[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0746499B2 - Sense amplifier circuit - Google Patents

Sense amplifier circuit

Info

Publication number
JPH0746499B2
JPH0746499B2 JP59047831A JP4783184A JPH0746499B2 JP H0746499 B2 JPH0746499 B2 JP H0746499B2 JP 59047831 A JP59047831 A JP 59047831A JP 4783184 A JP4783184 A JP 4783184A JP H0746499 B2 JPH0746499 B2 JP H0746499B2
Authority
JP
Japan
Prior art keywords
potential
output terminal
misfet
mosfet
electrode connected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59047831A
Other languages
Japanese (ja)
Other versions
JPS60193192A (en
Inventor
益規 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59047831A priority Critical patent/JPH0746499B2/en
Publication of JPS60193192A publication Critical patent/JPS60193192A/en
Publication of JPH0746499B2 publication Critical patent/JPH0746499B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Static Random-Access Memory (AREA)

Description

【発明の詳細な説明】 〔発明の属する技術分野の説明〕 本発明はMOSFETにより構成されるメモリ回路に適したセ
ンスアンプ回路に関する。
Description: TECHNICAL FIELD The present invention relates to a sense amplifier circuit suitable for a memory circuit including a MOSFET.

〔従来技術の説明〕[Description of Prior Art]

近年、MOSFETによるダイナミックメモリ回路においては
その大容量化に伴ない、小さな面積で実現できるメモリ
セルの開発が盛んである。そのようなメモリセルのうち
の幾つかは、2つの論理レベルに対応する2つの状態
を、読み出し時においてメモリセルを流れる電流の違い
により区別するものである。
2. Description of the Related Art In recent years, in dynamic memory circuits using MOSFETs, memory cells that can be realized in a small area have been actively developed due to the increase in capacity. Some of such memory cells distinguish between two states corresponding to two logic levels by the difference in the current flowing through the memory cell during a read.

しかしながら、従来のMOSFET集積回路では電流の違いを
効果的に検出できる回路は知られていなかった。このた
め、従来は抵抗を用いて電流を電圧に変換し、電位の違
いを検出するセンスアンプを用いて2つの状態のうちの
いずれにあるかを検出していた。この場合、2つの状態
の電流差をΔI、また電流を流す抵抗をRとすると、得
られる電位差ΔVとΔI,Rとの間には、オームの法則よ
り次の関係が成立する。
However, in the conventional MOSFET integrated circuit, a circuit capable of effectively detecting a difference in current has not been known. Therefore, conventionally, a resistance is used to convert a current into a voltage, and a sense amplifier for detecting a difference in potential is used to detect which one of the two states. In this case, assuming that the current difference between the two states is ΔI and the resistance that allows the current to flow is R, the following relationship holds between the obtained potential difference ΔV and ΔI, R according to Ohm's law.

ΔV=R×ΔI 従って、大きな電位差を得るためには抵抗値Rを大きく
しなければならない。
ΔV = R × ΔI Therefore, in order to obtain a large potential difference, the resistance value R must be increased.

しかしながら、MOS集積回路では抵抗を精度良く作成す
るのは困難であり、特に大きな抵抗値のもの程困難であ
る。したがって、MOS集積回路で上記検出回路を構成し
たときには抵抗値のばらつきにより、正しく動作しない
虞れがあった。
However, it is difficult to accurately create a resistance in a MOS integrated circuit, and it is particularly difficult for a resistance value to be large. Therefore, when the detection circuit is composed of a MOS integrated circuit, there is a possibility that it may not operate properly due to variations in resistance value.

〔発明の目的の説明〕[Explanation of Object of Invention]

本発明は、この点に鑑み、電流の違いを検出するのに特
に適したセンスアンプ回路を提供することを目的とす
る。
In view of this point, the present invention has an object to provide a sense amplifier circuit particularly suitable for detecting a difference in current.

〔発明の構成の説明〕[Description of Configuration of Invention]

