[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0733017A - Jointed vehicle for forming train - Google Patents

Jointed vehicle for forming train

Info

Publication number
JPH0733017A
JPH0733017A JP18367193A JP18367193A JPH0733017A JP H0733017 A JPH0733017 A JP H0733017A JP 18367193 A JP18367193 A JP 18367193A JP 18367193 A JP18367193 A JP 18367193A JP H0733017 A JPH0733017 A JP H0733017A
Authority
JP
Japan
Prior art keywords
vehicle body
vehicle
tunnel
leading
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18367193A
Other languages
Japanese (ja)
Inventor
Hiroshi Higaki
博 檜垣
Morishige Hattori
守成 服部
Masato Okazaki
正人 岡崎
Haruo Hirakawa
治生 平川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18367193A priority Critical patent/JPH0733017A/en
Publication of JPH0733017A publication Critical patent/JPH0733017A/en
Pending legal-status Critical Current

Links

Landscapes

  • Body Structure For Vehicles (AREA)

Abstract

PURPOSE:To reduce air pressure sound at exit of a tunnel, which is a problem caused by speed increase of rolling stocks. CONSTITUTION:A body sectional equivalent radius of front vehicle 2 at each end of a train decrease linearly from the position of connection toward the front position. And also, body width decreases toward the front position in between trucks of front and of rear position. Pressure gradient of wave front in compressed wave at entry of a tunnel thus becomes gradual at the time of entering the tunnel. Accordingly, air pressure sound at exit of the tunnel, due to a maximum pressure gradient of wave front in compressed air at entry of the tunnel in entering the tunnel, is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、編成車両に係り、特に
高速でトンネル内を走行するにものに好適な編成車両に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rolling stock, and more particularly to a rolling stock suitable for running in a tunnel at high speed.

【0002】[0002]

【従来の技術】高速車両のトンネル突入時に生じる圧縮
波がトンネル内を伝播し、その一部がトンネル出口から
放射されて生じる空気圧音(微気圧波)の低減方法とし
ては、特公昭55−31274号公報に記載のように、
トンネル入口に開口断面の大きさがトンネルよりも大き
く、長さがトンネルの直径より大なるフ−ドをその側面
に開口部を設けて設置するものが知られている。このフ
ードによって列車のトンネル突入により発生する圧縮波
の圧力勾配を緩やかにすることにより、該圧縮波がトン
ネル内を伝播後トンネル出口から放射されて生じる空気
圧音を低減するものである。
2. Description of the Related Art As a method of reducing air pressure noise (micro-pressure wave) generated when a compression wave generated when a high-speed vehicle enters a tunnel propagates in the tunnel and a part of the compression wave is radiated from the tunnel exit, Japanese Patent Publication No. 55-31274. As described in the publication,
It is known that a hood having an opening cross section larger than the tunnel and a length larger than the diameter of the tunnel is installed at the entrance of the tunnel by providing an opening on the side surface thereof. The hood reduces the pressure gradient of the compression wave generated by the train entering the tunnel, thereby reducing the air pressure noise generated by the compression wave radiating from the tunnel exit after propagating in the tunnel.

【0003】この空気圧音の大きさは、トンネル出口に
到達した圧縮波の波面の圧力勾配に比例し、かつ、突入
時のトンネル入口における圧縮波の波面の圧力勾配は、
車両のトンネル突入速度Vの3乗に比例するという性質
を有している。
The magnitude of this pneumatic pressure sound is proportional to the pressure gradient of the wave front of the compression wave reaching the tunnel exit, and the pressure gradient of the wave front of the compression wave at the tunnel entrance at the time of entry is
It has the property of being proportional to the cube of the vehicle entry speed V.

