JPH0735254B2 - Glass electric melting furnace - Google Patents
Glass electric melting furnaceInfo
- Publication number
- JPH0735254B2 JPH0735254B2 JP25269386A JP25269386A JPH0735254B2 JP H0735254 B2 JPH0735254 B2 JP H0735254B2 JP 25269386 A JP25269386 A JP 25269386A JP 25269386 A JP25269386 A JP 25269386A JP H0735254 B2 JPH0735254 B2 JP H0735254B2
- Authority
- JP
- Japan
- Prior art keywords
- glass
- electrodes
- current
- electric
- current path
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B5/00—Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
- C03B5/02—Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
- C03B5/027—Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by passing an electric current between electrodes immersed in the glass bath, i.e. by direct resistance heating
- C03B5/03—Tank furnaces
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Melting And Manufacturing (AREA)
Description
【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、ガラス自体に直接通電して発生するジュール
熱によりガラスを溶融するガラス溶融炉特に溶融時の電
気抵抗の小さいガラスを溶融するのに適したガラス電気
溶融炉に関する。DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Industrial field of application) The present invention relates to a glass melting furnace for melting glass by Joule heat generated by directly energizing the glass itself, and particularly, a small electric resistance during melting. It relates to a glass electric melting furnace suitable for melting glass.
(従来の技術) 従来、ガラス電気溶融炉は溶融槽内に配設された電極を
介して、ガラス自体に直接通電してガラスを溶融するも
のであるが、一般に電極間の電流は最も電気抵抗(以下
抵抗と称す)の小さいところを流れようとするので、電
極間の最短距離である直線的通電路に高密度の電流が流
れる。ガラスは常温では電気絶縁体であるが、温度が高
くなるにつれて抵抗はしだいに小さくなる。このガラス
の比抵抗はガラスの組成によって大きく相違するが、ア
ルカリ酸化物の含有率の大きいガラスのように、比抵抗
の小さいガラスを電気溶融する場合次のような問題点が
ある。(Prior Art) Conventionally, a glass electric melting furnace is one in which the glass itself is directly energized via an electrode arranged in a melting tank to melt the glass. Since an attempt is made to flow in a portion (hereinafter referred to as resistance) having a small value, a high-density current flows in the straight current-carrying path which is the shortest distance between the electrodes. Although glass is an electrical insulator at room temperature, its resistance gradually decreases with increasing temperature. The specific resistance of this glass greatly differs depending on the composition of the glass, but when a glass having a small specific resistance, such as a glass having a large content of alkali oxides, is electrically fused, there are the following problems.
電極間にあるガラスの比抵抗が小さいので、ガラス溶
融時には電極に印加される電圧が低電圧でも大電流が流
れる。ガラスの溶融を進めるのに必要な電力を導入する
ため、印加電圧を高くすると電流が大きくなり、電極の
電流密度も増大する。電極の電流密度が大きくなると、
電極表面の温度が上昇して電極の消耗が急速に進む。電
極の電流密度を下げるために電極の表面積を大きくする
と、電極間の抵抗が低下してさらに電流が流れ易くな
り、問題は解決されない。また、電力供給設備の面から
一定の電力を供給する場合、低電圧・高電流形式の設備
は高電圧・低電流形式の設備に比べて大形となる。Since the specific resistance of the glass between the electrodes is small, a large current flows when the glass is melted even if the voltage applied to the electrodes is low. In order to introduce the electric power required to promote the melting of the glass, the higher the applied voltage is, the larger the current is, and the higher the current density of the electrode is. When the current density of the electrode increases,
The temperature of the electrode surface rises and the consumption of the electrode rapidly progresses. If the surface area of the electrodes is increased in order to reduce the current density of the electrodes, the resistance between the electrodes is reduced and the current flows more easily, and the problem cannot be solved. In addition, when a constant amount of power is supplied from the aspect of power supply equipment, low-voltage / high-current type equipment is larger than high-voltage / low-current type equipment.
電極間の抵抗を大きくするために、電極の相互間隔を
大きくして細長い形の炉にすると、炉壁表面積が溶融槽
容積に対して増大し、放熱量が多くなり、熱交率が著し
く低下する。In order to increase the resistance between the electrodes, if the electrodes are spaced apart from each other to form an elongated furnace, the surface area of the furnace wall increases with respect to the volume of the melting tank, the amount of heat released increases, and the heat exchange rate decreases significantly. To do.