本発明は一端を第1の電源に接続し他端を第1の出力端
子に接続した第1の負荷素子と、ドレイン電極を前記第
1の出力端子に接続しソース電極を第2の電源に接続し
た第1のMISFETと、一端を前記第1の電源に接続し他端
を第2の出力端子に接続した第2の負荷素子と、ドレイ
ン電極を前記第2の出力端子に接続しソース電極を前記
第2の電源に接続した第2のMISFETと、ソース電極を前
記第1のMISFETのゲート電極に接続しゲート電極を前記
第2の出力端子に接続しドレイン電極を第1の入力端子
に接続した第3のMISFETと、ソース電極を前記第2のMI
SFETのゲート電極に接続しゲート電極を前記第1の出力
端子に接続しドレイン電極を第2の入力端子に接続した
第4のMISFETと、ドレイン電極を前記第1のMISFETのゲ
ート電極に接続しゲート電極をクロック入力端子に接続
しソース電極を前記第2の電源に接続した第5のMISFET
と、ドレイン電極を前記第2のMISFETのゲート電極に接
続しゲート電極を前記クロック入力端子に接続しソース
電極を前記第2の電源に接続した第6のMISFETとを具備
することを特徴とするセンスアンプ回路である。
The present invention relates to a first load element having one end connected to a first power supply and the other end connected to a first output terminal, and a drain electrode connected to the first output terminal and a source electrode connected to a second power supply. A connected first MISFET, a second load element having one end connected to the first power supply and the other end connected to a second output terminal, and a drain electrode connected to the second output terminal and a source electrode A second MISFET connected to the second power source, a source electrode connected to the gate electrode of the first MISFET, a gate electrode connected to the second output terminal, and a drain electrode connected to the first input terminal. The connected third MISFET and the source electrode are connected to the second MI.
A fourth MISFET connected to the gate electrode of the SFET, a gate electrode connected to the first output terminal and a drain electrode connected to the second input terminal, and a drain electrode connected to the gate electrode of the first MISFET. A fifth MISFET having a gate electrode connected to the clock input terminal and a source electrode connected to the second power supply.
And a sixth MISFET having a drain electrode connected to the gate electrode of the second MISFET, a gate electrode connected to the clock input terminal, and a source electrode connected to the second power supply. It is a sense amplifier circuit.

〔実施例の説明〕[Explanation of Examples]

以下本発明の一実施例を第1図に従って説明する。 An embodiment of the present invention will be described below with reference to FIG.

第1図において、デプレッション型のMOSFET1と3は負
荷素子として動作し、それぞれMOSFET2とMOSFET4と共に
インバータを構成する。MOSFET1と3及びMOSFET2と4は
それぞれ電気的特性の整合がとられている。待機時に
は、クロック入力端子13にはMOSFET7と8とを導通させ
る電位が印加されており、この結果MOSFET2と4とのゲ
ート電極が接続されている接続点18と19との電位は電源
15の電位VSSにほぼ等しい。従ってMOSFET2と4とは共に
遮断されていて2つの出力端子9と10とには共に電源14
の電位VDDが表われる。
In FIG. 1, depletion type MOSFETs 1 and 3 operate as load elements, and constitute an inverter together with MOSFET 2 and MOSFET 4, respectively. The electrical characteristics of the MOSFETs 1 and 3 and the MOSFETs 2 and 4 are matched. During standby, a potential for conducting the MOSFETs 7 and 8 is applied to the clock input terminal 13, and as a result, the potentials of the connection points 18 and 19 to which the gate electrodes of the MOSFETs 2 and 4 are connected are the power source.
It is approximately equal to the potential V SS of 15. Therefore, the MOSFETs 2 and 4 are both cut off, and the two output terminals 9 and 10 are both connected to the power supply 14
The potential V DD of is shown.

動作時においては、クロック入力端子13の電位をMOSFET
7と8とを遮断する電位に変更する。入力端子11と12と
には比較すべき電流が加えられている。この電流はMOSF
ET5及びMOSFET6を通して流れ、それぞれ接続点18の浮遊
容量16及び接続点19の浮遊容量17を充電する。この結
果、接続点18と接続点19との電位は、電位VSSから電位V
DDに向って変化する。ここで容量16と容量17との値は等
しいものとする。一般にMOSFET集積回路において、容量
値は幾何学的形状でほぼ決定されるので抵抗値に比較し
はるかに制御が容易である。従って、この条件は容易に
満たすことができる。
During operation, the potential of clock input terminal 13 is
Change to a potential that blocks 7 and 8. A current to be compared is applied to the input terminals 11 and 12. This current is MOSF
It flows through the ET5 and the MOSFET 6 to charge the stray capacitance 16 at the connection point 18 and the stray capacitance 17 at the connection point 19, respectively. As a result, the potential between the connection point 18 and the connection point 19 changes from the potential V SS to the potential V SS.
Change towards DD . Here, it is assumed that the capacitance 16 and the capacitance 17 have the same value. Generally, in a MOSFET integrated circuit, the capacitance value is almost determined by the geometrical shape, so that it is much easier to control than the resistance value. Therefore, this condition can be easily satisfied.