【0004】[0004]

【発明が解決しようとする課題】上記従来技術によれ
ば、車両断面積とトンネル断面積の比率Rが0.21程
度の場合の組合せにおいて、長さ22mのフ−ドの設置
により240km/h程度までの対策が可能であり、さ
らに、250km/hを超える速度向上に対しても、フ
−ドの長さの延長により、ある程度の対応が可能であ
る。しかし、車両突入時のトンネル入口における圧縮波
の波面の圧力勾配は、該車両のトンネル突入速度Vの3
乗に比例して増大するため、240km/hでの突入時
のトンネル入口における圧縮波の波面の圧力勾配を基準
とすると、300km/hで約2倍、350km/hで
は約3倍の圧力勾配となり、フ−ドの長さの延長による
対策だけでは十分な対策が困難であるという課題があっ
た。また、トンネル坑口周辺の立地条件によってはフ−
ドの建設あるいは、延長が困難な場合が生じるという課
題があった。
According to the above-mentioned prior art, in a combination in which the ratio R of the vehicle cross-section area to the tunnel cross-section area is about 0.21, 240 km / h is obtained by installing a hood having a length of 22 m. It is possible to take measures up to a certain degree, and it is possible to cope with speed improvement exceeding 250 km / h to some extent by extending the length of the hood. However, the pressure gradient of the wave front of the compression wave at the tunnel entrance at the time of vehicle entry is 3 times the tunnel entry speed V of the vehicle.
Since it increases in proportion to the power, the pressure gradient of the wave front of the compression wave at the tunnel entrance at the time of entry at 240 km / h is about 2 times at 300 km / h, and about 3 times at 350 km / h. Therefore, there is a problem that it is difficult to take sufficient measures only by increasing the length of the hood. Also, depending on the location conditions around the tunnel entrance,
There was a problem that it might be difficult to construct or extend the cable.

【0005】本発明の目的は、トンネル突入により発生
した圧縮波がトンネル出口から放射されて生じる空気圧
音を低減し得る編成車両を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a rolling stock vehicle capable of reducing the pneumatic noise generated when the compression wave generated by the tunnel entry is radiated from the tunnel exit.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、編成における両端の先頭車の車体断面等価半径を連
結部から先頭部へ向けて直線状に減少させるとともに、
前位・後位台車間において車体幅寸法が先頭部に向けて
減少するように構成した編成車両としたものである。
In order to achieve the above object, the body cross-sectional equivalent radius of the leading cars at both ends in the formation is linearly reduced from the connecting portion to the leading portion, and
This is a formation vehicle configured such that the width of the vehicle body decreases between the front and rear bogies toward the front portion.

【0007】また、上記目的を達成するために、両端の
先頭車の車体高さ寸法及び車体幅寸法を連結部から先頭
部へ向けて直線状に減少させて構成して編成車両とした
ものである。
Further, in order to achieve the above object, the vehicle body height and width of the leading vehicles at both ends are linearly reduced from the connecting portion to the leading portion to form a rolling stock. is there.

【0008】さらに、上記目的を達成するために、複数
の車両を連結してなる編成車両において、車体幅方向の
車体寸法が異なる車両を連結しており、車体幅寸法を車
体長手方向について変化させて車体断面等価半径を車体
幅寸法の大きな車両側へ向かって直線的に増大させた車
両を、前記車体幅寸法の異なる車両間に配置したことを
特徴とするものである。
Further, in order to achieve the above object, in a formation vehicle in which a plurality of vehicles are connected, vehicles having different vehicle body sizes in the vehicle body width direction are connected, and the vehicle body width dimension is changed in the vehicle body longitudinal direction. A vehicle in which the vehicle body cross-section equivalent radius is linearly increased toward a vehicle having a large vehicle body width dimension is arranged between vehicles having different vehicle body width dimensions.

【0009】[0009]

