination light 12 that illuminates the bright spot picture element 9, and the concave processing portion 3 is formed.
The bottom surface 32A and the side surface 32B of No. 2 are roughened to suppress the transmitted light of the bright spot picture element and reduce the brightness of the bright spot picture element.
【0006】また、本件出願人は、マイクロレンズアレ
イ基板33を貼り合わせた高輝度タイプの液晶表示装置
に対して輝点絵素の修正を施した液晶表示装置の構造及
び輝点絵素の修正方法を特願平5−104582号で出
願した。図11はその構造を示し、液晶表示パネルに発
生した輝点欠陥絵素9を照射する照明光12の照射経路
上に位置する入射側透明基板10の表面付近(修正部3
5)に凹陥加工部36が形成され、該凹陥加工部の底面
36A、側面36Bを粗面化処理するものである。Further, the applicant of the present application has modified the structure of the liquid crystal display device and the modification of the bright spot picture element by modifying the bright spot picture element in the high brightness type liquid crystal display device in which the microlens array substrate 33 is bonded. The method was filed in Japanese Patent Application No. 5-104582. FIG. 11 shows the structure thereof. The vicinity of the surface of the incident side transparent substrate 10 located on the irradiation path of the illumination light 12 for irradiating the bright spot defect picture element 9 generated in the liquid crystal display panel (correction unit 3
The recessed portion 36 is formed in 5), and the bottom surface 36A and the side surface 36B of the recessed portion are roughened.
【0007】[0007]
【発明が解決しようとする課題】本発明は、マイクロレ
ンズアレイ基板を貼り合わせた高輝度タイプの液晶表示
装置において、より修正率を高くすることが可能な輝点
絵素の修正を施した液晶表示装置を得ることであり、ま
た輝点絵素を修正をする修正方法を課題とする。SUMMARY OF THE INVENTION The present invention is a high-brightness type liquid crystal display device in which microlens array substrates are bonded together, and a liquid crystal in which a bright spot picture element is corrected to enable a higher correction rate. Another object is to obtain a display device and a correction method for correcting a bright spot picture element.
【0008】図11の構造において、凹陥加工部36に
マイクロレンズアレイ基板33とガラス基板10を接着
する接着剤37が侵入して充満することがある。あるい
は凹陥加工部36に完全に接着剤37が入り込むことは
ないが、空洞を小さくしてしまう。マイクロレンズアレ
イ基板とガラス基板を貼り合わせる接着剤32は、透明
ガラス基板2の屈折率にほぼ等しく透過率の高い材質が
選ばれているので、凹陥加工部18に接着剤32が充填
すると透明基板2との屈折率差が得られず、そのため照
明光12を十分に屈折または減衰、遮光することができ
ない。そのため照明光12が輝点欠陥絵素9に入射し輝
点絵素の修正を十分に達成することができない。In the structure of FIG. 11, the adhesive 37 for adhering the microlens array substrate 33 and the glass substrate 10 may infiltrate and fill the recessed portion 36. Alternatively, the adhesive 37 does not completely enter the recessed portion 36, but the cavity is made smaller. The adhesive 32 for bonding the microlens array substrate and the glass substrate is made of a material having substantially the same refractive index as that of the transparent glass substrate 2 and a high transmittance. Therefore, when the recess 32 is filled with the adhesive 32, the transparent substrate is transparent. No difference in refractive index from that of No. 2 is obtained, so that the illumination light 12 cannot be sufficiently refracted, attenuated, or blocked. Therefore, the illumination light 12 is incident on the bright spot defect pixel 9 and the bright spot pixel cannot be sufficiently corrected.
【0009】本発明は上記問題を解消して輝点欠陥絵素
の修正率を向上させることを目的とし、液晶パネルの輝
点欠陥を照射する照明光の照射光路の全部にわたって照
明光を減衰させることを可能にする。An object of the present invention is to solve the above problems and improve the correction rate of bright spot defect picture elements, and attenuate the illumination light over the entire irradiation light path of the illumination light for illuminating the bright spot defects of the liquid crystal panel. To enable that.
【0010】[0010]
【課題を解決するための手段】本発明の第1の液晶表示
装置は、入射側透明基板と、反対側透明基板と、前記入
射側透明基板と反対側透明基板間に封入された液晶とか
らなる透過型液晶パネルと、前記入射側透明基板表面に
貼り合わせられ、透過型液晶パネルが形成するマトリク
ス状の各絵素領域に対応して配置されたマイクロレンズ
を有するマイクロレンズアレイ基板と、前記マイクロレ
ンズアレイ基板方向より表示用の照明光を照射する光源
手段とを有する液晶表示装置において、前記透過型液晶
パネルに発生した輝点欠陥絵素を照射する照明光の照射
経路上に位置する入射側透明基板の表面付近に表面側に
外形が大きく、液晶側に外形が小さい2段凹陥加工部を
形成した構造である。上記2段凹陥加工部の外形は、円
形、四角形、楕円形、五角形その他形状をとることがで
きる。A first liquid crystal display device of the present invention comprises an incident side transparent substrate, an opposite side transparent substrate, and liquid crystal sealed between the incident side transparent substrate and the opposite side transparent substrate. A transmissive liquid crystal panel, and a microlens array substrate having microlenses attached to the surface of the incident side transparent substrate, the microlens array being arranged corresponding to each pixel region of the matrix formed by the transmissive liquid crystal panel, In a liquid crystal display device having a light source means for irradiating display illumination light from the direction of the microlens array substrate, an incident light located on an irradiation path of the illumination light for irradiating the bright point defect picture element generated in the transmission type liquid crystal panel. This is a structure in which a two-step recessed portion having a large outer shape on the surface side and a small outer shape on the liquid crystal side is formed near the surface of the side transparent substrate. The outer shape of the two-step depressed portion may be circular, quadrangular, elliptical, pentagonal, or any other shape.
【0011】また本発明は、前記マイクロレンズアレイ
基板を入射側透明基板に貼り合わせする工程前に、輝点
欠陥を検出する工程と、該輝点欠陥が発生している絵素
を照射する照明光の照射経路上に位置する入射側透明基
板の表面付近に、外形の大きい凹陥加工部と、その中心
部に形成した外形の小さい凹陥加工部とからなる2段凹
陥加工部を形成する工程とを備える液晶表示装置の欠陥
修正方法である。Further, according to the present invention, before the step of adhering the microlens array substrate to the incident side transparent substrate, a step of detecting a bright spot defect and an illumination for irradiating a pixel in which the bright spot defect has occurred And a step of forming a two-step recessed portion including a recessed portion having a large outer shape and a recessed portion having a small outer shape formed in the center thereof in the vicinity of the surface of the incident-side transparent substrate located on the light irradiation path. A method of correcting a defect in a liquid crystal display device including:
【0012】上記2段凹陥加工部は最初に外形の大きい
凹陥加工部を形成した後、その中心部分に外形の小さい
凹陥加工部を形成する方法と、逆に外形の小さい凹陥加
工部を深く形成した後、外形の大きい凹陥加工部を形成
する方法がある。この凹陥加工部はエキシマレーザビー
ムを用いたレーザーエッチングにより実施される。In the above-mentioned two-step recessed portion, a recessed portion having a large outer shape is first formed, and then a recessed portion having a small outer shape is formed at the center thereof, and a recessed portion having a small outer shape is formed deeply. After that, there is a method of forming a depressed portion having a large outer shape. The recessed portion is formed by laser etching using an excimer laser beam.