今、仮に入力端子11に加えられている電流の方が入力端
子12に加えられている電流より大きいものとする。この
場合、接続点18の電位は接続点19の電位に比較して速く
変化する。この結果、やがてMOSFET2が導通し、出力端
子9の電位が下がる。これによりMOSFET6が遮断し、容
量17の充電は止まり従って接続点19の電位上昇も止ま
る。このようにして、出力端子10の電位はVDDのままで
あり、出力端子9の電位はVSSに近い値になり、入力端
子11に加えられている電流の方が大きいことを検出でき
る。反対に入力端子12に加えられている電流の方が、入
力端子11に加えられている電流よりも大きい場合は、同
様にして出力端子9の電位がVDD、出力端子10の電位がV
SSに近い値になる。
Now, it is assumed that the current applied to the input terminal 11 is larger than the current applied to the input terminal 12. In this case, the potential of the connection point 18 changes faster than the potential of the connection point 19. As a result, the MOSFET 2 eventually becomes conductive and the potential of the output terminal 9 drops. As a result, the MOSFET 6 is cut off, the charging of the capacitor 17 is stopped, and the potential increase at the connection point 19 is also stopped. In this way, the potential of the output terminal 10 remains V DD , the potential of the output terminal 9 becomes a value close to V SS , and it can be detected that the current applied to the input terminal 11 is larger. On the contrary, if the current applied to the input terminal 12 is larger than the current applied to the input terminal 11, the potential of the output terminal 9 is V DD and the potential of the output terminal 10 is V DD in the same manner.
It is close to SS .

第1図の実施例に於て、出力端子9の電位がVSSに近く
なり、MOSFET6が遮断状態になっている時にも、MOSFET6
のリーク電流が大きい場合には少しずつ容量17が充電さ
れ、やがてMOSFET4が導通してしまい本来VDDであるべき
出力端子10の電位がVSSに近い電位に変化し出力端子9
と10間の電位差が小さくなり充分時間が経った後には零
になることが考えられる。
In the embodiment shown in FIG. 1, even when the potential of the output terminal 9 is close to V SS and the MOSFET 6 is in the cutoff state, the MOSFET 6
When the leakage current of is large, the capacitor 17 is gradually charged, and eventually MOSFET 4 becomes conductive, and the potential of the output terminal 10, which should have been V DD , changes to a potential close to V SS and the output terminal 9
It is considered that the potential difference between 10 and 10 becomes small and becomes zero after a long time.

このようなリーク電流が大きい場合にも動作する本発明
の別の実施例を第2図に示す。
FIG. 2 shows another embodiment of the present invention which operates even when such a leak current is large.

第2図の回路は第1図の回路に、さらにMOSFET21と26、
及びMOSFET23と24とからなるインバータとMOSFET25と26
とからなるインバータを付け加えたものである。
The circuit of FIG. 2 is similar to the circuit of FIG. 1 with MOSFETs 21 and 26,
And an inverter consisting of MOSFETs 23 and 24 and MOSFETs 25 and 26.
Inverter consisting of and is added.

以下第2図の回路の動作を説明する。一例として入力端
子11に加えられる電流の方が入力端子12に加えられる電
流よりも大きい場合を考える。この場合前述の通り、出
力端子9の電位がVSSに近い値となりMOSFET6を遮断す
る。この時に同時にMOSFET26も遮断され、接続点28の電
位はVDDになり、遮断状態にあったMOSFET22を導通状態
にする。MOSFET22はMOSFET6のリーク電流の有無にかか
わらず接続点19の電位をVSSに近い値に保ち従ってMOSFE
T4が導通することはない。
The operation of the circuit shown in FIG. 2 will be described below. As an example, consider the case where the current applied to input terminal 11 is greater than the current applied to input terminal 12. In this case, as described above, the potential of the output terminal 9 becomes a value close to V SS , and the MOSFET 6 is shut off. At this time, the MOSFET 26 is also cut off at the same time, the potential of the connection point 28 becomes V DD , and the MOSFET 22 which has been in the cut-off state is made conductive. The MOSFET 22 maintains the potential of the connection point 19 at a value close to V SS regardless of the presence or absence of the leakage current of the MOSFET 6, and therefore the MOSFE
T4 never conducts.

本発明のさらに他の実施例を第3図に示す。Yet another embodiment of the present invention is shown in FIG.

第3図の回路は第1図の回路にさらにMOSFET31,32,33,3
4が付け加えられている。
The circuit shown in FIG. 3 has MOSFETs 31, 32, 33, 3 added to the circuit shown in FIG.
4 has been added.