【作用】上記いずれの構成においても、編成車両におけ
る先頭車の車体断面等価半径を連結部から先頭部に向け
て直線状に減少させるとともに、前位・後位台車間にお
いて車体幅寸法が先頭部に向けて減少するように構成す
ることにより、先端部近傍における車体断面積の変化率
を小さく抑えられるため、列車がトンネルに突入した場
合のトンネル入口における圧縮波の圧力上昇を緩やかに
形成できる。また、車体断面寸法が異なる車両間に、車
体幅寸法を変化させ車体断面等価半径を車体断面寸法の
大きな車両側へ向かって直線的に増大させた車両を配置
して、編成車両を構成したものである。それにより突入
時のトンネル入口における圧縮波の波面の最大圧力勾配
が小さくなり、その結果、突入時のトンネル入口におけ
る圧縮波の波面の最大圧力勾配に依存して発生するトン
ネル出口からの空気圧音が低減される。
In any of the above constructions, the body cross-sectional equivalent radius of the lead car of the train is linearly reduced from the connecting portion to the lead portion, and the width of the car body between the front and rear bogies is reduced to the lead portion. Since the change rate of the vehicle body cross-sectional area in the vicinity of the tip portion can be suppressed to be small by configuring so as to decrease toward, the pressure rise of the compression wave at the tunnel entrance when the train enters the tunnel can be gently formed. Further, between the vehicles having different vehicle body cross-sectional dimensions, the vehicle having the vehicle body width dimension changed to linearly increase the vehicle body cross-sectional equivalent radius toward the vehicle having the larger vehicle body cross-sectional dimension is arranged to form a formation vehicle. Is. As a result, the maximum pressure gradient of the wave front of the compression wave at the entrance of the tunnel at the time of entry becomes small, and as a result, the air pressure noise from the tunnel exit that depends on the maximum pressure gradient of the wave front of the compression wave at the entrance of the tunnel at entry is generated. Will be reduced.

【0010】[0010]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1は本発明の第1実施例を示す正面図、図2は
本発明の第1実施例を示す平面図である。図1及び図2
において、1は編成車両における両端の先頭車、2aは
編成車両における先頭車1に続く中間車、3aは先頭車
1と中間車2aの連結部、6は先頭車1の先端部、4は
先頭側の前位台車中心位置、5は連結部3a寄りの後位
台車中心位置である。ここで、先頭車1の車体高さ寸法
及び車体幅寸法はともに、連結部3aから先頭車1の先
端部6に向かって直線状に減少するとともに、前位台車
中心位置4と後位台車中心位置5の間において車体幅が
先端部6に向けて減少するように形成しており、車体高
さ寸法については、先端部6の近傍A点を基点として、
勾配が(1/KH1)と(1/KH2)の2つの直線で
近似し、さらに、車体幅寸法については、先端部6近傍
A点を基点とし、勾配が(1/KW1)と(1/KW
2)の2つの直線で近似することにより、車体等価半径
Rを連結部3aかに先端部6に向けて直線状に減少させ
ている。
Embodiments of the present invention will be described below with reference to the drawings. 1 is a front view showing a first embodiment of the present invention, and FIG. 2 is a plan view showing a first embodiment of the present invention. 1 and 2
In the figure, 1 is a leading car at both ends of the train, 2a is an intermediate car following the leading car 1 of the train, 3a is a connecting portion between the leading car 1 and the intermediate car 2a, 6 is a tip of the leading car 1, and 4 is a head. The front bogie center position on the side 5 is the rear bogie center position near the connecting portion 3a. Here, both the vehicle body height dimension and the vehicle body width dimension of the lead vehicle 1 decrease linearly from the connecting portion 3a toward the tip portion 6 of the lead vehicle 1, and the front truck center position 4 and the rear truck center position It is formed so that the vehicle body width decreases toward the tip portion 6 between the positions 5, and the vehicle body height dimension is based on the point A near the tip portion 6 as a base point.
The gradient is approximated by two straight lines of (1 / KH1) and (1 / KH2). Further, regarding the vehicle body width dimension, the point A near the tip 6 is used as a base point, and the gradient is (1 / KW1) and (1 / KW1). KW
By approximating with 2 straight lines of 2), the vehicle body equivalent radius R is linearly reduced toward the connecting portion 3a toward the tip portion 6.

