[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH07316968A - Composite non-woven fabric and its production - Google Patents

Composite non-woven fabric and its production

Info

Publication number
JPH07316968A
JPH07316968A JP6129690A JP12969094A JPH07316968A JP H07316968 A JPH07316968 A JP H07316968A JP 6129690 A JP6129690 A JP 6129690A JP 12969094 A JP12969094 A JP 12969094A JP H07316968 A JPH07316968 A JP H07316968A
Authority
JP
Japan
Prior art keywords
web layer
fibers
woven
constituent fibers
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6129690A
Other languages
Japanese (ja)
Inventor
Nobuo Noguchi
信夫 野口
Nobuo Mimasa
伸夫 見正
Yoshinari Yoshioka
良成 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP6129690A priority Critical patent/JPH07316968A/en
Publication of JPH07316968A publication Critical patent/JPH07316968A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nonwoven Fabrics (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To produce a composite nonwoven fabric excellent in mechanical characteristics such as tensile strength and interlaminar peeling strength, dimensional stability, flexibility, water absorption and moisture absorption, and suitable not only as a raw material for industrial materials but also as a raw material for general materials. CONSTITUTION:This composite nonwoven fabric is produced by laminating nonwoven web layers B comprising regenerated cellulose staple fibers to both the surfaces of a synthetic filament nonwoven web layer A. The fibers of the nonwoven web layer A are partially heat-pressed therebetween. The fibers of the nonwoven web layer A and the fibers of the nonwoven web layer B are three-dimensionally interlaced with each other, and the fibers of the nonwoven web layer B themselves are also three-dimensionally interlaced with each other. Thus, the wholly incorporated composite nonwoven fabric is produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,引張り強力と層間剥離
強力等の機械的特性,寸法安定性,柔軟性及び吸水・吸
湿性がいずれも優れ,しかも静電気の発生を防止するこ
ともできる複合不織布及びその製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is a composite which is excellent in mechanical properties such as tensile strength and delamination strength, dimensional stability, flexibility and water absorption / moisture absorption, and can also prevent generation of static electricity. The present invention relates to a nonwoven fabric and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来から,基布上に短繊維カードウエブ
を積層・複合した種々の複合不織布が知られている。例
えば,特開昭53−114975号や特開昭53−12
4601号には,織編物を基布としこの上に割繊型複合
短繊維からなる不織ウエブあるいはメルトブローン法に
より得られる極細繊維不織ウエブを積層・複合した複合
不織布が提案されている。しかしながら,これらの複合
不織布は,その用途が合成皮革に限定され,しかもコス
ト的に極めて高価で経済性に劣るものであった。一方,
特開昭63−211354号には,スパンボンド法によ
り得られる長繊維不織布を基布としこの片面あるいは両
面に存在する長繊維を部分的に切断して繊維端を形成
し,この繊維端と基布上に積層した短繊維不織ウエブの
繊維とを絡合させた複合不織布が提案されている。しか
しながら,この複合不織布は,長繊維を部分的に切断す
るため機械的特性が低下し,しかも長繊維不織布本来の
表面平滑性も低下するという問題を有していた。
2. Description of the Related Art Conventionally, various composite non-woven fabrics in which a short fiber card web is laminated and composited on a base fabric have been known. For example, JP-A-53-114975 and JP-A-53-12
No. 4601 proposes a composite non-woven fabric in which a woven or knitted fabric is used as a base fabric and a non-woven web made of split fiber type composite short fibers or an ultrafine fiber non-woven web obtained by the melt blown method is laminated and composited thereon. However, these composite non-woven fabrics are limited in their use to synthetic leathers, and are extremely expensive in cost and inferior in economic efficiency. on the other hand,
In Japanese Patent Laid-Open No. 63-2111354, a long fiber non-woven fabric obtained by a spunbond method is used as a base fabric, and the long fibers present on one or both sides are partially cut to form fiber ends. A composite non-woven fabric in which fibers of a short fiber non-woven web laminated on a fabric are entangled with each other has been proposed. However, this composite nonwoven fabric has a problem that mechanical properties are deteriorated because the long fibers are partially cut, and further, the surface smoothness inherent in the long fiber nonwoven fabric is deteriorated.

【0003】[0003]

【発明が解決しようとする課題】本発明は,前記問題を
解決し,引張り強力と層間剥離強力等の機械的特性,寸
法安定性,柔軟性及び吸水・吸湿性がいずれも優れ,し
かも静電気の発生を防止することもでき,産業資材用素
材のみならず一般用の素材としても好適な複合不織布
と,それを効率良く製造することができる方法を提供し
ようとするものである。
SUMMARY OF THE INVENTION The present invention solves the above problems and is excellent in mechanical properties such as tensile strength and delamination strength, dimensional stability, flexibility, and water absorption / hygroscopicity, and moreover, it is electrostatically resistant. An object of the present invention is to provide a composite non-woven fabric which can be prevented from occurring and is suitable not only as a material for industrial materials but also as a material for general use, and a method capable of efficiently producing the same.