以下、一例として入力端子11に加えられる電流の方が入
力端子12に加えられる電流よりも大きい場合を考える。
この場合出力端子9の電位が変化した場合MOSFET31が遮
断され、接続点18の電位がそれ以上に上昇しないように
する。これは動作が終って再び待機状態に戻すためにク
ロック入力端子13の電位を変化させてMOSFET7と8を導
通状態にさせて容量16を放電させる時の放電時間を短く
し、待機状態への復帰を早くさせるためである。この時
は、出力端子9の電位はMOSFET31を遮断させるのに必要
な電位までしか変化しない。従ってMOSFET6を遮断させ
るためにはMOSFET34が必要である。MOSFET34は接続点37
と38との間に閾値電圧分の電位差を生じさせ、接続点37
の電位に従って接続点19の電位が接続点18の電位に比べ
充分VSSに近い状態でMOSFET6を遮断状態にし、接続点19
の電位が上昇してMOSFET4を導通させるのを阻止する。
Hereinafter, as an example, consider a case where the current applied to the input terminal 11 is larger than the current applied to the input terminal 12.
In this case, when the potential of the output terminal 9 changes, the MOSFET 31 is cut off so that the potential of the connection point 18 does not rise further. This is done by changing the potential of the clock input terminal 13 to bring the MOSFETs 7 and 8 into a conductive state and discharging the capacitor 16 in order to return to the standby state after the operation is completed and return to the standby state. This is to speed up. At this time, the potential of the output terminal 9 changes only to the potential required to shut off the MOSFET 31. Therefore, the MOSFET 34 is required to shut off the MOSFET 6. MOSFET 34 is connection point 37
And 38, a potential difference corresponding to the threshold voltage is generated, and the connection point 37
In accordance with the potential of the connection point 19, the potential of the connection point 19 is sufficiently close to V SS as compared with the potential of the connection point 18, and the MOSFET 6 is turned off.
This prevents the potential of the MOSFET from rising and turning on the MOSFET 4.

以上各実施例において、容量16,17としては浮遊容量を
考えたが、これは必要に応じて別に容量素子を付け加え
て構わない。また実際に出力電位を発生させる回路とし
てはMOSFET1と2またはMOSFET3と4とからなる単純なイ
ンバータ回路を用いているが、これはより利得の高いカ
スコード増幅回路やシュミット・トリガ回路を用いた方
が良い特性が得られる場合がある。以上実施例ではMOSF
ETを用いた場合について説明したが、一般にMISFETであ
れば同様に適用できる。
In each of the embodiments described above, the stray capacitances are considered as the capacitors 16 and 17, but it is also possible to add a capacitance element separately as needed. A simple inverter circuit consisting of MOSFETs 1 and 2 or MOSFETs 3 and 4 is used as the circuit that actually generates the output potential, but it is better to use a cascode amplifier circuit or Schmitt trigger circuit with a higher gain. In some cases, good characteristics can be obtained. In the above embodiment, MOSF
Although the case of using the ET has been described, generally, the same can be applied to any MISFET.

〔発明の効果の説明〕[Explanation of Effect of Invention]

以上述べた如く、本発明によれば、電流差を、抵抗を通
して電位差に変換することなしに、検出増幅でき、抵抗
値のばらつきの影響を受けない電流値検出型のセンスア
ンプ回路を得ることができるので、電流検出型のメモリ
セルを用いたMISダイナミックRAMにおいて大きな効果が
ある。
As described above, according to the present invention, it is possible to obtain a current value detection type sense amplifier circuit that can detect and amplify a current difference without converting it into a potential difference through a resistor and is not affected by variations in resistance value. Therefore, it has a great effect in the MIS dynamic RAM using the current detection type memory cell.

【図面の簡単な説明】[Brief description of drawings]