上記の問題点があるため、比抵抗の小さいガラスの電気
溶融は困難とされている。Due to the above problems, it is difficult to electrically melt glass having a low specific resistance.
(発明が解決しようとする問題点) 本発明は上記事情を考慮してなされたもので、ガラス溶
融槽内に配設された電極間のガラスの抵抗を実質的に増
大させることにより、比抵抗の小さなガラスを効率よく
溶融することができるガラス電気溶融炉を提供すること
を目的とする。(Problems to be Solved by the Invention) The present invention has been made in consideration of the above circumstances, and by substantially increasing the resistance of glass between electrodes arranged in a glass melting tank, the specific resistance is increased. It is an object of the present invention to provide a glass electric melting furnace capable of efficiently melting glass having a small size.
(問題点を解決するための手段および作用) 本発明は上記の目的を達成するために、電極間の直線的
通電路を遮断し、この通電路よりも伸長された他の通電
路を設けたものである。たとえば電極間の直線的通電路
を遮り、かつこの通電路よりも伸長された他の通電路に
対応する開口部を有する障壁を設けたガラス電気溶融炉
である。(Means and Actions for Solving Problems) In order to achieve the above object, the present invention cuts off a linear current-carrying path between electrodes and provides another current-carrying path extended from this current-carrying path. It is a thing. For example, it is a glass electric melting furnace provided with a barrier that interrupts a straight current path between electrodes and has a barrier having an opening corresponding to another current path extended from this current path.
(作 用) 本発明のガラス電気溶融炉において、電極間の最短距離
である直線的通電路が、たとえば障壁によって遮断さ
れ、この通電路よりも伸長された通電路、たとえば障壁
の開口部を通る通電路に沿って電流が流れ、電極間のガ
ラスの抵抗が実質的に増大するので、比抵抗の小さいガ
ラスに対しても所要の電力を効率的に導入して溶融する
ことができる。(Operation) In the glass electric melting furnace of the present invention, the shortest distance between the electrodes, that is, the straight current path is interrupted by, for example, a barrier, and passes through a current path extended from this current path, for example, an opening of the barrier. Since a current flows along the current-carrying path and the resistance of the glass between the electrodes is substantially increased, the required electric power can be efficiently introduced and melted even for the glass having a small specific resistance.
(実施例) 本発明の詳細を図示の実施例により説明する。(Examples) The details of the present invention will be described with reference to illustrated examples.
第1図ないし第3図において、ガラス溶融槽(1)の両
側端に炉壁に沿って金属モリブデン製の電極(2)が配
設され、溶融槽(1)のほぼ中央部に電極(2)に並行
してセラミックス製耐火物からなる障壁(3)が設けら
れている。この障壁(3)は槽内を横切って溶融ガラス
(4)のガラスレベル付近から下方へ延び、その下端部
は槽底部との間に通電路となる開口部(5)を形成して
いる。電極(2)の一端部は炉外において、電力供給装
置(図示せず)に連結されている。また溶融槽(1)は
スロート(6)を介して清澄槽(7)に連通している。In FIGS. 1 to 3, electrodes (2) made of metal molybdenum are arranged along both sides of the glass melting tank (1) along the furnace wall, and electrodes (2) are provided almost at the center of the melting tank (1). 2) is provided in parallel with a barrier (3) made of a ceramic refractory. The barrier (3) extends downward from the vicinity of the glass level of the molten glass (4) across the inside of the tank, and the lower end thereof forms an opening (5) serving as an electric path with the bottom of the tank. One end of the electrode (2) is connected to a power supply device (not shown) outside the furnace. The melting tank (1) communicates with the refining tank (7) via the throat (6).
このように構成されたガラス電気溶融炉において、第4
図に示すように、溶融槽(1)内のガラスレベルが障壁
(3)の上端部を越えない状態において炉を稼動させた
場合、電力供給装置によって所定電圧を印加された電極
(2)間の電流は、溶融ガラス(4)内を障壁(3)の
下方の開口部(5)を通過する通電路(8)に沿って流
れる。この通電路(8)は電極(2)間の直線距離のほ
ぼ1.3倍以上となり、電極(2)間の抵抗が増大するの
で、比抵抗の小さいガラスであっても実質的に抵抗が増
大して、ガラス溶融に必要とする適当な抵抗が得られ
る。In the glass electric melting furnace configured as described above, the fourth
As shown in the figure, when the furnace is operated in a state in which the glass level in the melting tank (1) does not exceed the upper end of the barrier (3), between the electrodes (2) to which a predetermined voltage is applied by the power supply device. Current flows through the molten glass (4) along the current path (8) passing through the opening (5) below the barrier (3). This current-carrying path (8) is about 1.3 times the linear distance between the electrodes (2) or more, and the resistance between the electrodes (2) increases. Therefore, even if the glass has a small specific resistance, the resistance is substantially increased. Thus, the appropriate resistance required for glass melting is obtained.