【0011】図3は横軸に先端部6からの長さxと最大
車体断面積Amaxより求めた最大等価半径Rmaxの
比をとり、縦軸に先端部6からの任意の長さxにおける
車体断面積Aより求めた等価半径Rと最大等価半径Rm
axの比をとり、等価半径Rの先端部6から一様断面に
至るまでの変化を無次元化表示したものである。同図に
おいて、カ−ブ7は楕円の短軸に対する長軸の比率(ア
スペクト比:K)を7とした回転楕円体形状、カ−ブ8
はアスペクト比10相当の円錐の先端を球面に加工しア
スペクト比4相当まで短くした形状、カ−ブ9はアスペ
クト比10相当の円錐の先端を球面に加工しアスペクト
比6相当まで短くした形状の等価半径Rの変化を表して
いる。さらに、同図においてカ−ブ10は本実施例にお
ける等価半径Rの変化を表している。
In FIG. 3, the horizontal axis represents the ratio of the length x from the tip portion 6 to the maximum equivalent radius Rmax obtained from the maximum vehicle body cross-sectional area Amax, and the vertical axis represents the vehicle body at an arbitrary length x from the tip portion 6. Equivalent radius R and maximum equivalent radius Rm obtained from cross-sectional area A
The ratio of ax is taken and the change from the tip portion 6 of the equivalent radius R to the uniform cross section is displayed dimensionlessly. In the figure, a curve 7 is a spheroidal shape in which the ratio of the major axis to the minor axis of the ellipse (aspect ratio: K) is 7, and the curve 8 is shown.
Is a shape in which the tip of a cone with an aspect ratio of 10 is processed into a spherical surface and shortened to an aspect ratio of 4, and curve 9 is a shape in which the tip of a cone with an aspect ratio of 10 is processed into a spherical surface and shortened to an aspect ratio of 6 The change in the equivalent radius R is shown. Further, in the figure, the curve 10 represents the change of the equivalent radius R in this embodiment.

【0012】図4は図3の等価半径Rの変化率の先頭部
を有する回転体を用いた模型試験により、列車のトンネ
ル突入時のトンネル入口における圧縮波の波面の圧力勾
配の違いを求めたものであり、回転楕円体のアスペクト
比K=2の圧力勾配を基準とした比率で表している。ア
スペクト比K=10相当の円錐の先端を球面に加工した
形状では、アスペクト比6相当まで短くした場合及び4
相当まで短くした場合のいずれも、より先頭部長さの長
い回転楕円体形状のアスペクト比K=7の結果と比べて
圧力勾配比が低減されている。これは、回転楕円体の断
面積変化率は先端部6近傍では大きく、その後徐々に小
さくなる性質であるのに対して、円錐の先端を球面に加
工した形状では、先端部6近傍の点A近くの断面積変化
率を小さく構成でき、その後徐々に大きくなる性質とな
っているためである。
FIG. 4 shows a model test using a rotating body having a leading portion of the rate of change of the equivalent radius R of FIG. 3 to find the difference in pressure gradient of the wave front of the compression wave at the tunnel entrance when the train enters the tunnel. This is represented by a ratio based on the pressure gradient of the spheroidal aspect ratio K = 2. In the case where the tip of a cone having an aspect ratio K = 10 is processed into a spherical surface, the case where the aspect ratio is shortened to 6 and 4
In any case where the length is shortened to a considerable extent, the pressure gradient ratio is reduced as compared with the result of the aspect ratio K = 7 of the spheroidal shape having a longer head length. This is because the cross-sectional area change rate of the spheroid is large in the vicinity of the tip 6 and gradually decreases thereafter, whereas in the shape in which the tip of the cone is processed into a spherical surface, the point A near the tip 6 is formed. This is because the rate of change in cross-sectional area in the vicinity can be made small and gradually increases thereafter.

【0013】本実施例において、等価半径Rの変化は図
3のカ−ブ10と一致するように車体高さ寸法及び車体
幅寸法の勾配を形成している。即ち、まず点Aを基点と
して等価半径Rの勾配を(1/K1)と一致させるた
め、次式(数1)の関係を満たすように車体高さの勾配
(1/KH1)と、車体幅の勾配(1/KW1)の関係
を構成している。
In this embodiment, the variation of the equivalent radius R forms the gradient of the vehicle body height dimension and the vehicle body width dimension so as to coincide with the curve 10 of FIG. That is, first, in order to match the gradient of the equivalent radius R with (1 / K1) from the point A as a base point, the gradient of the vehicle body height (1 / KH1) and the vehicle body width so as to satisfy the relationship of the following equation (Equation 1): Of the gradient (1 / KW1).