【0004】[0004]

【課題を解決するための手段】本発明者らは,前記問題
を解決すべく鋭意検討の結果,本発明に到達した。すな
わち,本発明は,以下の構成をその要旨とするものであ
る。 1)合成長繊維不織ウエブ層Aの両面に再生セルロース
短繊維からなる不織ウエブ層Bが積層されてなる複合不
織布であって,不織ウエブ層Aの構成繊維間が部分的に
熱圧接されており,不織ウエブ層Aの構成繊維と不織ウ
エブ層Bの構成繊維とが相互に三次元的に交絡し,かつ
不織ウエブ層Bの構成繊維同士が三次元的に交絡し,全
体として一体化されてなることを特徴とする複合不織
布。 2)スパンボンド法により形成した合成長繊維不織ウエ
ブに表面温度がその構成繊維中最も低い融点を有する重
合体の融点より50〜80℃低い温度の熱エンボスロー
ルを用いロールの線圧を5〜30kg/cmとし部分的
熱圧接処理を施して合成長繊維不織ウエブ層Aを形成
し,次いで得られた不織ウエブ層Aの両面に再生セルロ
ース短繊維からなる不織ウエブ層Bを積層した後,第1
段階の処理として圧力が5〜30kg/cm2 Gの高圧
液体流処理を施して不織ウエブ層Bの構成繊維同士を予
備的に交絡させ,引き続き第2段階の処理として圧力が
40〜150kg/cm2 Gの高圧液体流処理を施して
不織ウエブ層Aの構成繊維と不織ウエブ層Bの構成繊維
とを相互に三次元的に交絡させ,かつ不織ウエブ層Bの
構成繊維同士を三次元的に交絡させ,全体として一体化
させることを特徴とする複合不織布の製造方法。
The present inventors have arrived at the present invention as a result of extensive studies to solve the above problems. That is, the present invention has the following configurations as its gist. 1) A composite non-woven fabric in which a nonwoven web layer B made of regenerated cellulose short fibers is laminated on both sides of a synthetic long fiber nonwoven web layer A, and the constituent fibers of the nonwoven web layer A are partially heat-bonded. The constituent fibers of the non-woven web layer A and the constituent fibers of the non-woven web layer B are three-dimensionally entangled with each other, and the constituent fibers of the non-woven web layer B are three-dimensionally entangled with each other. A composite nonwoven fabric characterized by being integrated as a whole. 2) Using a hot embossing roll having a surface temperature of 50 to 80 ° C. lower than the melting point of the polymer having the lowest melting point among the constituent fibers of the synthetic long-fiber nonwoven web formed by the spunbond method, the linear pressure of the roll is 5 -30 kg / cm and subjected to partial heat-pressing treatment to form a synthetic long fiber non-woven web layer A, and then a non-woven web layer B made of regenerated cellulose short fibers is laminated on both sides of the obtained non-woven web layer A. After doing the first
As a step treatment, a high-pressure liquid flow treatment with a pressure of 5 to 30 kg / cm 2 G is performed to pre-entangle the constituent fibers of the nonwoven web layer B, and subsequently the pressure is 40 to 150 kg / cm 2 G mutually three-dimensionally entangling the constituent fibers of the fibers constituting the nonwoven web layer B of performing high pressure liquid jet treatment nonwoven web layer a of, and the structure fibers of the nonwoven web layer B A method for producing a composite non-woven fabric, which comprises three-dimensionally interlacing and integrating as a whole.