【0013】本発明の第2の液晶表示装置は、入射側透
明基板と、反対側透明基板と、前記入射側透明基板と反
対側透明基板間に封入された液晶とからなる透過型液晶
パネルと、前記入射側透明基板表面に貼り合わされ、透
過型液晶パネルが形成するマトリクス状の各絵素領域に
対応して配置されたマイクロレンズを有するマイクロレ
ンズアレイ基板と、前記マイクロレンズアレイ基板方向
より表示用の照明光を照射する光源手段とを有する液晶
表示装置において、前記透過型液晶パネルに発生した輝
点欠陥絵素を照射する照明光の照射経路上に位置する入
射側透明基板の表面付近に凹陥加工部を形成し、該凹陥
加工部に前記入射側透明基板より透過率の低い樹脂を充
填する構造である。A second liquid crystal display device of the present invention is a transmissive liquid crystal panel comprising an incident side transparent substrate, an opposite side transparent substrate, and liquid crystal sealed between the incident side transparent substrate and the opposite side transparent substrate. , A microlens array substrate having microlenses attached to the surface of the incident side transparent substrate and arranged corresponding to each matrix-shaped picture element region formed by the transmissive liquid crystal panel, and displaying from the direction of the microlens array substrate In a liquid crystal display device having a light source means for irradiating illumination light for use in the vicinity of the surface of an incident side transparent substrate located on the irradiation path of the illumination light for irradiating the bright spot defect picture element generated in the transmission type liquid crystal panel. This is a structure in which a recessed processed portion is formed, and the recessed processed portion is filled with a resin having a lower transmittance than that of the incident side transparent substrate.
【0014】また、本発明は前記マイクロレンズアレイ
基板を入射側透明基板に貼り合わせする工程前に、輝点
欠陥を検出する工程と、該輝点欠陥が発生している絵素
を照射する照明光の照射経路上に位置する入射側透明基
板の表面付近に凹陥加工部を形成する工程と、該凹陥加
工部に入射側透明基板より透過率の低い樹脂を充填する
工程とを行うことを特徴とする液晶表示装置の欠陥修正
方法である。 また本発明は、凹陥加工部に充填する樹
脂として高透過率の樹脂を用い、マイクロレンズアレイ
基板を貼り合わせた後、該樹脂を変色又は黒色化する。
また好ましくは、前記の高透過率樹脂はマイクロレンズ
アレイ基板と入射側の透明基板を貼り合わせるために用
いるのと同一材料を用いる。Further, according to the present invention, before the step of adhering the microlens array substrate to the incident side transparent substrate, a step of detecting a bright spot defect and an illumination for irradiating a pixel in which the bright spot defect is generated. Characterized by performing a step of forming a concave processed portion near the surface of the incident side transparent substrate located on the light irradiation path, and a step of filling the concave processed portion with a resin having a lower transmittance than the incident side transparent substrate. The liquid crystal display device has a defect repairing method. Further, according to the present invention, a resin having a high transmittance is used as a resin to be filled in the recessed portion, and after the microlens array substrate is bonded, the resin is discolored or blackened.
Further, preferably, the high transmittance resin is made of the same material as used for bonding the microlens array substrate and the incident side transparent substrate.
【0015】[0015]
【作用】上記のように凹陥加工部をマイクロレンズの直
下に接近して形成し、該凹陥加工部を2段構造にする。
このことにより、マイクロレンズアレイ基板と入射側透
明基板を貼り合わせる接着剤は2段目の外形が小さい凹
陥加工部まで入り込むことはなく、確実に空洞を形成す
ることができる。As described above, the recessed portion is formed immediately below the microlens so that the recessed portion has a two-step structure.
As a result, the adhesive for bonding the microlens array substrate and the incident side transparent substrate does not enter the recessed portion having a small outer shape in the second step, and the cavity can be reliably formed.
【0016】また凹陥加工部に透過率の低い樹脂を充填
することにより透過率の低い層を確実に形成することが
できる。By filling the recessed portion with a resin having a low transmittance, it is possible to surely form a layer having a low transmittance.
【0017】マイクロレンズの直下に形成した凹陥加工
部は、マイクロレンズによって照明光を集光する効果が
まだ発揮されない段階であるため、凹陥部内での入射光
の減光効果も大きい。また凹陥加工部内に気泡がないた
め、修正部の信頼性が高い。またマイクロレンズ基板組
付後に前記樹脂を変色させれば、適切な減光量を得るこ
とができる。また前記凹陥加工部の内表面を粗面化すれ
ば樹脂と透明基板との密着性が向上し、信頼性が高くな
る。Since the recessed portion formed immediately below the microlens is at a stage where the effect of converging the illumination light by the microlens is not yet exhibited, the dimming effect of the incident light in the recessed portion is large. Further, since there are no bubbles in the recessed portion, the correction portion has high reliability. Further, by changing the color of the resin after assembling the microlens substrate, an appropriate amount of light reduction can be obtained. Further, if the inner surface of the recessed portion is roughened, the adhesion between the resin and the transparent substrate is improved and the reliability is increased.
【0018】また、マイクロレンズ直下に接近して凹陥
部を形成したたため、修正サイズはマイクロレンズサイ
ズと同等、すなわち1絵素サイズで光り漏れが発生しな
い。この結果、輝点絵素の存在が周囲の正常絵素に対し
て目立たない状態になる。すなわち輝点絵素が修正され
たことになる。Further, since the concave portion is formed close to immediately below the microlens, the corrected size is equal to the microlens size, that is, light leakage does not occur at one pixel size. As a result, the existence of the bright spot picture elements is inconspicuous with respect to the surrounding normal picture elements. That is, the bright spot picture element is modified.
【0019】[0019]
【実施例】以下本発明の一実施例を説明する。EXAMPLE An example of the present invention will be described below.
