JPS6049593A - Heater for molten metal by plasma arc - Google Patents
Heater for molten metal by plasma arcInfo
- Publication number
- JPS6049593A JPS6049593A JP58157327A JP15732783A JPS6049593A JP S6049593 A JPS6049593 A JP S6049593A JP 58157327 A JP58157327 A JP 58157327A JP 15732783 A JP15732783 A JP 15732783A JP S6049593 A JPS6049593 A JP S6049593A
- Authority
- JP
- Japan
- Prior art keywords
- plasma arc
- molten metal
- anode
- power supply
- plasma
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Discharge Heating (AREA)
- Vertical, Hearth, Or Arc Furnaces (AREA)
- Furnace Details (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
産業上の利用分野
この発明はプラズマアークによる溶融金属の加熱装置に
おける給電電極の構成・配置に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to the structure and arrangement of a power supply electrode in a heating device for molten metal using a plasma arc.
従来技術
溶融金属、例えば溶鋼の加熱に近年プラズマ・アーク加
熱が用いられる様になってきた。プラズマ・アーク加熱
装置は基本的には電源負側に接続され、溶融金属との間
にプラズマ・アークを発生させるプラズマ・トーチ(陰
極)°と電源正側と該溶融金属間に電流導通路を形成す
る為の給電電極(陽極)とを備えたものである。BACKGROUND OF THE INVENTION In recent years, plasma arc heating has come to be used to heat molten metals, such as molten steel. Plasma arc heating equipment is basically connected to the negative side of a power supply and creates a current conduction path between the plasma torch (cathode) that generates a plasma arc between the molten metal and the positive side of the power supply and the molten metal. It is equipped with a power supply electrode (anode) for forming the electrode.
所が、従来の陽極は溶解炉などの固定炉にあっては、炉
底にカーボンレンガ(導電性)を付設し、これにリード
線を接続して電流経路を形成する方式や、炉底の一部を
レンガの代りに被加熱溶融金属と同材質の金属で形成し
、これを炉底よシ外部に出し、これにリード線を接続し
て電流経路を形成する方式が採用されていた。However, conventional anodes are used in fixed furnaces such as melting furnaces, where a carbon brick (conductive) is attached to the bottom of the furnace and a lead wire is connected to this to form a current path. A method was adopted in which a part of the furnace was made of the same metal as the molten metal to be heated instead of bricks, and this was brought out from the bottom of the furnace, and a lead wire was connected to it to form a current path.
ところが、上記の両方式には次の如き問題点があった。However, both of the above formulas have the following problems.
即ち、周知の連続鋳造用タンディツシュにおいては、上
記の固定炉に比較して本体の交換頻度が多い上、レンガ
の積替え頻度も多く、その都度陽極の更新が必要であシ
、ランニングコストを上昇させると共に、タンディツシ
ュの交換レンj積み等全ての作業を複雑にする。この様
なことから、タンディツシュの場合溶融金属の上部よシ
浸漬するタイプの陽極の方が有利である。That is, in the well-known continuous casting tundish, the main body has to be replaced more frequently than in the above-mentioned fixed furnace, and the bricks have to be reloaded more frequently, and the anode needs to be replaced each time, which increases running costs. At the same time, it complicates all operations such as changing and stacking tanditsh. For this reason, it is more advantageous to use an anode of the type that is immersed above the molten metal in the case of a tundish.
しかしながら、上部浸漬型陽極では、炉底電極の如くプ
ラズマ・アーク直下よシ給電する事が不可能となシ、第
1図に示す様に陽極1を流れる電流によ多形成される磁
界の作用でプラズマ・アーク2が陽極1と離れる方向に
偏向する。図中3はプラズマ・トーチ、4は溶融金属、
5は電絶、6はケーブル線を示す。However, with the top immersion type anode, it is impossible to supply power from directly below the plasma arc as with the bottom electrode, and as shown in Figure 1, the effect of the magnetic field formed by the current flowing through the anode 1. , the plasma arc 2 is deflected away from the anode 1. In the figure, 3 is a plasma torch, 4 is a molten metal,
5 indicates an electrical disconnection, and 6 indicates a cable line.