【0005】次に,本発明を詳細に説明する。本発明に
おける合成長繊維不織ウエブ層Aを構成する長繊維と
は,繊維形成性を有するポリオレフイン系重合体,ポリ
エステル系重合体あるいはポリアミド系重合体からなる
ものである。ポリオレフイン系重合体としては,炭素原
子数2〜18の脂肪族α−モノオレフイン,例えばエチ
レン,プロピレン,ブテン−1,ペンテン−1,3−メ
チルブテン−1,ヘキセン−1,オクテン−1,ドデセ
ン−1,オクタデセン−1からなるホモポリオレフイン
重合体が挙げられる。この脂肪族α−モノオレフイン
は,他のエチレン系不飽和モノマ,例えばブタジエン,
イソプレン,ペンタジエン−1・3,スチレン,α−メ
チルスチレンのような類似のエチレン系不飽和モノマが
共重合されたポリオレフイン系共重合体であってもよ
い。また,ポリエチレン系重合体の場合には,エチレン
に対してプロピレン,ブテン−1,ヘキセン−1,オク
テン−1又は類似の高級α−オレフインが10重量%以
下共重合されたものであってもよく,ポリプロピレン系
重合体の場合には,プロピレンに対してエチレン又は類
似の高級α−オレフインが10重量%以下共重合された
ものであってもよいが,前記これらの共重合物の共重合
率が前記重量%を超えると共重合体の融点が低下し,こ
れら共重合体の長繊維からなる不織ウエブを用いて得た
複合不織布を高温条件下で使用したときに,機械的特性
や寸法安定性が低下するので好ましくない。ポリエステ
ル系重合体としては,テレフタル酸,イソフタル酸,ナ
フタリン−2・6−ジカルボン酸等の芳香族ジカルボン
酸あるいはアジピン酸,セバチン酸等の脂肪族ジカルボ
ン酸又はこれらのエステル類を酸成分とし,かつエチレ
ングリコール,ジエチレングリコール,1・4−ブタジ
オール,ネオペンチルグリコール,シクロヘキサン−1
・4−ジメタノール等のジオール化合物をエステル成分
とするホモポリエステル重合体あるいは共重合体が挙げ
られる。なお,これらのポリエステル系重合体には,パ
ラオキシ安息香酸,5−ソジウムスルホイソフタール
酸,ポリアルキレングリコール,ペンタエリスススリト
ール,ビスフエノールA等が添加あるいは共重合されて
いてもよい。ポリアミド系重合体としては,ポリイミノ
−1−オキソテトラメチレン(ナイロン4),ポリテト
ラメチレンアジパミド(ナイロン46),ポリカプラミ
ド(ナイロン6),ポリヘキサメチレンアジパミド(ナ
イロン66),ポリウンデカナミド(ナイロン11),
ポリラウロラクタミド(ナイロン12),ポリメタキシ
レンアジパミド,ポリパラキシリレンデカナミド,ポリ
ビスシクロヘキシルメタンデカナミド又はこれらのモノ
マを構成単位とするポリアミド系共重合体が挙げられ
る。特に,ポリテトラメチレンアジパミドの場合,ポリ
テトラメチレンアジパミドにポリカプラミドやポリヘキ
サメチレンアジパミド,ポリウンデカメチレンテレフタ
ラミド等の他のポリアミド成分が30モル%以下共重合
されたポリテトラメチレンアジパミド系共重合体であっ
てもよい。前記他のポリアミド成分の共重合率が30モ
ル%を超えると共重合体の融点が低下し,これら共重合
体の長繊維からなる不織ウエブを用いて得た複合不織布
を高温条件下で使用したときに,機械的特性や寸法安定
性が低下するので好ましくない。なお,本発明におい
て,前記繊維形成性熱可塑性重合体には,必要に応じ
て,例えば艶消し剤,顔料,防炎剤,消臭剤,光安定
剤,熱安定剤,酸化防止剤等の各種添加剤を本発明の効
果を損なわない範囲内で添加することができる。
Next, the present invention will be described in detail. The long fibers constituting the synthetic long fiber non-woven web layer A in the present invention are made of a polyolefin polymer, a polyester polymer or a polyamide polymer having a fiber forming property. Examples of the polyolefin polymer include aliphatic α-monoolefins having 2 to 18 carbon atoms such as ethylene, propylene, butene-1, pentene-1,3-methylbutene-1, hexene-1, octene-1, dodecene-. A homopolyolefin polymer composed of 1, octadecene-1 can be mentioned. This aliphatic α-monoolefin is a derivative of other ethylenically unsaturated monomers such as butadiene,
It may be a polyolefin-based copolymer obtained by copolymerizing similar ethylenically unsaturated monomers such as isoprene, pentadiene-1,3 styrene and α-methylstyrene. In the case of a polyethylene-based polymer, propylene, butene-1, hexene-1, octene-1 or a similar higher α-olefin may be copolymerized with ethylene in an amount of 10% by weight or less. In the case of a polypropylene polymer, ethylene or a similar higher α-olefin may be copolymerized with propylene in an amount of 10% by weight or less, but the copolymerization ratio of these copolymers is When the content exceeds the above-mentioned weight%, the melting point of the copolymer decreases, and the mechanical properties and dimensional stability of the composite non-woven fabric obtained by using the non-woven web composed of the long fibers of these copolymers are improved under high temperature conditions. It is not preferable because it deteriorates the property. As the polyester polymer, an aromatic dicarboxylic acid such as terephthalic acid, isophthalic acid, naphthalene-2,6-dicarboxylic acid, or an aliphatic dicarboxylic acid such as adipic acid or sebacic acid or an ester thereof is used as an acid component, and Ethylene glycol, diethylene glycol, 1,4-butadiol, neopentyl glycol, cyclohexane-1
Examples include homopolyester polymers or copolymers having a diol compound such as 4-dimethanol as an ester component. Incidentally, paraoxybenzoic acid, 5-sodium sulfoisophthalic acid, polyalkylene glycol, pentaerythsthritol, bisphenol A and the like may be added or copolymerized to these polyester polymers. Polyamide polymers include polyimino-1-oxotetramethylene (nylon 4), polytetramethylene adipamide (nylon 46), polycapramide (nylon 6), polyhexamethylene adipamide (nylon 66), polyundecana. Mido (nylon 11),
Examples thereof include polylaurolactamide (nylon 12), polymethaxylene adipamide, polyparaxylylene decanamide, polybiscyclohexylmethane decanamide, or a polyamide-based copolymer having these monomers as a constituent unit. Particularly, in the case of polytetramethylene adipamide, polytetramethylene adipamide is a polycapramide, polyhexamethylene adipamide, polyundecamethylene terephthalamide, or other polyamidopolyamide copolymerized by 30 mol% or less. It may be a tetramethylene adipamide-based copolymer. When the copolymerization rate of the other polyamide component exceeds 30 mol%, the melting point of the copolymer is lowered, and the composite nonwoven fabric obtained by using the nonwoven web made of long fibers of these copolymers is used under high temperature conditions. If so, mechanical properties and dimensional stability will be reduced, which is not preferable. In the present invention, the fiber-forming thermoplastic polymer may contain, for example, a matting agent, a pigment, a flameproofing agent, a deodorant, a light stabilizer, a heat stabilizer, an antioxidant, etc., if necessary. Various additives can be added within a range that does not impair the effects of the present invention.