【0020】図1は本発明の一実施例にかかる欠陥の修
正方法の一工程を模式的に示しており、エキシマレ−ザ
−発振器1から出射されたレ−ザ−ビ−ム2はスリット
パタ−ン3を通り、紫外線反射ミラ−4で反射された
後、レンズ5を経て載置台6上にセットされた液晶パネ
ル7の輝点修正部8に集光されて照射される。 図2に
斜線で示すように、この輝点修正部8は照射光に対して
輝点を発生している輝点絵素9と同一の照射経路上にあ
る。また、本実施例の輝点修正部8は、図3に示すよう
に貼り合わされる一対のガラス基板10,11の内、光
源からの照明光12が液晶パネル7に入射される側のガ
ラス基板10の表面付近に選定される。入射側ガラス基
板10の内面にはブラックマスク13の開口部が絵素に
対応して配列され、液晶に電圧を印加するための対向電
極14が設けられている。FIG. 1 schematically shows one step of a defect repairing method according to an embodiment of the present invention. The laser beam 2 emitted from the excimer laser oscillator 1 is a slit pattern. After passing through the lens 3 and being reflected by the ultraviolet reflecting mirror 4, the light is focused and irradiated on the bright spot correction portion 8 of the liquid crystal panel 7 set on the mounting table 6 through the lens 5. As indicated by the diagonal lines in FIG. 2, the bright spot correction unit 8 is on the same irradiation path as the bright spot picture element 9 that produces a bright spot for the irradiation light. In addition, the bright spot correction unit 8 of the present embodiment is a glass substrate on the side where the illumination light 12 from the light source is incident on the liquid crystal panel 7 among the pair of glass substrates 10 and 11 that are bonded together as shown in FIG. Selected near the surface of 10. On the inner surface of the incident side glass substrate 10, openings of a black mask 13 are arranged corresponding to the picture elements, and a counter electrode 14 for applying a voltage to the liquid crystal is provided.
【0021】一方、照明光12が出射される側のガラス
基板11の内面にはマトリクス状に配列された絵素電極
15と該絵素電極15への給電をスイッチングするTF
T16が形成され、両ガラス基板10と11間には90
度またはそれ以上ねじれ配向されたツイステッドネマテ
ィック液晶層17が封入されている。On the other hand, on the inner surface of the glass substrate 11 on the side where the illumination light 12 is emitted, the picture element electrodes 15 arranged in a matrix and the TF for switching the power supply to the picture element electrodes 15 are switched.
T16 is formed, and the gap between both glass substrates 10 and 11 is 90.
A twisted nematic liquid crystal layer 17 that is twist-oriented by a degree or more is encapsulated.
【0022】上記の液晶パネル7の輝点修正部8へのレ
−ザ−ビ−ム2の入射方向は液晶パネル7に対する照明
光12の入射方向に一致している。The direction of incidence of the laser beam 2 on the bright spot correction portion 8 of the liquid crystal panel 7 coincides with the direction of incidence of the illumination light 12 on the liquid crystal panel 7.
【0023】尚、スリットパタ−ン3には輝点修正部の
外形サイズが拡大された形状のパタ−ンが形成されてお
り、該スリットパタ−ン3を通した縮小スリット露光に
よりレ−ザ−ビ−ム2が輝点修正部8の位置に精度よく
照射されるようになっている。加えて、このようなスリ
ットパタ−ン3を用いれば、次に説明する凹陥加工部1
8の内表面に粗面19を種々の凹凸段差で形成できる利
点がある。また、載置台6は、例えば水平面内におい
て、X−Y直交2軸方向に移動可能になっており、該載
置台6の移動によりレ−ザ−ビ−ム2を所望の輝点修正
部8に照射できるようになっている。Incidentally, the slit pattern 3 is formed with a pattern in which the outer size of the bright spot correction portion is enlarged, and the laser beam is formed by reducing slit exposure through the slit pattern 3. The frame 2 is accurately irradiated onto the position of the bright spot correction unit 8. In addition, if such a slit pattern 3 is used, the recessed portion 1 will be described below.
There is an advantage that the rough surface 19 can be formed on the inner surface of 8 with various uneven steps. Further, the mounting table 6 is movable in the two XY orthogonal directions, for example, in a horizontal plane, and the movement of the mounting table 6 causes the laser beam 2 to move to a desired bright spot correction section 8. It is possible to irradiate.
【0024】尚、輝点絵素9の検出は、前工程におい
て、液晶パネル7に光源より照明光12を照射し、駆動
状態にある液晶パネル7の表示画像を表示面上に投影
し、この投影像を検査装置の画像認識による検査又は検
査員の視認により行われる。 本発明の実施例のスリッ
トパタ−ン3を用いて形成した凹陥加工部18の形状
は、図4に拡大して示すように、2段に形成される。即
ち、最初に大きい直径を持つスリットパタ−ン3aが使
用され、マイクロレンズ20より大きい直径で浅く凹部
21が形成される。次に小さい直径を持つスリットパタ
−ン3が使用され、マイクロレンズ20より若干大きい
直径で深い凹部22が形成される。2段凹部は最初に小
さく深い凹部22を形成して、次に大きくて浅い凹部2
1を形成してもよい。凹陥加工部は必要に応じて3段以
上にすることも可能である。To detect the bright spot picture element 9, in the previous step, the liquid crystal panel 7 is irradiated with the illumination light 12 from the light source to project the display image of the liquid crystal panel 7 in the driving state on the display surface. The projected image is inspected by image recognition of the inspection device or visually inspected by an inspector. The shape of the recessed portion 18 formed by using the slit pattern 3 according to the embodiment of the present invention is formed in two steps as shown in an enlarged manner in FIG. That is, the slit pattern 3a having a large diameter is first used, and the shallow concave portion 21 having a diameter larger than the microlens 20 is formed. Next, a slit pattern 3 having a smaller diameter is used to form a deep recess 22 having a diameter slightly larger than that of the microlens 20. The two-step recess is formed by first forming a small and deep recess 22 and then a large and shallow recess 2.
1 may be formed. The recessed portion may be formed in three or more steps as required.
【0025】凹陥加工部18は、図5および図6に示す
ように、底面にむけて狭幅になった四角錘状、あるいは
円錐状をなす凹陥加工部18を輝点絵素9に対応するガ
ラス基板10の表面部分、すなわち輝点修正部8に形成
し、且つ該凹部18の底面および側面(傾斜面)に粗面
19A、19Bを形成し、これにより輝点絵素9を透過
する照明光を減光または遮光する。As shown in FIGS. 5 and 6, the recessed portion 18 corresponds to the bright spot picture element 9 in the shape of a quadrangular pyramid or a cone which is narrowed toward the bottom surface. Illumination which is formed on the surface portion of the glass substrate 10, that is, on the bright spot correction portion 8, and rough surfaces 19A and 19B are formed on the bottom surface and side surfaces (inclined surfaces) of the concave portion 18, whereby the bright spot picture element 9 is transmitted. Reduce or block light.