通常、プラズマ・アークによる溶融金属の加熱において
は、雰囲気コントロールによる該溶融金属の汚染防止や
プラズマ・アークの輻射エネルギの有効利用を図る為、
プラズマ・アークは閉されり室(加熱室)内で発生させ
るが、プラズマ・アークの偏向によシ加熱室内壁の一部
が平均温度3000°に以上の高温に直接さらさhる事
になる。Normally, when heating molten metal with a plasma arc, in order to prevent contamination of the molten metal by controlling the atmosphere and to effectively utilize the radiant energy of the plasma arc,
The plasma arc is generated in a closed chamber (heating chamber), but due to the deflection of the plasma arc, a part of the inner wall of the heating chamber is directly exposed to high temperatures with an average temperature of 3000° or more.
この結果、加熱室内壁の耐火物が溶は落ち、溶融金属を
汚染すると云う問題が発生する。As a result, a problem arises in that the refractories on the walls of the heating chamber fall off and contaminate the molten metal.
発明の目的・構成・作用
本発明は上記の様な上部浸漬型1場極の欠点を除去する
為になされたもので、複数の上部浸漬型陽極を用い、ト
ーチ直下、すなわちトーチ下端からトーチ鉛直下の溶融
金属に至るまでの区間において、各陽極に導通する電流
により作られる磁界のプラズマ・アークに及はす力の総
和が実質上零となる様に上記上部浸漬型陽極を構成・配
置する事によってプラズマ・アークの偏向を防止するこ
とを特徴とするものである。Purpose, Structure, and Function of the Invention The present invention has been made in order to eliminate the drawbacks of the above-mentioned upper immersion type one-field electrode. The above-mentioned upper immersion type anode is configured and arranged so that the sum of the forces exerted on the plasma arc by the magnetic field created by the current flowing through each anode is substantially zero in the section up to the molten metal below. It is characterized by preventing deflection of the plasma arc.
まず、本発明における複数陽極に導電する電流によシ作
られる磁界のプラズマ・アークに及ぼす力の総和を零七
する為の考え方について述べる。First, a concept for reducing the sum of the forces exerted on the plasma arc by the magnetic field created by the currents conducted to the plurality of anodes in the present invention will be described.
N個の陽極をal+a’!+・・・+ IINとし、溶
融金属面に平行な面を考え、トーチ直下を原点としてこ
れらの陽極の面上の位置ベクトルvil−r、、 r2
゜・・・、rN、その陽極に導通する電流をil ・i
2・・・・、iNとする。陽極aKを流れる電流輸がア
ークに及ばす力fえを反発力側を正にとると次式の様に
表わされる。N anodes al+a'! +...+ IIN and considering a plane parallel to the molten metal surface, the position vectors on the plane of these anodes with the origin directly below the torch as vil-r,, r2
゜..., rN, the current conducted to its anode is il ・i
2..., iN. If the force f exerted on the arc by the current flowing through the anode aK is taken to be positive on the repulsive force side, it can be expressed as in the following equation.
ここでα、は比例定数である。従ってN個の陽極による
力の総和が零となる事は次式の成立を意味するO
ここでΣ輸NOであシ、αえは実質上同一とみなせる為
、N個の陽極によってプラズマ・アークが受ける力の総
和を零とする為には次式が成立たねばならない。Here α is a proportionality constant. Therefore, the sum of the forces due to N anodes is zero, which means that the following equation holds true. Here, Σ is considered to be NO, and α is essentially the same, so N anodes cause plasma arc In order to make the sum of the forces applied to zero, the following equation must hold.
従って(3)式を満す様に1場極aKの位置rKあるい
はaKを流れる電流iKを設定する事によりプラズマ・
アークの偏向を防止する事が出来る。Therefore, by setting the position rK of the first field pole aK or the current iK flowing through aK so as to satisfy equation (3), the plasma
Arc deflection can be prevented.
実施例
以下本発明を第2図乃至第4図に示す実施例により詳細
に説明する。EXAMPLES The present invention will be explained in detail with reference to examples shown in FIGS. 2 to 4.