【0006】本発明におけるウエブ層Aを構成する長繊
維は,繊維形成性を有する前記重合体から構成されるも
のであるが,その形態は,前記重合体単独からなるもの
の他に,前記重合体の中から選択された2種以上の相異
なる重合体が各々溶融紡糸性を損なわない範囲内でブレ
ンドされたブレンド物からなるものであってもよい。こ
のブレンドでは,例えばポリエステル系重合体とポリオ
レフイン系重合体とがブレンドされたものや,2種の相
異なるポリアミド系重合体がブレンドされたものが挙げ
られる。特に,前者の場合には,溶融紡出直後で未配向
のポリエステル成分の収縮を抑制することができて好ま
しい。また,この長繊維の形態は,前記重合体の中から
選択された2種の相異なる重合体が芯鞘型あるいは並列
型に配されたものであってもよい。この複合では,例え
ばポリエチレンテレフタレート重合体が芯部にかつポリ
エチレン重合体が鞘部に配された芯鞘型,あるいはポリ
カプラミド重合体とポリヘキサメチレンアジパミド重合
体とからなる並列型のような複合形態が挙げられる。
The long fibers constituting the web layer A in the present invention are composed of the above-mentioned polymer having a fiber-forming property, and the form thereof is not only the above-mentioned polymer alone but also the above-mentioned polymer. Two or more different polymers selected from the above may each be a blended product blended within a range that does not impair the melt spinnability. Examples of this blend include a blend of a polyester polymer and a polyolefin polymer, and a blend of two different polyamide polymers. In the former case, the shrinkage of the unoriented polyester component can be suppressed immediately after melt spinning, which is particularly preferable. Further, the form of the long fibers may be one in which two different polymers selected from the above polymers are arranged in a core-sheath type or a parallel type. In this composite, for example, a core-sheath type in which a polyethylene terephthalate polymer is arranged in the core part and a polyethylene polymer in the sheath part, or a parallel type such as a polycapramide polymer and a polyhexamethylene adipamide polymer are arranged in parallel. The form may be mentioned.

【0007】本発明におけるウエブ層Aを構成する長繊
維は,繊維形成性を有する前記重合体から構成され,か
つ単繊維繊度が1.5〜8.0デニールのものである。
単繊維繊度が1.5デニール未満であると得られた複合
不織布の機械的特性が低下したり,溶融紡糸工程におい
て製糸性が低下し,一方,単繊維繊度が8.0デニール
を超えると得られたウエブの風合いが硬くなって柔軟性
に富む複合不織布を得ることができず,いずれも好まし
くない。したがって,本発明では,この単繊維繊度が
1.5〜8.0デニール好ましくは2.0〜5.0デニ
ールであるのがよい。
The long fibers constituting the web layer A in the present invention are composed of the above-mentioned polymer having a fiber-forming property and have a single fiber fineness of 1.5 to 8.0 denier.
When the monofilament fineness is less than 1.5 denier, the mechanical properties of the obtained composite nonwoven fabric are deteriorated, and the spinnability in the melt spinning process is deteriorated. On the other hand, when the monofilament fineness is more than 8.0 denier, it is obtained. The texture of the obtained web is hard and a composite non-woven fabric having a high flexibility cannot be obtained, which is not preferable. Therefore, in the present invention, the single fiber fineness is preferably 1.5 to 8.0 denier, and more preferably 2.0 to 5.0 denier.

【0008】本発明におけるウエブ層Aは,前記長繊維
から構成され,かつその構成繊維間が部分的に熱圧接さ
れたものである。この部分的な熱圧接とは,加熱され表
面に彫刻模様が刻印されたロールすなわちエンボスロー
ルと加熱され表面が平滑な金属ロールとの間にウエブを
通すことにより前記彫刻模様に該当する部分のウエブ構
成繊維同士を熱的に接着させたものである。さらに詳し
くは,この部分的な熱圧接とは,ウエブ層Aの全表面積
に対して特定の領域を有し,すなわち,個々の熱圧接領
域は必ずしも円形の形状である必要はないが0.1〜
1.0mm2 の面積を有し,その密度すなわち圧接点密
度が2〜80点/cm2 好ましくは4〜60点/cm2
のものであるのがよい。この圧接点密度が2点/cm2
未満であると熱圧接後のウエブの機械的特性や形態保持
性が向上せず,一方,圧接点密度が80点/cm2 を超
えると柔軟性と嵩高性が向上せず,いずれも好ましくな
い。また,ウエブ層Aの全表面積に対する全熱圧接領域
の面積の比すなわち圧接面積率が2〜30%好ましくは
4〜20%のものである。この圧接面積率が2%未満で
あると熱圧接後のウエブの寸法安定性が向上せず,した
がってこのウエブ層Aにウエブ層Bを積層して得られた
複合不織布の寸法安定性が劣り,一方,圧接面積率が3
0%を超えると強力と寸法安定性は向上するものの柔軟
性が劣り,いずれも好ましくない。
The web layer A in the present invention is composed of the above-mentioned long fibers, and the constituent fibers are partially heat-pressed to each other. This partial thermal pressure welding is a web of a portion corresponding to the engraved pattern by passing a web between a roll having an engraved pattern engraved on the surface, that is, an embossing roll and a metal roll having a heated and smooth surface. The constituent fibers are thermally bonded together. More specifically, this partial hot-pressing has a specific area with respect to the total surface area of the web layer A, that is, the individual hot-pressing areas do not necessarily have a circular shape. ~
It has an area of 1.0 mm 2 , and its density, that is, the pressure contact density is 2 to 80 points / cm 2, preferably 4 to 60 points / cm 2.
It should be one of This pressure contact density is 2 points / cm 2
If it is less than 1, the mechanical properties and shape retention of the web after hot-pressing are not improved, and if the pressure contact density exceeds 80 points / cm 2 , flexibility and bulkiness are not improved, both of which are not preferable. . Further, the ratio of the area of the total heat-pressure-bonded region to the total surface area of the web layer A, that is, the pressure-contact area ratio is 2 to 30%, preferably 4 to 20%. If the press contact area ratio is less than 2%, the dimensional stability of the web after hot press contact is not improved, and thus the dimensional stability of the composite nonwoven fabric obtained by laminating the web layer B on the web layer A is poor, On the other hand, the pressure contact area ratio is 3
If it exceeds 0%, the strength and the dimensional stability are improved, but the flexibility is deteriorated, which is not preferable.