第1図、第2図、第3図はいずれも本発明の実施例を示
す回路図である。 1,2,3,4,5,6,7,8,21,22,23,24,25,26,31,32,33,34……M
OSFET、9,10……出力端子、11,12……入力端子、13……
クロック入力端子、14,15……電源、16,17……容量。
1, 2 and 3 are circuit diagrams showing an embodiment of the present invention. 1,2,3,4,5,6,7,8,21,22,23,24,25,26,31,32,33,34 …… M
OSFET, 9,10 …… Output terminal, 11,12 …… Input terminal, 13 ……
Clock input terminal, 14,15 ... power supply, 16, 17 ... capacity.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一端を第1の電源に接続し他端を第1の出
力端子に接続した第1の負荷素子と、ドレイン電極を前
記第1の出力端子に接続しソース電極を第2の電源に接
続した第1のMISFETと、一端を前記第1の電源に接続し
他端を第2の出力端子に接続した第2の負荷素子と、ド
レイン電極を前記第2の出力端子に接続しソース電極を
前記第2の電源に接続した第2のMISFETと、ソース電極
を前記第1のMISFETのゲート電極に接続しゲート電極を
前記第2の出力端子に接続しドレイン電極を第1の入力
端子に接続した第3のMISFETと、ソース電極を前記第2
のMISFETのゲート電極に接続しゲート電極を前記第1の
出力端子に接続しドレイン電極を第2の入力端子に接続
した第4のMISFETと、ドレイン電極を前記第1のMISFET
のゲート電極に接続しゲート電極をクロック入力端子に
接続しソース電極を前記第2の電源に接続した第5のMI
SFETと、ドレイン電極を前記第2のMISFETのゲート電極
に接続しゲート電極を前記クロック入力端子に接続しソ
ース電極を前記第2の電源に接続した第6のMISFETとを
具備することを特徴とするセンスアンプ回路。
1. A first load element having one end connected to a first power supply and the other end connected to a first output terminal; and a drain electrode connected to the first output terminal and a source electrode connected to a second output terminal. A first MISFET connected to a power supply, a second load element having one end connected to the first power supply and the other end connected to a second output terminal, and a drain electrode connected to the second output terminal. A second MISFET having a source electrode connected to the second power supply, a source electrode connected to the gate electrode of the first MISFET, a gate electrode connected to the second output terminal, and a drain electrode connected to the first input. The third MISFET connected to the terminal and the source electrode are connected to the second
A MISFET, a gate electrode connected to the first output terminal and a drain electrode connected to the second input terminal, and a drain electrode connected to the first MISFET.
A fifth MI connected to the gate electrode of the second power source, the gate electrode to the clock input terminal, and the source electrode to the second power source.
And a sixth MISFET having a drain electrode connected to the gate electrode of the second MISFET, a gate electrode connected to the clock input terminal, and a source electrode connected to the second power supply. Sense amplifier circuit to do.
JP59047831A 1984-03-13 1984-03-13 Sense amplifier circuit Expired - Lifetime JPH0746499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59047831A JPH0746499B2 (en) 1984-03-13 1984-03-13 Sense amplifier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59047831A JPH0746499B2 (en) 1984-03-13 1984-03-13 Sense amplifier circuit

Publications (2)

Publication Number Publication Date
JPS60193192A JPS60193192A (en) 1985-10-01
JPH0746499B2 true JPH0746499B2 (en) 1995-05-17

Family

ID=12786297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59047831A Expired - Lifetime JPH0746499B2 (en) 1984-03-13 1984-03-13 Sense amplifier circuit

Country Status (1)

Country Link
JP (1) JPH0746499B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5870485A (en) * 1981-10-21 1983-04-26 Nec Corp Memory device
JPS5877091A (en) * 1981-10-30 1983-05-10 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Memory device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5870485A (en) * 1981-10-21 1983-04-26 Nec Corp Memory device
JPS5877091A (en) * 1981-10-30 1983-05-10 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Memory device

Also Published As

Publication number Publication date
JPS60193192A (en) 1985-10-01

Similar Documents

Publication Publication Date Title
JP2816727B2 (en) Single-ended sense amplifier
GB1589414A (en) Fet driver circuits
US4129794A (en) Electrical integrated circuit chips
US4725746A (en) MOSFET buffer circuit with an improved bootstrapping circuit
US4150311A (en) Differential amplifier circuit
US4709172A (en) Input-voltage detector circuit for CMOS integrated circuit
US4621346A (en) Low power CMOS fuse circuit
EP0168246B1 (en) Improved active pull-up circuit
US3997881A (en) Static storage element circuit
JPH022238B2 (en)
JPS6237470B2 (en)
US4521696A (en) Voltage detecting circuit
JPS5941609B2 (en) Complementary MOS circuit device
JPS61277227A (en) High voltage insulation circuit
KR930001401B1 (en) Sense amplifier
JPH0746499B2 (en) Sense amplifier circuit
US4469960A (en) Voltage translating circuit
JPS58105485A (en) Static memory cell
JPH0410159B2 (en)
JPH0746502B2 (en) Sense amplifier circuit
EP0112895B1 (en) A voltage detecting and translating circuit
JPH0344692B2 (en)
JPS63256011A (en) Semiconductor integrated circuit
JPS58137311A (en) Differential source follower circuit
JPH061636B2 (en) Sense amplifier circuit