本発明の1実施例を示す第2図において7はシールドタ
ンディッシー、8はその中に貯えられた溶鋼を示してい
る。9はタンディツアーの蓋で、その蓋9の一部に加熱
室1oが設けられ、その下端は溶鋼中に浸漬している。In FIG. 2 showing one embodiment of the present invention, 7 indicates a shield tank, and 8 indicates molten steel stored therein. Reference numeral 9 denotes a lid of the tandy tour, and a heating chamber 1o is provided in a part of the lid 9, the lower end of which is immersed in molten steel.
11は加熱室1oの天井部に設けられたプラズマ・アー
ク発生用のプラズマ・トーチ、12.13は上部浸漬型
の陽極を示している。この例では、2本の陽極がトーチ
に対して点対称に配置されている為、偏向のないプラズ
マ・アークを得る為の条件は陽極12.13を流れる電
流をそれぞれits l IllとするとIll”II
Sとする事である。陽極12.13に分流する電流の比
率を決定する要因は、ケーブル16、溶鋼8の電気抵抗
が実質上零であるから、陽極12.13自体の抵抗であ
シ、この例では同一抵抗であればIII”IIIとなる
。従って、陽極12.13は同一材質、同一サイズのも
のを用いれば良い。Reference numeral 11 indicates a plasma torch for generating a plasma arc provided on the ceiling of the heating chamber 1o, and reference numerals 12 and 13 indicate an upper immersion type anode. In this example, since the two anodes are arranged point-symmetrically with respect to the torch, the conditions for obtaining an undeflected plasma arc are as follows: where the current flowing through the anodes 12 and 13 is its l Ill, respectively. II
It is to be S. Since the electric resistance of the cable 16 and the molten steel 8 is virtually zero, the factor that determines the ratio of the current shunted to the anode 12.13 is the resistance of the anode 12.13 itself, and in this example, even if the resistance is the same. Therefore, the anodes 12 and 13 may be made of the same material and have the same size.
第3図は本発明の他の実施例を示すもので陽極を除いて
第2図と同等である。同図の例では2本の陽極とトーチ
とを上からみた時、−直線上にあるが、トーチと陽極1
9との距離r19とトーチと陽極20との距離rzoと
が設備の取合い上異なシ、r!9: r2゜=1十α:
1となっている。この時、(2)向のないプラズマ・ア
ークを得る為の条件は、陽極19.20を流れる電流を
それぞれ$111 + $20とすると、(3)式によ
シjte : 1zo−(1+α)2:1 となる。2
つの陽極にこの比で電流を分流させる為には陽極19.
20の抵抗をそれぞれR1G r R2。FIG. 3 shows another embodiment of the present invention, which is the same as FIG. 2 except for the anode. In the example in the figure, when the two anodes and the torch are viewed from above, they are on a - straight line, but the torch and the anode 1
9 and the distance rzo between the torch and the anode 20 are different due to the arrangement of the equipment, r! 9: r2゜=10α:
It is 1. At this time, the conditions for obtaining a plasma arc without direction (2) are as follows from equation (3), assuming that the currents flowing through the anodes 19 and 20 are $111 + $20, respectively. The ratio will be 2:1. 2
In order to divide the current into two anodes at this ratio, anode 19.
20 resistors R1G r R2 respectively.
とすると、R19: R20=1 : (1+α)2と
すれば良い。Then, R19: R20=1: (1+α)2.
これを実現する一つの手段として、陽極に均質円柱形状
のものを用いるとして陽極19.20の直径をDlG
+ 0110 とした時、Dzo : Dzo = 1
+α二1を満す陽極を用いる事が出来る。One way to achieve this is to use a homogeneous cylindrical anode and set the diameter of the anode 19.20 to DlG.
+0110, Dzo: Dzo = 1
An anode satisfying +α21 can be used.