第5図に示すように、溶融槽(1)にガラス原料(9)
を投入し、ガラス原料(9)によりガラスレベルが上昇
して、半溶融ガラス(4)′が障壁(3)の上端部を越
える状態で炉を稼動させた場合、障壁(3)を越えた半
溶融ガラス(4)′にも通電路(8)′が形成され電流
が流れる。この通電路(8)′の半溶融ガラス(4)′
は、下方の溶融ガラス(4)に比べて温度が低く、半溶
融の泡を多量に含んだもので抵抗が大きいので、電極
(2)間の電流が上部の近距離側の通電路(8)′に集
中することはなく、溶融ガラス(4)のガラスレベルを
調節することにより、導入された電力の一部を上部の発
熱に使用することができ、ガラス原料(9)の融解を促
進させる効果がある。As shown in FIG. 5, the glass raw material (9) is placed in the melting tank (1).
Was charged, and the glass level was raised by the glass raw material (9), and when the furnace was operated in a state in which the semi-molten glass (4) 'exceeded the upper end of the barrier (3), it exceeded the barrier (3). A current path (8) 'is also formed in the semi-molten glass (4)', and an electric current flows. Semi-molten glass (4) 'in this energizing path (8)'
Has a lower temperature than the lower molten glass (4) and contains a large amount of semi-molten bubbles and has a large resistance, so that the current between the electrodes (2) is at the upper short-distance side current path (8). ) ′ Is not concentrated, but by adjusting the glass level of the molten glass (4), a part of the introduced electric power can be used for the heat generation of the upper part, and the melting of the glass raw material (9) is promoted. Has the effect of
次に第6図および第7図は本発明の他の実施例であっ
て、溶融槽(1)の一側端に炉壁に沿って電極(2)が
配設され、溶融槽(1)のほぼ中央部に同電極(2)を
区分するように障壁(3)が設けられている。この障壁
(3)は溶融ガラス(4)のガラスレベル付近から槽底
部まで達し、その一側端部は炉壁との間に通電路となる
開口部(5)を形成してる。このガラス電気溶融炉にお
いて、電極(2)間の電流は障壁(3)の側方の開口部
(5)を通って流れるので、前記実施例と同様の効果が
得られる。Next, FIG. 6 and FIG. 7 show another embodiment of the present invention, in which the electrode (2) is arranged along one side wall of the melting tank (1) along the furnace wall. A barrier (3) is provided at approximately the center of the electrode so as to divide the electrode (2). This barrier (3) reaches from the vicinity of the glass level of the molten glass (4) to the bottom of the tank, and one end of the barrier (3) forms an opening (5) serving as an electric conduction path with the furnace wall. In this glass electric melting furnace, the current between the electrodes (2) flows through the opening (5) on the side of the barrier (3), so that the same effect as in the above embodiment can be obtained.
以上のように本発明は、ガラス溶融槽内に配設された電
極間の直線的通電路を遮断し、この通電路よりも伸長さ
れた他の通電路を設けてなるガラス電気溶融炉であり、
通電路の伸長により電極間のガラスの抵抗が増大するの
で、導入電力を高電圧・低電流で供給することができ、
アルカル酸化物の含有率の大きいガラスのように比抵抗
の小さいガラスを、効率よく溶融することができる利点
がある。INDUSTRIAL APPLICABILITY As described above, the present invention is a glass electric melting furnace which interrupts a linear current-carrying path between electrodes arranged in a glass-melting tank and is provided with another current-carrying path extended from this current-carrying path. ,
Since the resistance of the glass between the electrodes increases due to the extension of the current-carrying path, the introduced power can be supplied at high voltage and low current,
There is an advantage that a glass having a small specific resistance such as a glass having a high content rate of an alcal oxide can be efficiently melted.