【0026】このような凹陥加工部18、粗面19A、
19Bはエキシマレ−ザ−を用いたエッチング加工によ
り以下のようにして形成される。まず、スリットパタ−
ン3を通して縮小露光されるレ−ザ−ビ−ム2の縮小率
およびレ−ザ−ビ−ム2のエネルギ−密度を適宜の値に
設定した上で、エキシマレ−ザ−発振器1からレ−ザ−
ビ−ム2を輝点修正部8に照射し、これにより凹陥加工
部18を形成する。The recessed portion 18, rough surface 19A,
19B is formed by the following etching process using an excimer laser. First, the slit pattern
After setting the reduction ratio of the laser beam 2 and the energy density of the laser beam 2 which are subjected to reduction exposure through the lens 3, to appropriate values, the excimer laser oscillator 1 reads the laser beam. The-
The beam 2 is applied to the bright spot correction portion 8 to form the recessed portion 18.
【0027】次いで、スリットパタ−ン3bとして図7
に示されるように丸穴3bbが形成されたメッシュ状の
スリットパタ−ンマスクを挿入し、この状態でレ−ザ−
ビ−ム2を凹陥加工部18に照射する。これにより、凹
陥加工部18の側面に鋸歯状の粗面19Bが形成され、
同時に底面にメッシュ状の粗面19Aが形成される。Next, as a slit pattern 3b, as shown in FIG.
As shown in Fig. 4, a mesh-shaped slit pattern mask with round holes 3bb is inserted, and in this state the laser
The beam 2 is irradiated on the recessed portion 18. As a result, a serrated rough surface 19B is formed on the side surface of the recessed portion 18,
At the same time, a mesh-shaped rough surface 19A is formed on the bottom surface.
【0028】凹陥加工部18の仕様としては、直径が大
きい凹部21はその最表面が四角錘形状および円錐形状
いずれの場合もマイクロレンズのサイズ(114μm)
より大きく(直径160〜200μm、最適値170μ
m、深さ30〜60μm、最適値40μm)、また直径
が小さい凹部22はマイクロレンズのサイズ(114μ
m)と同等又は若干大きく(110〜80μm、最適値
120μm、深さ基板表面から120〜200μm、最
適値基板表面から150μm)設定される。傾斜角度は
直径が大きい凹部21は5〜45度、好ましくは20度
以下、直径が小さい凹部22は5〜30度、好ましくは
15度以下に設定される。直径が大きい凹部20と小さ
い凹部21との直径差は少なくとも20μm以上必要で
ある。As for the specifications of the recessed portion 18, the recess 21 having a large diameter has a microlens size (114 μm) regardless of whether the outermost surface has a quadrangular pyramid shape or a conical shape.
Larger (diameter 160-200μm, optimum value 170μ
m, depth 30 to 60 μm, optimum value 40 μm), and the recess 22 having a small diameter is the size of the microlens (114 μm.
m) or slightly larger (110 to 80 μm, optimum value 120 μm, depth 120 to 200 μm from the substrate surface, optimum value 150 μm from the substrate surface). The inclination angle is set to 5 to 45 degrees, preferably 20 degrees or less for the concave portion 21 having a large diameter, and 5 to 30 degrees, preferably 15 degrees or less for the concave portion 22 having a small diameter. The diameter difference between the large-diameter concave portion 20 and the small-diameter concave portion 21 must be at least 20 μm or more.
【0029】このような修正方法による減光レベルはレ
−ザ−ショット数を変えることにより凹部18の大き
さ、深さを変化させることにより可能である。所望のレ
ベルに粗面化した液晶パネルはこの後、図8に示すよう
にマイクロレンズアレイ23を入射側透明基板10の表
面に透明性接着剤24を用いて貼り合わせる。The dimming level by such a correction method can be obtained by changing the size and depth of the recess 18 by changing the number of laser shots. After that, in the liquid crystal panel roughened to a desired level, the microlens array 23 is attached to the surface of the incident side transparent substrate 10 using a transparent adhesive 24 as shown in FIG.
【0030】透明性接着剤24はその粘性、表面張力、
ガラス基板10との濡れ性、凹部18を構成する直径が
大きい凹部21の傾斜角、直径が大きさ凹部21と小さ
い凹部22との直径差、凹部21の段差部表面の粗面度
その他の条件により、直径が小さい凹部22に入り込む
のを防止することができ、凹部22を確実に空洞にする
ことができる。特に凹部21と凹部22の直径差が20
μm以上に設定することと、凹部21の段差面を粗面化
したことにより確実に接着剤はが直径の小さい凹部22
に入り込むのを阻止することができた。The transparent adhesive 24 has its viscosity, surface tension,
The wettability with the glass substrate 10, the inclination angle of the large-diameter concave portion 21 forming the concave portion 18, the difference in diameter between the large-diameter concave portion 21 and the small concave portion 22, the roughness of the stepped surface of the concave portion 21, and other conditions. Thereby, it is possible to prevent the recess 22 having a small diameter from entering the recess 22, and the recess 22 can be surely formed into a hollow. In particular, the diameter difference between the recess 21 and the recess 22 is 20
The diameter of the adhesive 22 is set to be equal to or larger than μm, and the stepped surface of the recess 21 is roughened to ensure that the adhesive 22 has a small diameter.
I was able to prevent you from getting in.
【0031】また、本発明の第2実施例では、図9に示
すようにマイクロレンズアレイ23を入射側透明基板1
0の表面に透明性接着剤24を用いて貼り合わせる前
に、凹部18にガラス基板10より屈折率が小さい樹脂
28を充填する。この樹脂28の屈折率や透過率を適切
に選べば、減光量が適性化される。輝点絵素の輝度に適
合するよう減光量を調整することができる。前記凹陥加
工部18には気泡または空洞が少ないため、熱サイクル
等の信頼性テストを行っても気泡部が拡大し、減光レベ
ルが変化したり、マイクロレンズ基板23と透明基板1
0が剥離を生じることがない。Further, in the second embodiment of the present invention, as shown in FIG.
Before bonding the surface of No. 0 with the transparent adhesive 24, the recess 18 is filled with the resin 28 having a smaller refractive index than the glass substrate 10. By appropriately selecting the refractive index and the transmittance of the resin 28, the amount of light reduction can be optimized. The amount of dimming can be adjusted to match the brightness of the bright spot picture element. Since the recessed portion 18 has few bubbles or cavities, the bubble portion expands even when a reliability test such as a heat cycle is performed, the dimming level changes, or the microlens substrate 23 and the transparent substrate 1 are used.
0 does not cause peeling.