第4図は更に他の実施例を示す。この図は装置を溶融金
属上よシ見たもので、25は容器、26は溶融金属、2
1はプラズマ・トーチ、22.23および24は陽極を
示している。この例では、3本の陽極がプラズマ・トー
チに対して任意の位置に存在しているものとする。陽極
22,23.24を流れる電流$22 r z*s l
124それぞれがプラズマ・アークに及ぼす力をfx
z (i2z ) I f23 (j2s )+f24
(tz4)とすれば、(3)式によシfat C62z
)十fzs (jzs) 十、fa4(iz4)= 0
を満す様に各陽極を流れる電流を調整する事によって、
偏向のないプラズマ・アークが得られる。これを実現す
る為には各陽極の材質、断面積等を変えて、各陽極の抵
抗値を調整すれi良い。FIG. 4 shows yet another embodiment. This figure is a top view of the apparatus for molten metal, 25 is a container, 26 is molten metal, 2
1 is a plasma torch, 22, 23 and 24 are anodes. In this example, it is assumed that three anodes are located at arbitrary positions with respect to the plasma torch. Current flowing through the anodes 22, 23.24 $22 r z*s l
124, the force that each exerts on the plasma arc is fx
z (i2z) I f23 (j2s)+f24
(tz4), then by equation (3) fat C62z
) ten fzs (jzs) ten, fa4 (iz4) = 0
By adjusting the current flowing through each anode to satisfy
A plasma arc without deflection is obtained. To achieve this, the resistance value of each anode can be adjusted by changing the material, cross-sectional area, etc. of each anode.
この様に本発明で云う給電電極(陽極)′(+:構成・
配置するとは、複数陽極の設置位置を調整する、陽極通
電路の断面積を各陽極毎に調節する、陽極材質を各陽極
毎に調節する、のいずれかの手段を適当に組合せる事を
意味する。In this way, the power supply electrode (anode)' (+: configuration/
Arranging means to appropriately combine the following methods: adjusting the installation position of multiple anodes, adjusting the cross-sectional area of the anode energization path for each anode, and adjusting the anode material for each anode. do.
発明の効果
以上、詳細に説明した如く、本発明によれば、上部浸漬
型陽極の欠点であった、プラズマ・アークの偏向が解消
せられ、操作性・整備性に優れた上部浸漬型陽極を問題
点なく使用する事ができ、低ランニングコストのプラズ
マ・アーク加熱を行なうことができる。Effects of the Invention As explained in detail above, according to the present invention, the deflection of the plasma arc, which was a drawback of the top immersion type anode, is eliminated, and a top immersion type anode with excellent operability and maintainability is provided. It can be used without any problems and can perform plasma arc heating with low running costs.
第1図は1本の上部浸漬型陽40(を用いた場合に発生
するプラズマ・アークの偏向現象を示す図、第2図、第
3図および第4図は本発明の実施例を示す説明図である
。
l・・・陽極 2・・・プラズマ・アーク3・・・プラ
ズマ・トーチ 4・・・溶融金属5・・・電源 6・・
・ケーブル線
7・・・シールドタンディツシュ
8・・・溶鋼 9 ・・タンディツシュの蓋10・・・
加熱室 11・・・プラズマ・トーチ12.13・・・
陽極 14・・・プラズマ・アーク15・・・電源 1
6・・・ケーブル線17・・・浸漬ノズル 18・・・
ロングノズル19.20・・・陽極 21・・・〕0ラ
ズマ・トーチ22.23.24・・・陽極
25・・・容器 26・・・溶鋼
45FIG. 1 is a diagram showing the deflection phenomenon of the plasma arc that occurs when one upper immersion type positive 40 is used. FIGS. 2, 3, and 4 are illustrations showing embodiments of the present invention It is a diagram. l... Anode 2... Plasma arc 3... Plasma torch 4... Molten metal 5... Power source 6...
・Cable line 7... Shield tundish 8... Molten steel 9...Tandish lid 10...
Heating chamber 11...Plasma torch 12.13...
Anode 14...Plasma arc 15...Power supply 1
6... Cable line 17... Immersion nozzle 18...