【0014】[0014]

【数1】 A=π・(x/K1)2≒(2x/KW1)・(x/KH1)…(数1) さらに、点B以降における車体断面積変化がより緩やか
になるように、等価半径Rの勾配を(1/K2)と一致
させるため、次式(数2)の関係を満たすように車体高
さの勾配(1/KH2)と、車体幅の勾配(1/KW
2)の関係を構成している。
[Equation 1] A = π · (x / K1) 2 ≈ (2x / KW1) · (x / KH1) (Equation 1) Further, the change is equivalent so that the cross-sectional area change of the vehicle body after point B becomes more gradual. In order to match the gradient of the radius R with (1 / K2), the gradient of the vehicle body height (1 / KH2) and the gradient of the vehicle body width (1 / KW) so as to satisfy the relationship of the following equation (Equation 2).
It constitutes the relationship of 2).

【0015】[0015]

【数2】 A=π・(x/K2)2≒(2x/KW2)・(x/KH2)…(数2) 上記実施例においては、先端部6近傍点Aからの第1領
域における車体断面積変化を図3のカ−ブ8及び9の勾
配とあわせてあり、さらに、点Bからの第2領域におけ
る車体断面積変化をより緩やかな勾配(1/K2)で構
成しており、図4におけるカ−ブ9の圧力勾配低減効果
と同等以上の効果が得られる。これにより、圧力勾配に
ほぼ比例して発生するトンネル出口からの空気圧音を低
減することができる。また、本実施例においては、先頭
車1は先端部6へ向けて車体幅を減少させているので先
頭車1の幅方向の座席数が図2のように中間車2aの幅
方向の座席数より少なくなるものの、編成車両の全ての
幅方向の座席数を減じて小断面化を図り同様な圧力勾配
低減効果を意図する場合に比べて、乗車定員の減少を最
小限に留めた状態での高速化が可能となる。
## EQU2 ## A = π (x / K2) 2 ≈ (2x / KW2)  (x / KH2) (Equation 2) In the above embodiment, the vehicle body in the first region from the point A near the tip 6 is The cross-sectional area change is combined with the gradients of the curves 8 and 9 in FIG. 3, and the change in the vehicle body cross-sectional area in the second region from the point B is configured with a gentler gradient (1 / K2). An effect equal to or higher than the effect of reducing the pressure gradient of the curve 9 in FIG. 4 is obtained. As a result, it is possible to reduce the air pressure noise from the tunnel outlet, which is generated substantially in proportion to the pressure gradient. Further, in the present embodiment, since the vehicle width of the leading car 1 is reduced toward the tip portion 6, the number of seats in the width direction of the leading car 1 is the number of seats in the width direction of the intermediate car 2a as shown in FIG. Although it is less, compared to the case where the same number of seats in the width direction of the train are reduced to achieve a smaller cross-section and a similar pressure gradient reduction effect is intended, the reduction in the passenger capacity is kept to a minimum. Higher speed is possible.