【0032】なお、上述した粗面化処理はCO2レ−ザ
−によるレ−ザ−エッチングで行ってもよいし、あるい
はダイヤモンド針や超硬合金製の針を用いた触刻によっ
て行うこともできるが、エキシマレ−ザ−エッチングに
よればこれらの方法に比して以下に示す利点がある。ま
ず、触刻法と比較すると、粗面加工が容易になると共
に、凹凸形状の精度がよい粗面19を形成できる利点が
ある。The above-mentioned surface roughening treatment may be carried out by laser etching with a CO 2 laser, or may be carried out by engraving with a diamond needle or a cemented carbide needle. However, excimer laser etching has the following advantages over these methods. First, as compared with the touch-etching method, there are advantages that the rough surface processing becomes easy and the rough surface 19 having a high accuracy of the uneven shape can be formed.
【0033】一方、CO2レ−ザ−と比較すると、CO2
レ−ザ−エッチングは熱加工であるため、輝点修正部8
の周囲のガラスに熱的ダメ−ジを与えることになるが、
エキシマレ−ザ−エッチングによればこのような熱的ダ
メ−ジを与えることがないという利点がある。従って、
以上の理由によりエキシマレ−ザ−エッチングにより粗
面19を形成する修正方法が実施する上で最も好ましい
ものになる。 更に、エキシマレ−ザ−エッチングは封
入ガスとして、発振波長193nmのArF、発振波長
248nmのKrF、発振波長308nmのXeCl等
が使用され、該封入ガスの種類によってエキシマレ−ザ
−発振器1のパルスエネルギ−が異なり、粗面の表面粗
さも異なることになるが、本発明者等による以下の実験
結果により、封入ガスとしてKrFを使用したエキシマ
レ−ザ−エッチング加工が最も好ましい修正方法である
ことを確認できた。[0033] On the other hand, CO 2 Les - The - and when compared, CO 2
Since the laser etching is thermal processing, the bright spot correction portion 8
It will give thermal damage to the glass around the
The excimer laser etching has an advantage of not giving such a thermal damage. Therefore,
For the above reasons, the repair method of forming the rough surface 19 by excimer laser etching is the most preferable for carrying out the method. Further, as the enclosed gas in the excimer laser etching, ArF having an oscillation wavelength of 193 nm, KrF having an oscillation wavelength of 248 nm, XeCl having an oscillation wavelength of 308 nm, etc. are used. However, it can be confirmed from the following experimental results by the present inventors that the excimer laser etching process using KrF as the filling gas is the most preferable correction method. It was
【0034】すなわち、輝点修正部8への入射光を拡散
させる粗面化に最適なエキシマレ−ザ−ガス種類を検討
するため、封入ガスの種類を変え、同一のパルスショッ
ト条件で実験したところ、粗面の表面粗さはKrFが最
も粗く、次いでArFであった。一方、封入ガスとして
XeClを使用した場合は、レ−ザ−ビ−ム2がガラス
面を透過するため粗面化処理はできなかった。そして、
表面粗さを最も粗面化できたKrFによる粗面を顕微鏡
で観察すると、粗面が砂粒状を呈し、透過照明の透過が
十分に抑制されることが確認できた。That is, in order to examine the optimum type of excimer laser gas for roughening the incident light to the bright spot correction section 8, the type of the enclosed gas was changed and an experiment was conducted under the same pulse shot conditions. As for the surface roughness of the rough surface, KrF was the roughest, followed by ArF. On the other hand, when XeCl was used as the filling gas, the laser beam 2 could not be roughened because it penetrated the glass surface. And
When the rough surface of KrF, which has the most rough surface, was observed with a microscope, it was confirmed that the rough surface was sandy and the transmission of transmitted illumination was sufficiently suppressed.
【0035】また、マイクロレンズアレイ基板23の貼
付後、樹脂28に例えばレーザー光を照射して変色させ
ることにより、必要な減光レベルが容易に得られる。こ
の結果、周囲の絵素に比べて、明るすぎる事もなく、ま
た暗すぎることもなく、表示品位が向上する。更に、前
記樹脂28を前記接着剤24と同一材料にすれば、信頼
性が高くなるとともに、低コスト化が図れる。After the microlens array substrate 23 is attached, the resin 28 is irradiated with, for example, a laser beam to change its color, so that the required dimming level can be easily obtained. As a result, the display quality is improved without being too bright or too dark as compared with the surrounding picture elements. Further, if the resin 28 is made of the same material as the adhesive 24, the reliability is improved and the cost can be reduced.
【0036】なお、実施例で図示していないカラ−フィ
ルタ−については、単板パネル方式の投影型液晶表示装
置に用いられている液晶パネルのようにR(赤)、G
(緑)、B(青)の三原色カラ−フィルタ−が交互に透
明基板上に配列されたもの、また3枚パネル方式の投影
型液晶表示装置に用いられている液晶パネルのように各
パネル毎にR(赤)、G(緑)、B(青)の三原色カラ
−フィルタ−を専用とするもの、即ちカラ−フィルタ−
が液晶パネル内にある場合、あるいは液晶パネルから独
立した位置にある場合、いずれのカラ−フィルタ−形式
の液晶パネルであっても本発明の修正方法は同様に実施
することができる。The color filters not shown in the examples are R (red) and G as in the liquid crystal panel used in the projection type liquid crystal display device of the single plate panel type.
(Green), B (blue) color filters of three primary colors are alternately arranged on a transparent substrate, and each panel such as a liquid crystal panel used in a projection type liquid crystal display device of a three-panel system. Dedicated to the color filters of the three primary colors of R (red), G (green), and B (blue), that is, color filters
Is in the liquid crystal panel, or in a position independent of the liquid crystal panel, the correction method of the present invention can be similarly carried out in any color filter type liquid crystal panel.
【0037】《比較例》図12はマイクロレンズアレイ
基板を貼り合わせた高輝度タイプ液晶表示装置に前記先
行出願(特願平3−36279号)の修正方法を用いた
断面図を示している。この液晶表示装置は、マイクロレ
ンズ20を各絵素15に対応して配置されたマイクロレ
ンズアレイ基板23を照明光12の入射側透明基板10
の表面に貼り合わされて構成され、各絵素15への照明
光12はマイクロレンズ20による集光効果で高輝度の
液晶表示装置を実現している。この高輝度タイプ液晶表
示装置において、輝点絵素9を照射する照明光12の照
射経路上に位置する出射側の透明基板11の表面付近
(修正部35)に凹部36が形成され、該凹部の底面3
6A、および側面36Bを粗面化処理することにより輝
点絵素の透過光を抑制し、該輝点絵素の輝度低減を行
う。<< Comparative Example >> FIG. 12 is a sectional view showing a high-brightness type liquid crystal display device in which microlens array substrates are bonded together, using the correction method of the prior application (Japanese Patent Application No. 3-36279). In this liquid crystal display device, a microlens array substrate 23 in which a microlens 20 is arranged corresponding to each picture element 15 is used as a transparent substrate 10 on an incident side of illumination light 12.