【0009】本発明におけるウエブ層Aは,その目付け
が10〜200g/m2 のものであるのが好ましい。目
付けが10g/m2 未満であると長繊維同士の緻密な重
なりの程度が低く,このウエブ層Aに短繊維不織ウエブ
層Bを積層し複合して得られた複合不織布の地合いが低
下し,一方,目付けが200g/m2 を超えるとこのウ
エブ層Aにウエブ層Bを積層し高圧液体流処理を施すに
際してウエブ層Aの全構成繊維とウエブ層Bの構成繊維
とが三次元的に十分に交絡せず,全体としての一体化が
なされず,いずれも好ましくない。したがって,本発明
では,この目付けは10〜200g/m2 好ましくは2
0〜100g/m2 であるのがよい。
The web layer A in the present invention preferably has a basis weight of 10 to 200 g / m 2 . When the basis weight is less than 10 g / m 2 , the degree of dense overlap between the long fibers is low, and the texture of the composite non-woven fabric obtained by laminating the short fiber non-woven web layer B on the web layer A is deteriorated. On the other hand, when the basis weight exceeds 200 g / m 2 , all the constituent fibers of the web layer A and the constituent fibers of the web layer B are three-dimensionally formed when the web layer B is laminated on the web layer A and subjected to the high-pressure liquid flow treatment. It is not preferable because it does not fully intertwine and the whole is not integrated. Therefore, in the present invention, this basis weight is 10 to 200 g / m 2 and preferably 2
It is preferably 0 to 100 g / m 2 .

【0010】本発明における不織ウエブ層Bは,木材パ
ルプを原料とし,例えば環状酸化アミンのN−メチルホ
リンNオキシド等の有機溶媒を溶剤として溶液紡糸する
ことにより得られる再生セルロース短繊維から構成され
るものである。この種の再生セルロース短繊維は一般的
には「リヨセル」と呼称され,例えばコートルーズ社の
「テンセル(登録商標)」やレンツイン社の「ソルージ
ヨン(登録商標)」等が知られている。この不織ウエブ
層Bでは,その構成繊維として前記のような再生セルロ
ース短繊維を採用するので,これにより引張り強力や引
裂き強力等の機械的特性,通常の寸法安定性,また湿潤
時における寸法安定性,吸水性あるいは吸湿性,そして
静電気発生の防止等に優れた複合不織布を得ることがで
きる。
The non-woven web layer B in the present invention is composed of regenerated cellulose short fibers obtained by solution spinning using wood pulp as a raw material and using an organic solvent such as N-methylphorine N oxide of cyclic amine as a solvent. It is something. This type of regenerated cellulose short fiber is generally referred to as "Lyocell", and for example, "TENCEL (registered trademark)" of Court Roose Co., Ltd. and "Sorujiyon (registered trademark)" of Rentuin Co. are known. In the non-woven web layer B, since the regenerated cellulose short fibers as described above are used as the constituent fibers, mechanical properties such as tensile strength and tear strength, ordinary dimensional stability, and dimensional stability when wet are obtained. It is possible to obtain a composite non-woven fabric having excellent properties, water absorption or hygroscopicity, and prevention of static electricity generation.

【0011】このウエブ層Bは,その目付けが10〜1
00g/m2 のものであるのが好ましい。目付けが10
g/m2 未満であると得られたウエブの形態保持性が向
上しないばかりか十分な吸水性を得ることができず,一
方,目付けが100g/m2を超えるとウエブ層Aの構
成繊維とウエブ層Bの構成繊維との三次元的交絡及びウ
エブ層Bの構成繊維同士の三次元的交絡が共に十分に得
られず,いずれも好ましくない。
The web layer B has a basis weight of 10 to 1
It is preferably 00 g / m 2 . Weight is 10
When it is less than g / m 2 , not only the shape retention of the obtained web is not improved, but also sufficient water absorption cannot be obtained, while when the basis weight exceeds 100 g / m 2 , the constituent fibers of the web layer A are Both the three-dimensional entanglement of the constituent fibers of the web layer B and the three-dimensional entanglement of the constituent fibers of the web layer B are not sufficiently obtained, which is not preferable.

【0012】本発明の複合不織布は,前述したように前
記熱圧接領域を有する合成長繊維不織ウエブ層Aの両面
に前記再生セルロース短繊維からなる不織ウエブ層Bが
積層され,不織ウエブ層Aの構成繊維と不織ウエブ層B
の構成繊維とが相互に三次元的に交絡し,かつ不織ウエ
ブ層Bの構成繊維同士が三次元的に交絡し,全体として
一体化されてなるものである。この三次元的な交絡と
は,公知のいわゆる高圧液体流処理により形成されるも
のであって,これにより不織布としての形態が保持さ
れ,吸水性を有し,しかも柔軟性に富む複合不織布を得
ることができる。
In the composite nonwoven fabric of the present invention, as described above, the nonwoven web layer B made of the regenerated cellulose short fibers is laminated on both sides of the synthetic long fiber nonwoven web layer A having the above-mentioned heat-bonded area to form a nonwoven web. The constituent fibers of layer A and the non-woven web layer B
And the constituent fibers of the non-woven web layer B are three-dimensionally entangled with each other, and are integrated as a whole. This three-dimensional entanglement is formed by a known so-called high-pressure liquid flow treatment, whereby a non-woven fabric shape is maintained, water absorbency, and a flexible non-woven fabric is obtained. be able to.