【0016】なお、上記実施例においては、先頭車1の
車体断面等価半径を中間車2aとの連結部3aに向けて
直線状に増大させるいるが、先頭車1を基準として2両
目以降の中間車2a〜2nのいずれかに同様な車体断面
等価半径の変化を形成することによっても同様な効果が
もたらされる。図5に示す平面図によって説明する。同
図において第1実施例と同一符号は同一部材を示すもの
である。同図において、先頭車1に続く中間車2aにお
いて、先頭車1を基準として3両目の中間車2bとの連
結部3bに向けて車体幅寸法を(1/KW3)の勾配で
増大させており車体高さ寸法についても図示しない(1
/KH3)の勾配で増大させることにより中間車2aか
ら中間車2bにかけての圧力上昇を緩やかにでき、圧力
勾配の低減効果を得ることができる。本実施例において
も編成車両の全ての幅方向の座席数を減じて小断面化を
図ることにより圧力勾配低減効果を意図する場合に比べ
て、乗車定員の減少を最小限に留めた状態での高速化が
可能となる。なお、本実施例においては、車体幅寸法及
び車体高さ寸法をそれぞれ車体断面寸法が大きな車両に
向かって直線的に増大させるものについて説明したが、
車体幅寸法のみを直線的に車体幅寸法の大きな車両側へ
向けて増大させる構造としても、同等の効果を達成する
ことができる。また、車体幅寸法が変化する車両におい
ては、輪軸寸法については同様とし、台車の台車枠及び
車体支持機構の寸法を車体幅寸法に対応して車体断面寸
法の大きな部分の台車或いは車体断面寸法の大きな車両
の台車よりもそれぞれの仕様を小さく構成する配慮が必
要である。
In the above embodiment, the vehicle body cross-sectional equivalent radius of the leading vehicle 1 is linearly increased toward the connecting portion 3a with the intermediate vehicle 2a. A similar effect can be obtained by forming a similar change in the vehicle body cross-section equivalent radius in any of the cars 2a to 2n. This will be described with reference to the plan view shown in FIG. In the figure, the same reference numerals as those in the first embodiment denote the same members. In the figure, in the intermediate vehicle 2a following the leading vehicle 1, the vehicle body width dimension is increased with a gradient of (1 / KW3) toward the connecting portion 3b with the third vehicle intermediate vehicle 2b with the leading vehicle 1 as a reference. The height of the vehicle body is not shown (1
/ KH3), the pressure increase from the intermediate wheel 2a to the intermediate wheel 2b can be moderated and the pressure gradient can be reduced. Also in this embodiment, as compared with the case where the effect of reducing the pressure gradient is intended by reducing the number of seats in all the widthwise direction of the rolling stock to achieve a small cross section, the reduction of the passenger capacity is kept to a minimum. Higher speed is possible. In this embodiment, the description has been given of the case where the vehicle body width dimension and the vehicle body height dimension are linearly increased toward a vehicle having a large vehicle body cross sectional dimension,
Even with a structure in which only the vehicle body width dimension is linearly increased toward the vehicle side having a larger vehicle body width dimension, the same effect can be achieved. Further, in a vehicle in which the vehicle body width dimension changes, the wheel axle dimensions are the same, and the dimensions of the bogie frame of the bogie and the vehicle body support mechanism correspond to the vehicle body width dimension. It is necessary to consider making each specification smaller than the trolley of a large vehicle.

【0017】[0017]

【発明の効果】以上説明したように本発明によれば、編
成車両における両端の先頭車の車体断面等価半径を連結
部に向けて直線状に増大させるとともに、前位・後位台
車間において車体幅が先頭部に向けて減少するように構
成することにより、突入時のトンネル入口における圧縮
波の波面の最大圧力勾配が緩やかになる。その結果、突
入時のトンネル入口における圧縮波の波面の最大圧力勾
配に依存して発生するトンネル出口からの空気圧音を低
減することができる。
As described above, according to the present invention, the vehicle body cross-section equivalent radii of the leading cars at both ends of the train are linearly increased toward the connecting portion, and the car body is provided between the front and rear bogies. By configuring the width to decrease toward the leading portion, the maximum pressure gradient of the wave front of the compression wave at the tunnel entrance at the time of entry becomes gentle. As a result, it is possible to reduce the air pressure sound from the tunnel exit that is generated depending on the maximum pressure gradient of the wave front of the compression wave at the tunnel entrance at the time of entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による編成車両の第1実施例を示す側面
図である。
FIG. 1 is a side view showing a first embodiment of a rolling stock according to the present invention.

【図2】本発明による編成車両の第1実施例を示す平面
図である。
FIG. 2 is a plan view showing a first embodiment of a rolling stock according to the present invention.

【図3】車体断面積等価半径の長さ方向の変化を表した
図である。
FIG. 3 is a diagram showing a change of a vehicle body cross-sectional area equivalent radius in a length direction.

【図4】本発明による鉄道車両のトンネル突入時の圧力
勾配低減効果を示すグラフである。
FIG. 4 is a graph showing a pressure gradient reducing effect when a railway vehicle enters a tunnel according to the present invention.

【図5】本発明による編成車両の第2実施例を示す平面
図である。
FIG. 5 is a plan view showing a second embodiment of the rolling stock according to the present invention.