The illumination light 12 to each of the picture elements 15 is attached to the surface of, and the liquid crystal display device with high brightness is realized by the condensing effect of the microlens 20. In this high-brightness type liquid crystal display device, a concave portion 36 is formed near the surface (correction portion 35) of the transparent substrate 11 on the emission side located on the irradiation path of the illumination light 12 for irradiating the bright spot picture element 9, and the concave portion is formed. Bottom 3
By roughening 6A and the side surface 36B, the transmitted light of the bright spot picture element is suppressed, and the brightness of the bright spot picture element is reduced.
【0038】しかしながら、上記マイクロレンズ20に
より、集光効果が発揮される出射側透明基板11の表面
に前記修正方法で修正した場合、マイクロレンズ20の
集光効果のため修正部を透過する光量が増え、輝点の輝
度低減が周囲の正常な絵素の輝度レベルと同程度迄に低
減させることが困難になる。またマイクロレンズに入光
する光軸の角度ズレも配慮する必要もあることから、修
正部35の修正サイズは絵素ピッチの1.3倍以上が必
要となり、このサイズで修正した場合は表示画面で修正
点の大きさが目立つことになる問題がある。However, when the surface of the transparent substrate 11 on the emission side where the light condensing effect is exhibited by the microlens 20 is corrected by the above-mentioned correction method, the amount of light transmitted through the correction portion is increased due to the light condensing effect of the microlens 20. It becomes difficult to reduce the brightness of the bright spots to the same level as the brightness levels of the surrounding normal picture elements. Since it is also necessary to consider the angle deviation of the optical axis entering the microlens, the correction size of the correction unit 35 needs to be 1.3 times the pixel pitch or more. There is a problem that the size of the correction point becomes noticeable.
【0039】[0039]
【発明の効果】詳述してきたように、マイクロレンズ付
き高輝度液晶表示装置に於ける輝点欠陥絵素を正常絵素
と同程度まで確実に減光させるため、本発明では2段構
成の凹陥加工部をマイクロレンズの直下に接近して形成
することにより、また、該凹陥加工部に樹脂を充填する
ことにより、輝点欠陥絵素への入光がこの凹陥加工部で
減光され、輝点欠陥絵素が周囲の正常絵素に対し目立た
なくなり、また、修正サイズもほぼ絵素サイズ相当でよ
いため、このことも修正点が目立たない大きな効果があ
る。また、凹陥加工部内には気泡が少なく信頼性が高く
なる。As described in detail above, in order to surely reduce the brightness of the bright spot defect picture element in the high-brightness liquid crystal display device with the microlens to the same extent as the normal picture element, the present invention has a two-stage structure. By forming the recessed processed portion close to immediately below the microlens, and by filling the recessed processed portion with resin, light entering the bright spot defect picture element is dimmed at this recessed processed portion, Since the bright spot defect picture element becomes inconspicuous to the surrounding normal picture element and the correction size may be almost equivalent to the picture element size, this also has a great effect that the correction point is inconspicuous. Moreover, there are few bubbles in the recessed portion, and the reliability is improved.
【図1】本発明の一実施例を説明するエキシマレ−ザ装
置を用いた欠陥修正方法を模式的に示す図。FIG. 1 is a diagram schematically showing a defect repairing method using an excimer laser device for explaining an embodiment of the present invention.
【図2】輝点絵素と輝点修正部が照明光に対して同一の
照射経路上にあることを示す図。FIG. 2 is a diagram showing that a bright spot picture element and a bright spot correction unit are on the same irradiation path for illumination light.
【図3】エキシマレ−ザエッチングにより形成された凹
陥加工部の形状を示す液晶パネル断面図。FIG. 3 is a cross-sectional view of a liquid crystal panel showing the shape of a recessed portion formed by excimer laser etching.
【図4】2段凹陥加工部とマイクロレンズアレイの配置
関係を拡大して示す断面図。FIG. 4 is an enlarged cross-sectional view showing a positional relationship between a two-step depressed portion and a microlens array.
【図5】凹陥加工部が四角錘形状であることを示す図3
のA方向矢視図。FIG. 5 is a view showing that the recessed portion has a quadrangular pyramid shape.
FIG.
【図6】凹陥加工部が円錐形状であることを示す図3の
A方向矢視図。6 is a view in the direction of arrow A in FIG. 3 showing that the recessed portion has a conical shape.
【図7】エキシマレ−ザ−エッチングに使用するスリッ
トパタ−ンマスクを示す図。FIG. 7 is a view showing a slit pattern mask used for excimer laser etching.
【図8】本発明の第1実施例により修正した後、マイク
ロレンズアレイが貼り合わされて完成品となった液晶パ
ネルを示す断面図。FIG. 8 is a cross-sectional view showing a liquid crystal panel, which is a completed product after the microlens array is bonded to the liquid crystal panel after the modification according to the first embodiment of the present invention.
【図9】本発明の第2実施例により修正した後、マイク
ロレンズアレイが貼り合わされて完成品となった液晶パ
ネルを示す断面図。FIG. 9 is a cross-sectional view showing a liquid crystal panel, which is a completed product after the microlens array is bonded to the liquid crystal panel after the modification according to the second embodiment of the present invention.
【図10】本件発明者を含む発明者等による先に出願し
た特許の第1の修正方法を示す液晶パネル断面図。FIG. 10 is a cross-sectional view of a liquid crystal panel showing a first modification method of the patent previously filed by the inventors including the present inventors.
【図11】本件発明者を含む発明者等による先に出願し
た特許の第2の修正方法を示す液晶パネル断面図。FIG. 11 is a cross-sectional view of a liquid crystal panel showing a second modification method of the patent previously filed by the inventors including the present inventors.
【図12】比較例を説明する高輝度液晶パネル断面図。FIG. 12 is a cross-sectional view of a high-brightness liquid crystal panel illustrating a comparative example.