【0013】本発明における複合不織布は,次のような
方法で効率良く製造することができる。すなわち,スパ
ンボンド法により形成した合成長繊維不織ウエブ層に表
面温度がその構成繊維中最も低い融点を有する重合体の
融点より50〜80℃低い温度の熱エンボスロールを用
いロールの線圧を5〜30kg/cmとし部分的熱圧接
処理を施して合成長繊維不織ウエブ層Aを形成し,次い
で得られた不織ウエブ層Aの両面に再生再生セルロース
短繊維からなる不織ウエブ層Bを積層した後,高圧液体
流処理を施して不織ウエブ層Aの構成繊維と不織ウエブ
層Bの構成繊維とを相互に三次元的に交絡させ,かつ不
織ウエブ層Bの構成繊維同士を三次元的に交絡させ,全
体として一体化させる方法である。まず,合成長繊維不
織ウエブ層Aをスパンボンド法で製造する。すなわち,
前記繊維形成性を有するポリオレフイン系重合体,ポリ
エステル系重合体あるいはポリアミド系重合体を単独
で,あるいは前記重合体の中から選択された2種以上の
相異なる重合体がブレンドされたブレンド物を,あるい
は前記重合体の中から選択された2種の相異なる重合体
を芯鞘型あるいは並列型に配するようにして溶融紡出
し,溶融紡出されたポリマ流を冷却した後,エアーサツ
カ等の引取り手段を用い引取り速度を3000〜600
0m/分として引取った後,開繊し,移動する捕集面上
に捕集・堆積させて単繊維繊度が1.5〜8.0デニー
ルの単繊維からなるウエブとし,次いで得られたウエブ
に表面温度がその構成繊維中最も低い融点を有する重合
体の融点より50〜80℃低い温度の熱エンボスロール
を用い熱圧接処理を施してウエブ層Aを得る。スパンボ
ンド法で溶融紡出するに際しては,その引取り速度を3
000〜6000m/分とするのがよい。引取り速度が
3000m/分未満であると長繊維の分子配向度が十分
に増大しないため得られたウエブの機械的特性や寸法安
定性が向上せず,一方,引取り速度が6000m/分を
超えると溶融紡糸時の製糸性が低下し,いずれも好まし
くない。
The composite nonwoven fabric of the present invention can be efficiently manufactured by the following method. That is, the linear pressure of the roll is applied to the synthetic long-fiber non-woven web layer formed by the spun bond method by using a hot embossing roll whose surface temperature is 50 to 80 ° C. lower than the melting point of the polymer having the lowest melting point among the constituent fibers. A synthetic long-fiber nonwoven web layer A is formed by partial heat-pressing treatment at 5 to 30 kg / cm, and then a nonwoven web layer B made of regenerated regenerated cellulose short fibers is formed on both sides of the obtained nonwoven web layer A. Of the non-woven web layer B and the constituent fibers of the non-woven web layer B are three-dimensionally entangled with each other by laminating It is a method of three-dimensionally interlacing and integrating as a whole. First, the synthetic long fiber non-woven web layer A is manufactured by the spunbond method. That is,
The polyolefin-based polymer, polyester-based polymer or polyamide-based polymer having the fiber-forming property is used alone, or a blended product of two or more different polymers selected from the above polymers, Alternatively, two different polymers selected from the above-mentioned polymers are melt-spun in such a manner that they are arranged in a core-sheath type or a parallel type, the melt-spun polymer stream is cooled, and then an air sucker or the like is drawn. The take-up speed is 3000-600 using the take-off means.
After being collected at 0 m / min, it was opened, collected and deposited on a moving collecting surface to obtain a web made of single fibers having a single fiber fineness of 1.5 to 8.0 denier, and then obtained. The web layer A is obtained by subjecting the web to a hot pressing treatment using a hot embossing roll whose surface temperature is 50 to 80 ° C. lower than the melting point of the polymer having the lowest melting point among the constituent fibers. When melt-spun by the spunbond method, the take-up speed is 3
000 to 6000 m / min is preferable. When the take-up speed is less than 3000 m / min, the mechanical properties and dimensional stability of the obtained web are not improved because the degree of molecular orientation of the long fibers is not sufficiently increased, while the take-up speed is less than 6000 m / min. If it exceeds the above range, the spinnability at the time of melt spinning is deteriorated, which is not preferable.