【符号の説明】[Explanation of symbols]

1…先頭車、2a〜2n…中間車。 1 ... Leading car, 2a-2n ... Intermediate car.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平川 治生 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Haruo Hirakawa, Inventor Haruo Hirakawa, 502 Kintatemachi, Tsuchiura, Ibaraki Prefecture

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】編成における両端の先頭車の車体断面等価
半径を連結部から先頭部へ向けて直線状に減少させると
ともに、前位・後位台車間において車体幅寸法が先頭部
に向けて減少するように構成したことを特徴とする編成
車両。
1. The vehicle body cross-sectional equivalent radius of the leading cars at both ends in the formation is linearly reduced from the connecting portion to the leading portion, and the vehicle body width dimension between the front and rear bogies is reduced toward the leading portion. A formation vehicle characterized by being configured to.
【請求項2】請求項1に記載の編成車両において、両端
の先頭車の車体高さ寸法及び車体幅寸法を連結部から先
頭部へ向けて直線状に減少させたことを特徴とする編成
車両。
2. The formation vehicle according to claim 1, wherein the vehicle body height dimension and vehicle body width dimension of the leading vehicles at both ends are linearly reduced from the connecting portion to the leading portion. .
【請求項3】複数の車両を連結してなる編成車両におい
て、車体幅方向の車体寸法が異なる車両を連結してお
り、車体幅寸法を車体長手方向について変化させて車体
断面等価半径を車体幅寸法の大きな車両側へ向かって直
線的に増大させた車両を、前記車体幅寸法の異なる車両
間に配置したことを特徴とする編成車両。
3. A formation vehicle in which a plurality of vehicles are connected, wherein vehicles having different vehicle body sizes in the vehicle body width direction are connected, and the vehicle body width dimension is changed in the vehicle body longitudinal direction to obtain a vehicle body cross-section equivalent radius. A formation vehicle in which a vehicle linearly increased toward a vehicle having a larger dimension is arranged between vehicles having different vehicle body width dimensions.
JP18367193A 1993-07-26 1993-07-26 Jointed vehicle for forming train Pending JPH0733017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18367193A JPH0733017A (en) 1993-07-26 1993-07-26 Jointed vehicle for forming train

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18367193A JPH0733017A (en) 1993-07-26 1993-07-26 Jointed vehicle for forming train

Publications (1)

Publication Number Publication Date
JPH0733017A true JPH0733017A (en) 1995-02-03

Family

ID=16139896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18367193A Pending JPH0733017A (en) 1993-07-26 1993-07-26 Jointed vehicle for forming train

Country Status (1)

Country Link
JP (1) JPH0733017A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004155292A (en) * 2002-11-06 2004-06-03 Kawasaki Heavy Ind Ltd Railway head vehicle for high-speed travel
DE112008003600T5 (en) 2007-12-12 2010-10-28 Nok Corp. sealing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004155292A (en) * 2002-11-06 2004-06-03 Kawasaki Heavy Ind Ltd Railway head vehicle for high-speed travel
DE112008003600T5 (en) 2007-12-12 2010-10-28 Nok Corp. sealing

Similar Documents

Publication Publication Date Title
JP2008162455A (en) Bogie for low-floor type railway vehicle
US3162229A (en) Snow tire
CN108099518A (en) A kind of railway EEF bogie and rail-road car
JPH0733017A (en) Jointed vehicle for forming train
EP0420826B1 (en) A system for reducing slipstream drag for high-performance motor cars
JP3173255B2 (en) Railcar bogie
JPH07267081A (en) Device for decreasing aerodynamic resistance of cavity existing in air passage and vehicle particularly railway vehicle with said device
RU176167U1 (en) SWIVEL CART FOR RAIL VEHICLE
CN108883780A (en) Rail traction vehicles with top transition element
JPH08198105A (en) Railroad car
CN217415758U (en) Double-running-shaft bogie for asymmetric unilateral suspension type railway vehicle
JPH0898306A (en) Windbreaking cover of current collector
JPH05221314A (en) Truck for rolling stock
JPH07172359A (en) Trackless type unmanned automated vehicle
JP2596947Y2 (en) Pantograph windproof structure
JP2003063386A (en) Top part shape of rapid-transit railway rolling stock
CH634515A5 (en) VEHICLE WITH DEFLECTOR TO REDUCE THE AERODYNAMIC RESISTANCE OF THE VEHICLE.
JPH09228784A (en) Buffering work for tunnel
RU2201368C1 (en) High-speed module of transportation system
JPH09301163A (en) Bolsterless truck for rolling stock
JP3908149B2 (en) The leading train for high-speed running
JPH10181598A (en) Self-steering truck for railway rolling stock
JPH03204302A (en) Independent wheel of rolling stock
JP3394056B2 (en) Railcar bogie
JP4292640B2 (en) Railcar bogie