1 レーザー発振機 2 レーザービーム 3 スリットパターン 6 載置台 7 液晶パネル 8 輝点修正部 9 輝点絵素 10 ガラス基板 11 ガラス基板 12 照明光 13 ブラックマスク 14 対向電極 15 絵素電極 16 TFT 17 液晶層 18 凹陥加工部 19 粗面 20 マイクロレンズ 21 直径の大きい凹部 22 直径の小さい凹部 23 マイクロレンズアレイ 24 接着剤 28 樹脂 1 Laser oscillator 2 Laser beam 3 Slit pattern 6 Mounting table 7 Liquid crystal panel 8 Bright spot correction part 9 Bright spot picture element 10 Glass substrate 11 Glass substrate 12 Illuminating light 13 Black mask 14 Counter electrode 15 Picture element electrode 16 TFT 17 Liquid crystal layer 18 recessed portion 19 rough surface 20 microlens 21 concave with large diameter 22 concave with small diameter 23 microlens array 24 adhesive 28 resin
───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊黒 元貴 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Motoki Iguro 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka
Claims (10)
前記入射側透明基板と反対側透明基板間に封入された液
晶とからなる透過型液晶パネルと、前記入射側透明基板
表面に貼り合わせられ、透過型液晶パネルが形成するマ
トリクス状の各絵素領域に対応して配置されたマイクロ
レンズを有するマイクロレンズアレイ基板と、前記マイ
クロレンズアレイ基板方向より表示用の照明光を照射す
る光源手段とを有する液晶表示装置において、前記透過
型液晶パネルに発生した輝点欠陥絵素を照射する照明光
の照射経路上に位置する入射側透明基板の表面付近に表
面側に外形が大きく、液晶側に外形が小さい2段凹陥加
工部を形成した液晶表示装置。1. An incident side transparent substrate and an opposite side transparent substrate,
A transmissive liquid crystal panel comprising a liquid crystal enclosed between the incident side transparent substrate and the opposite side transparent substrate, and matrix-shaped pixel regions formed by the transmissive liquid crystal panel that are bonded to the incident side transparent substrate surface. In a liquid crystal display device having a microlens array substrate having microlenses arranged corresponding to, and a light source means for irradiating display illumination light from the direction of the microlens array substrate, the liquid crystal display device is generated in the transmissive liquid crystal panel. A liquid crystal display device in which a two-step recessed portion having a large outer shape on the surface side and a small outer shape on the liquid crystal side is formed near the surface of an incident side transparent substrate located on the irradiation path of illumination light for irradiating a bright spot defect pixel.
前記入射側透明基板と反対側透明基板間に封入された液
晶とからなる透過型液晶パネルと、前記透過型液晶パネ
ルに貼り合わせられ、透過型液晶パネルが形成するマト
リクス状の各絵素領域に対応して配置されたマイクロレ
ンズを有するマイクロレンズアレイ基板と、前記マイク
ロレンズアレイ基板方向より表示用の照明光を照射する
光源手段とを有する液晶表示装置の欠陥修正方法におい
て、前記マイクロレンズアレイ基板を入射側透明基板に
貼り合わせする工程前に、輝点欠陥を検出する工程と、
該輝点欠陥が発生している絵素を照射する照明光の照射
経路上に位置する入射側透明基板の表面付近に、外形の
大きい凹陥加工部と、その中心部に形成した外形の小さ
い凹陥加工部とからなる2段凹陥加工部を形成する工程
とを備える液晶表示装置の欠陥修正方法。2. An incident side transparent substrate and an opposite side transparent substrate,
A transmissive liquid crystal panel comprising a liquid crystal enclosed between the incident side transparent substrate and the opposite side transparent substrate, and a matrix of pixel regions formed by the transmissive liquid crystal panel, which are bonded to the transmissive liquid crystal panel. A defect correction method for a liquid crystal display device, comprising: a microlens array substrate having correspondingly arranged microlenses; and a light source means for irradiating display illumination light from the direction of the microlens array substrate. A step of detecting a bright spot defect before the step of bonding the transparent substrate to the incident side transparent substrate;
In the vicinity of the surface of the incident side transparent substrate located on the irradiation path of the illumination light for irradiating the pixel in which the bright spot defect has occurred, a recessed portion having a large outer shape and a recessed portion having a small outer shape formed at the center thereof And a step of forming a two-step concave processed portion including a processed portion.
きい凹陥加工部を形成した後、外形の小さい凹陥加工部
を形成する請求項2記載の液晶表示装置の欠陥修正方
法。3. The defect repairing method for a liquid crystal display device according to claim 2, wherein the two-step recessed portion is formed by first forming a recessed portion having a large outer shape and then forming a recessed portion having a small outer shape.
陥加工部を深く形成した後、外形の大きい凹陥加工部を
形成する請求項2記載の液晶表示装置の欠陥修正方法。4. The defect repairing method for a liquid crystal display device according to claim 2, wherein the two-step recessed portion is formed by forming a recessed portion having a small outer shape deeply and then forming a recessed portion having a large outer shape.
前記入射側透明基板と反対側透明基板間に封入された液
晶とからなる透過型液晶パネルと、前記入射側透明基板
表面に貼り合わせられ、透過型液晶パネルが形成するマ
トリクス状の各絵素領域に対応して配置されたマイクロ
レンズを有するマイクロレンズアレイ基板と、前記マイ
クロレンズアレイ基板方向より表示用の照明光を照射す
る光源手段とを有する液晶表示装置において、前記透過
型液晶パネルに発生した輝点欠陥絵素を照射する照明光
の照射経路上に位置する入射側透明基板の表面付近に凹
陥加工部を形成し、該凹陥加工部に前記入射側透明基板
と透過率の異なる樹脂を充填したことを特徴とする液晶
表示装置。5. An incident side transparent substrate and an opposite side transparent substrate,
A transmissive liquid crystal panel comprising a liquid crystal enclosed between the incident side transparent substrate and the opposite side transparent substrate, and matrix-shaped pixel regions formed by the transmissive liquid crystal panel that are bonded to the incident side transparent substrate surface. In a liquid crystal display device having a microlens array substrate having microlenses arranged corresponding to, and a light source means for irradiating display illumination light from the direction of the microlens array substrate, the liquid crystal display device is generated in the transmissive liquid crystal panel. A concave processed portion is formed near the surface of the incident side transparent substrate located on the irradiation path of the illumination light for irradiating the bright point defect picture element, and the concave processed portion is filled with a resin having a transmittance different from that of the incident side transparent substrate. A liquid crystal display device characterized by the above.
前記入射側透明基板と反対側透明基板間に封入された液
晶とからなる透過型液晶パネルと、前記透過型液晶パネ
ルに貼り合わされ、透過型液晶パネルが形成するマトリ
クス状の各絵素領域に対応して配置されたマイクロレン
ズを有するマイクロレンズアレイ基板と、前記マイクロ
レンズアレイ基板方向より表示用の照明光を照射する光
源手段とを有する液晶表示装置の欠陥修正方法におい
て、前記マイクロレンズアレイ基板を入射側透明基板に
貼り合わせする工程前に、輝点欠陥を検出する工程と、
該輝点欠陥が発生している絵素を照射する照明光の照射
経路上に位置する入射側透明基板の表面付近に凹陥加工
部を形成する工程と、該凹陥加工部に入射側透明基板よ
り透過率の異なる樹脂を充填する工程とを行うことを特
徴とする液晶表示装置の欠陥修正方法。6. An incident side transparent substrate and an opposite side transparent substrate,
Corresponding to each of the matrix-shaped pixel regions formed by the transmissive liquid crystal panel and the transmissive liquid crystal panel that is formed of the liquid crystal sealed between the incident side transparent substrate and the opposite side transparent substrate. A microlens array substrate having microlenses arranged in parallel and a light source means for irradiating display illumination light from the direction of the microlens array substrate. A step of detecting a bright spot defect before the step of bonding to the incident side transparent substrate;
A step of forming a recessed processed portion near the surface of the incident side transparent substrate located on the irradiation path of the illumination light for irradiating the picture element in which the bright spot defect has occurred; A method of repairing defects in a liquid crystal display device, which comprises performing a step of filling resins having different transmittances.