【0014】ウエブに熱エンボスロールを用いて熱圧接
処理を施すに際しては,熱圧接領域として必ずしも円形
の形状である必要はないが,その面積を0.1〜1.0
mm2 ,その密度すなわち圧接点密度を5〜100点/
cm2 好ましくは10〜80点/cm2 ,かつウエブ層
の全表面積に対する全熱圧接領域の面積の比すなわち圧
接面積率を5〜50%好ましくは8〜40%とする。こ
の圧接点密度が5点/cm2 未満であると熱圧接後のウ
エブの機械的特性や形態保持性が向上せず,一方,圧接
点密度が100点/cm2 を超えるとこのウエブ層Aに
ウエブ層Bを積層し高圧液体流処理を施して得た複合不
織布の柔軟性と嵩高性が向上せず,しかも高圧液体流処
理時の加工性が劣り,いずれも好ましくない。この圧接
面積率が5%未満であると熱圧接後のウエブの寸法安定
性が向上せず,したがって,このウエブ層Aにウエブ層
Bを積層して得られた複合不織布の寸法安定性が劣り,
一方,圧接面積率が50%を超えるとこのウエブ層Aに
ウエブ層Bを積層し高圧液体流処理を施すに際しての加
工性が劣り,いずれも好ましくない。さらに,そのロー
ルの表面温度をウエブ構成繊維中最も低い融点を有する
重合体の融点より50〜80℃低い温度とし,かつロー
ルの線圧を5〜30kg/cmとするのがよい。この温
度と線圧の条件は特に重要で,この温度と前記重合体の
融点との差が80℃を超えかつ線圧が5kg/cm未満
であると熱圧接処理効果が乏しく,得られたウエブ層A
の寸法安定性が向上せず,したがってこのウエブ層Aに
ウエブ層Bを積層し複合して得られた複合不織布の寸法
安定性が向上せず,一方,この温度と前記重合体の融点
との差が50℃未満でかつ線圧が10kg/cmを超え
ると熱圧接処理効果が大きくなり過ぎるため,このウエ
ブ層Aにウエブ層Bを積層し高圧液体流処理を施すに際
してウエブ層Aの全構成繊維とウエブ層Bの構成繊維と
が三次元的に十分に交絡せず,全体としての一体化がな
されず,いずれも好ましくない。
When the web is subjected to the heat press contacting process using the hot embossing roll, the heat press contact region does not necessarily have a circular shape, but its area is 0.1 to 1.0.
mm 2 , its density, that is, the pressure contact density is 5 to 100 points /
cm 2 is preferably 10 to 80 points / cm 2 , and the ratio of the area of the entire heat-pressure-bonded region to the total surface area of the web layer, that is, the pressure-contact area ratio is 5 to 50%, preferably 8 to 40%. If the pressure contact density is less than 5 points / cm 2 , the mechanical properties and shape retention of the web after hot pressure welding are not improved, while if the pressure contact density exceeds 100 points / cm 2 , the web layer A The composite nonwoven fabric obtained by laminating the web layer B on the above and subjected to the high-pressure liquid flow treatment does not have improved flexibility and bulkiness, and the processability during the high-pressure liquid flow treatment is inferior. If the pressure contact area ratio is less than 5%, the dimensional stability of the web after heat pressure contact is not improved, and therefore the dimensional stability of the composite nonwoven fabric obtained by laminating the web layer B on the web layer A is poor. ,
On the other hand, if the pressure contact area ratio exceeds 50%, the workability at the time of laminating the web layer B on the web layer A and performing the high-pressure liquid flow treatment is poor, and both are not preferable. Further, the surface temperature of the roll is preferably 50 to 80 ° C. lower than the melting point of the polymer having the lowest melting point in the web constituent fibers, and the linear pressure of the roll is preferably 5 to 30 kg / cm. The conditions of this temperature and linear pressure are particularly important. If the difference between this temperature and the melting point of the polymer is more than 80 ° C and the linear pressure is less than 5 kg / cm, the effect of heat-pressure welding is poor and the obtained web Layer A
The dimensional stability of the composite non-woven fabric obtained by laminating the web layer B on the web layer A and the composite non-woven fabric is not improved. When the difference is less than 50 ° C. and the linear pressure exceeds 10 kg / cm, the effect of heat-pressure welding becomes too large. Therefore, when the web layer B is laminated on the web layer A and the high-pressure liquid flow treatment is performed, the entire structure of the web layer A is formed. The fibers and the constituent fibers of the web layer B are not sufficiently entangled three-dimensionally, and the fibers are not integrated as a whole, either of which is not preferable.

【0015】次に,得られた不織ウエブ層Aの両面に前
記再生セルロース短繊維からなる不織ウエブ層Bを積層
した後,この積層物に高圧液体流処理を施して不織ウエ
ブ層Aの構成繊維と不織ウエブ層Bの構成繊維とを相互
に三次元的に交絡させ,かつ不織ウエブ層Bの構成繊維
同士を三次元的に交絡させて全体として一体化させるの
である。積層する不織ウエブ層Bは,前記再生セルロー
ス短繊維からなるパラレルカードウエブやランダムカー
ドウエブあるいはクロスレイドウエブ等であり,また,
その目付けは10〜100g/m2 のものであるのが好
ましい。高圧液体流処理を施すに際しては,例えば,孔
径が0.05〜2.0mm特に0.1〜0.4mmの噴
射孔を孔間隔を0.3〜10mmで1列あるいは複数列
に多数配列した装置を用い,噴射圧力が5〜150kg
/cm2 Gの高圧液体を前記噴射孔から噴射する方法を
採用する。噴射孔の配列は,この積層物の進行方向と直
交する方向に列状に配列する。高圧液体としては,水あ
るいは温水を用いるのが一般的である。噴射孔と積層物
との間の距離は,1〜15cmとするのがよい。この距
離が1cm未満であるとこの処理により得られる複合不
織布の地合いが乱れ,一方,この距離が15cmを超え
ると液体流が積層物に衝突したときの衝撃力が低下して
三次元的な交絡が十分に施されず,いずれも好ましくな
い。
Next, a non-woven web layer B composed of the regenerated cellulose short fibers is laminated on both sides of the obtained non-woven web layer A, and the laminate is subjected to a high pressure liquid flow treatment to form the non-woven web layer A. The constituent fibers of (3) and the constituent fibers of the non-woven web layer B are three-dimensionally entangled with each other, and the constituent fibers of the non-woven web layer B are three-dimensionally entangled with each other to be integrated as a whole. The non-woven web layer B to be laminated is a parallel card web, a random card web, a crosslaid web or the like made of the regenerated cellulose short fibers, and
The basis weight is preferably 10 to 100 g / m 2 . When performing the high-pressure liquid flow treatment, for example, a large number of injection holes having a hole diameter of 0.05 to 2.0 mm, particularly 0.1 to 0.4 mm are arranged in one row or a plurality of rows with a hole interval of 0.3 to 10 mm. Using the device, injection pressure is 5-150kg
A method of ejecting a high-pressure liquid of / cm 2 G from the ejection hole is adopted. The injection holes are arranged in a row in the direction orthogonal to the direction of travel of the laminate. Generally, water or hot water is used as the high-pressure liquid. The distance between the injection hole and the laminate is preferably 1 to 15 cm. If this distance is less than 1 cm, the texture of the composite non-woven fabric obtained by this treatment is disturbed, while if this distance exceeds 15 cm, the impact force when the liquid flow collides with the laminate decreases and the three-dimensional entanglement occurs. Is not sufficiently applied, and neither is preferable.