第1図は本発明の実施例を示す平面図、第2図は第1図
のA−A断面図、第3図は第1図のB−B断面図、第4
図はガラス溶融時の通電状態を示す断面図、第5図はガ
ラス原料投入時の通電状態を示す断面図、第6図は本発
明の他の実施例を示す平面図、第7図は第6図のC−C
断面図である。 1……溶融槽、2……電極、3……障壁、5……開口
部、8……通電路1 is a plan view showing an embodiment of the present invention, FIG. 2 is a sectional view taken along line AA of FIG. 1, FIG. 3 is a sectional view taken along line BB of FIG. 1, and FIG.
FIG. 5 is a sectional view showing an energized state during melting of glass, FIG. 5 is a sectional view showing an energized state during charging of glass raw materials, FIG. 6 is a plan view showing another embodiment of the present invention, and FIG. 6 C-C
FIG. 1 ... Melting tank, 2 ... Electrode, 3 ... Barrier, 5 ... Opening, 8 ... Current path
Claims (2)
ガラス自体に直接通電して発生するジュール熱によりガ
ラスを溶融するガラス電気溶融炉において、前記電極間
の直線的通電路を遮断し、この通電路よりも伸長された
他の通電路を設けたことを特徴とするガラス電気溶融
炉。1. A glass electric melting furnace in which glass is melted by Joule heat generated by directly energizing the glass itself through an electrode arranged in a glass melting tank, and a linear current path between the electrodes is cut off. However, the glass electric melting furnace is characterized in that another electric current path extended from this electric current path is provided.
の通電路よりも伸長された他の通電路に対応する開口部
を有する障壁を設けたことを特徴とする特許請求の範囲
第1項に記載のガラス電気溶融炉。2. A barrier for blocking a linear current path between the electrodes and having a barrier having an opening corresponding to another current path extended from the current path. The electric glass melting furnace according to item 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25269386A JPH0735254B2 (en) | 1986-10-23 | 1986-10-23 | Glass electric melting furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25269386A JPH0735254B2 (en) | 1986-10-23 | 1986-10-23 | Glass electric melting furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63107820A JPS63107820A (en) | 1988-05-12 |
JPH0735254B2 true JPH0735254B2 (en) | 1995-04-19 |
Family
ID=17240932
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25269386A Expired - Lifetime JPH0735254B2 (en) | 1986-10-23 | 1986-10-23 | Glass electric melting furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0735254B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7138819B1 (en) * | 2022-06-22 | 2022-09-16 | 株式会社オリジン | Angular position holding device |
-
1986
- 1986-10-23 JP JP25269386A patent/JPH0735254B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7138819B1 (en) * | 2022-06-22 | 2022-09-16 | 株式会社オリジン | Angular position holding device |
Also Published As
Publication number | Publication date |
---|---|
JPS63107820A (en) | 1988-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0148197B1 (en) | Electric glass melting furnace | |
JPS6128914B2 (en) | ||
US2255578A (en) | Electric furnace | |
US5062118A (en) | Electric melting furnace for vitrifying waste | |
JPH0735254B2 (en) | Glass electric melting furnace | |
US3842180A (en) | Apparatus and method for starting an electric glass melting furnace | |
US2559683A (en) | Electric enamel furnace | |
US9247586B2 (en) | Unit for conductively heatable melting | |
US4737966A (en) | Electric melter for high electrical resistivity glass materials | |
US4514851A (en) | Arc circuit electrodes for arc glass-melting furnace | |
US4927446A (en) | Glass melting furnace | |
US3565994A (en) | Electrode slag melting method | |
US513270A (en) | August friedrich wilhelm kreinsen | |
US4162152A (en) | Molten glass metering device for making lamp bases | |
GB1146031A (en) | Electric furnaces | |
JPS6025370B2 (en) | glass electric melting furnace | |
US3736359A (en) | Electric furnace | |
JPS6049593A (en) | Heater for molten metal by plasma arc | |
JPH03147289A (en) | Eccentric furnace bottom steel-out type dc arc furnace | |
JPS5775265A (en) | Pouring nozzle for molten metal | |
AU705587B2 (en) | Method and furnace for making a molten product | |
JP3494493B2 (en) | Electrode structure of electric melting furnace | |
CN110167226A (en) | A kind of double electrode direct current arc furnace arc initiation device and its method | |
JPH0342019Y2 (en) | ||
JPH054820A (en) | Vitrification of metallic foreign matter generated by reaction with molybdenum electrode in molten glass |