り透過率が高い樹脂を充填する工程、前記マイクロレン
ズアレイを入射側透明基板に貼り合わせた後、前記樹脂
にレーザ照射して変色または黒色化し、透過率を低下さ
せる工程を備える請求項6記載の液晶表示装置の欠陥修
正方法。7. A step of filling the recessed portion with a resin having a higher transmittance than that of the incident-side transparent substrate, bonding the microlens array to the incident-side transparent substrate, and then irradiating the resin with a laser to change color or The defect repairing method for a liquid crystal display device according to claim 6, further comprising the step of blackening and reducing the transmittance.
レンズアレイと前記入射側透明基板を貼り合わせる接着
剤と同一材料であることを特徴とする請求項7記載の液
晶表示装置の欠陥修正方法。8. The method of repairing defects in a liquid crystal display device according to claim 7, wherein the resins having different transmittances are made of the same material as an adhesive for bonding the microlens array and the incident side transparent substrate.
ッチングにより前記凹陥加工部を形成することを特徴と
する請求項2,3,4,6,7記載の液晶表示装置の欠
陥修正方法。9. The defect repairing method for a liquid crystal display device according to claim 2, 3, 4, 6, or 7, wherein the recessed portion is formed by laser etching using an excimer laser beam.
を行うことを特徴とする請求項2,3,4,6,7,8
記載の液晶表示装置の欠陥修正方法。10. The roughening process is performed on the inner surface of the recessed processed portion.
A method for correcting a defect of the liquid crystal display device described.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5144752A JP2796231B2 (en) | 1993-06-16 | 1993-06-16 | Liquid crystal display device and defect repair method for liquid crystal display device |
KR1019940009634A KR0128816B1 (en) | 1993-04-30 | 1994-04-29 | Liquid crystal display apparatus and defect correction method |
CN 94104644 CN1061147C (en) | 1993-04-30 | 1994-04-29 | A liquid crystal display device and a defect correcting method therein |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5144752A JP2796231B2 (en) | 1993-06-16 | 1993-06-16 | Liquid crystal display device and defect repair method for liquid crystal display device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH075453A true JPH075453A (en) | 1995-01-10 |
JP2796231B2 JP2796231B2 (en) | 1998-09-10 |
Family
ID=15369559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5144752A Expired - Fee Related JP2796231B2 (en) | 1993-04-30 | 1993-06-16 | Liquid crystal display device and defect repair method for liquid crystal display device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2796231B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100401140C (en) * | 2005-12-20 | 2008-07-09 | Lg.菲利浦Lcd株式会社 | Repair method for flat display panel |
WO2009019913A1 (en) * | 2007-08-09 | 2009-02-12 | Sharp Kabushiki Kaisha | Liquid crystal display and method for manufacturing the same |
KR101298429B1 (en) * | 2006-04-17 | 2013-08-20 | 엘지디스플레이 주식회사 | Repairing apparatus for liquid crystal display and repairing method using the same |
-
1993
- 1993-06-16 JP JP5144752A patent/JP2796231B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100401140C (en) * | 2005-12-20 | 2008-07-09 | Lg.菲利浦Lcd株式会社 | Repair method for flat display panel |
KR101298429B1 (en) * | 2006-04-17 | 2013-08-20 | 엘지디스플레이 주식회사 | Repairing apparatus for liquid crystal display and repairing method using the same |
WO2009019913A1 (en) * | 2007-08-09 | 2009-02-12 | Sharp Kabushiki Kaisha | Liquid crystal display and method for manufacturing the same |
JPWO2009019913A1 (en) * | 2007-08-09 | 2010-10-28 | シャープ株式会社 | Liquid crystal display device and manufacturing method thereof |
US8203690B2 (en) | 2007-08-09 | 2012-06-19 | Sharp Kabushiki Kaisha | Liquid crystal display device and method of manufacturing same |
Also Published As
Publication number | Publication date |
---|---|
JP2796231B2 (en) | 1998-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5123943B2 (en) | Liquid crystal display device and manufacturing method thereof | |
US5280374A (en) | Liquid crystal display device and method of compensating for a defect | |
JP5220015B2 (en) | Liquid crystal display device and manufacturing method thereof | |
TWI430000B (en) | Method and system for repairing flat panel display | |
JP2584906B2 (en) | Liquid crystal display device and defect repair method for liquid crystal display device | |
KR0128816B1 (en) | Liquid crystal display apparatus and defect correction method | |
JP2796231B2 (en) | Liquid crystal display device and defect repair method for liquid crystal display device | |
JP3192269B2 (en) | Liquid crystal display device defect repair method | |
JP2774701B2 (en) | Liquid crystal display device and defect repair method for liquid crystal display device | |
JP2584910B2 (en) | Liquid crystal display device and defect repair method for liquid crystal display device | |
JP3640439B2 (en) | Liquid crystal panel, pixel defect correcting method and pixel defect correcting apparatus | |
JP2005345602A (en) | Liquid crystal panel manufacturing method, liquid crystal panel, projector, and rear projection television | |
JPH05210074A (en) | Liquid crystal display device and its production | |
JP2740583B2 (en) | Liquid crystal display device and defect repair method for liquid crystal display device | |
JP2934327B2 (en) | Liquid crystal display device and defect repair method for liquid crystal display device | |
JP2000056283A (en) | Defective pixel correction device for liquid crystal panel | |
JP2584905B2 (en) | Liquid crystal display device and defect repair method for liquid crystal display device | |
JP2938990B2 (en) | Liquid crystal display device and defect repair method for liquid crystal display device | |
CN102338942A (en) | Method and system for repairing flat panel display | |
JP3273910B2 (en) | Method for repairing defective picture element of liquid crystal display device | |
JP3433603B2 (en) | Display device defect repair method | |
JP3083714B2 (en) | Liquid crystal display device defect repair method | |
JP2003149619A (en) | Method for correcting pixel defect of liquid crystal panel | |
JPH10170962A (en) | Liquid crystal display device and defect correction method for the device | |
JPH03265820A (en) | Liquid crystal display and production thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090626 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100626 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100626 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110626 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120626 Year of fee payment: 14 |
|
LAPS | Cancellation because of no payment of annual fees |