Long nozzle 19.20... Anode 21...]0 Lasma torch 22.23.24... Anode 25... Container 26... Molten steel 45
Claims (1)
る事によシ溶融金属と電源正側との導通経路を構成し、
電源負側に接続さhたプラズマ・トーチと該溶融金属と
の間に発生させたプラズマ・アークによって該溶融金属
を加熱する装置において、前記、複数の給電電極を、各
給電電極に導通する電流によシ形成される磁界のプラズ
マ・アークに及ばず力の総和がプラズマ・トーチ直下に
おいて実質上零となる様に構成・配置する事を特徴トス
る、プラズマ・アークによる溶融金属の加熱装置。By immersing multiple power supply electrodes above the molten metal in the container, a conduction path between the molten metal and the positive side of the power source is constructed,
In the apparatus for heating the molten metal by a plasma arc generated between the molten metal and a plasma torch connected to the negative side of the power supply, the current flowing through the plurality of power supply electrodes to each of the power supply electrodes. A device for heating molten metal using a plasma arc, which is characterized by being constructed and arranged so that the magnetic field formed by the plasma arc does not reach the plasma arc, and the sum of the forces becomes substantially zero immediately below the plasma torch.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58157327A JPS6049593A (en) | 1983-08-29 | 1983-08-29 | Heater for molten metal by plasma arc |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58157327A JPS6049593A (en) | 1983-08-29 | 1983-08-29 | Heater for molten metal by plasma arc |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6049593A true JPS6049593A (en) | 1985-03-18 |
JPH0452599B2 JPH0452599B2 (en) | 1992-08-24 |
Family
ID=15647269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58157327A Granted JPS6049593A (en) | 1983-08-29 | 1983-08-29 | Heater for molten metal by plasma arc |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6049593A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6345895A (en) * | 1986-08-12 | 1988-02-26 | 昭和アルミニウム株式会社 | Manufacture of aluminium circuit substrate |
JPS63141291A (en) * | 1986-12-01 | 1988-06-13 | 石川島播磨重工業株式会社 | Dc arc furnace |
JPS63168072A (en) * | 1986-12-27 | 1988-07-12 | 住友ベークライト株式会社 | Metal base printed circuit substrate |
JPH05191001A (en) * | 1991-02-26 | 1993-07-30 | Sky Alum Co Ltd | Board for printed wiring and manufacture thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002283016A (en) * | 2001-03-23 | 2002-10-02 | Nippon Steel Corp | Device for heating molten steel in tundish using plasma torch |
-
1983
- 1983-08-29 JP JP58157327A patent/JPS6049593A/en active Granted
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6345895A (en) * | 1986-08-12 | 1988-02-26 | 昭和アルミニウム株式会社 | Manufacture of aluminium circuit substrate |
JPS63141291A (en) * | 1986-12-01 | 1988-06-13 | 石川島播磨重工業株式会社 | Dc arc furnace |
JPS63168072A (en) * | 1986-12-27 | 1988-07-12 | 住友ベークライト株式会社 | Metal base printed circuit substrate |
JPH05191001A (en) * | 1991-02-26 | 1993-07-30 | Sky Alum Co Ltd | Board for printed wiring and manufacture thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH0452599B2 (en) | 1992-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5132984A (en) | Segmented electric furnace | |
EP0474883B1 (en) | Dc electric furnace for melting metal | |
CA2135496C (en) | Dc arc furnace | |
JPS6049593A (en) | Heater for molten metal by plasma arc | |
GB1579562A (en) | Furnace and method for melting metallic material | |
JP2940134B2 (en) | Dc arc furnace | |
KR970011550B1 (en) | Dc arc furnace and operation method | |
JPS63259013A (en) | Dc electric furnace for melting waste iron | |
TW213955B (en) | ||
JPS60188789A (en) | Method of dissolving material and direct current arc furnace | |
US6137822A (en) | Direct current arc furnace and a method for melting or heating raw material or molten material | |
US5189682A (en) | Method for increasing the efficiency of a direct current electric arc furnace | |
JP2624419B2 (en) | DC arc furnace power supply method | |
ATE107118T1 (en) | METALLURGICAL VESSEL WITH AT LEAST ONE ELECTRODE GOING THROUGH THE BOTTOM WALL. | |
US3524040A (en) | Gas shielded arc torch | |
US932986A (en) | Transforming smelting-furnace. | |
RU2097947C1 (en) | Dc electric arc furnace and its functioning | |
JP3095460B2 (en) | DC electric furnace with top and bottom electrodes | |
JP2650670B2 (en) | DC electric furnace with air-cooled bottom electrode | |
JPH0720554Y2 (en) | Bottom structure of DC arc furnace | |
JP2656424B2 (en) | Arc control method for continuous scrap charging type DC arc furnace. | |
EP0805326B1 (en) | Pour Spout for use in an electric furnace used to melt materials | |
JPH03181786A (en) | Dc arc furnace | |
JPS59105840A (en) | Anode structure for plasma arc heating | |
JPH03140791A (en) | Dc arc furnace |