【0016】本発明においては,前記高圧液体流処理を
2段階に別けて施す。まず,第1段階の処理として圧力
が5〜30kg/cm2 Gの高圧液体流を噴出し前記積
層物に衝突させ,ウエブ層Bの構成繊維同士を予備的に
交絡させる。この第1段階の処理において,液体流の圧
力が5kg/cm2 G未満であるとウエブ層Bの構成繊
維同士を予備的に交絡させることができず,一方,液体
流の圧力が30kg/cm2 Gを超えると前記積層物に
高圧液体流を噴出し衝突させたときウエブ層Bの構成繊
維が液体流の作用によって乱れ,ウエブ層Bに地合いの
乱れや目付け斑が生じるため,いずれも好ましくない。
次いで,第2段階の処理として圧力が40〜150kg
/cm2 Gの高圧液体流を噴出し前記積層物に衝突さ
せ,ウエブ層Aの構成繊維とウエブ層Bの構成繊維とを
相互に三次元的に交絡させるとともにウエブ層Bの構成
繊維同士を三次元的に交絡させ,前記積層物を全体とし
て一体化させる。この第2段階の処理において,液体流
の圧力が40kg/cm2 G未満であると上述したよう
な繊維間の三次元的交絡を十分に形成することができ
ず,一方,液体流の圧力が150kg/cm2 Gを超え
ると得られた複合不織布の柔軟性と嵩高性が向上せず,
いずれも好ましくない。本発明においては,第2段階の
処理として圧力が40〜150kg/cm2 Gの高圧液
体流を用いるが,この第2段階の処理を前記積層物に施
すに際しては,上述したように,第1段階の処理により
予めウエブ層Bの構成繊維同士を予備的に交絡させてあ
るため,第2段階の高圧の処理を施したときにウエブ層
Bの構成繊維が液体流の作用によって乱れ,ウエブ層B
に地合いの乱れや目付け斑が生じたりすることがない。
高圧液体流処理を施すに際し,前記積層物を担持する支
持材として例えば20〜100メツシユの金網等のメツ
シユスクリーンや有孔板など,高圧液体流が積層物を貫
通し得るものであれば特に限定されない。
In the present invention, the high pressure liquid flow treatment is performed in two stages. First, as the first-stage treatment, a high-pressure liquid flow having a pressure of 5 to 30 kg / cm 2 G is jetted to collide with the laminate to pre-entangle the constituent fibers of the web layer B with each other. In this first-stage treatment, if the liquid flow pressure is less than 5 kg / cm 2 G, the constituent fibers of the web layer B cannot be pre-entangled with each other, while the liquid flow pressure is 30 kg / cm 2. When it exceeds 2 G, the constituent fibers of the web layer B are disturbed by the action of the liquid flow when the high-pressure liquid flow is jetted and collided with the above-mentioned laminate, and the texture and the ununiformity of the fabric are generated in the web layer B. Absent.
Then, as the second stage treatment, the pressure is 40 to 150 kg.
/ Cm 2 G of high-pressure liquid flow is ejected to collide with the laminate to three-dimensionally entangle the constituent fibers of the web layer A and the constituent fibers of the web layer B with each other, and The three-dimensional entanglement is performed to integrate the laminate as a whole. In this second-stage treatment, if the liquid flow pressure is less than 40 kg / cm 2 G, the three-dimensional entanglement between the fibers as described above cannot be sufficiently formed, while the liquid flow pressure is When it exceeds 150 kg / cm 2 G, the flexibility and bulkiness of the obtained composite nonwoven fabric are not improved,
Neither is preferable. In the present invention, a high-pressure liquid flow having a pressure of 40 to 150 kg / cm 2 G is used as the second-stage treatment, and when the second-stage treatment is applied to the laminate, as described above, Since the constituent fibers of the web layer B are preliminarily entangled with each other by the step treatment, the constituent fibers of the web layer B are disturbed by the action of the liquid flow when the high-pressure treatment of the second step is performed, and the web layer B is disturbed. B
The texture of the fabric is not disturbed and the spot weight is not generated.
In carrying out the high-pressure liquid flow treatment, as a supporting material for supporting the laminate, for example, a mesh screen such as a wire mesh of 20 to 100 mesh, a perforated plate, etc., as long as the high-pressure liquid flow can penetrate the laminate, Not limited.

【0017】高圧液体流処理を施した後,処理後の前記
積層物から過剰水分を除去する。この過剰水分を除去す
るに際しては,公知の方法を採用することができる。例
えばマングルロール等の絞り装置を用いて過剰水分をあ
る程度機械的に除去し,引き続き連続熱風乾燥機等の乾
燥装置を用いて残余の水分を除去して最終の複合不織布
製品を得ることができる。なお,この乾燥処理は,通常
の乾熱処理の他に必要に応じて湿熱処理としてもよい。
また,乾燥処理を施すにあたり乾燥処理温度と時間等の
処理条件を選択するに際しては,単なる水分の除去を図
るに止まらず,適度の収縮を許容するように条件を選択
をしてもよい。
After the high pressure liquid flow treatment, excess moisture is removed from the treated laminate. A known method can be adopted for removing the excess water. For example, excess moisture can be mechanically removed to some extent by using a squeezing device such as a mangle roll, and then residual moisture can be removed by using a drying device such as a continuous hot air dryer to obtain the final composite nonwoven fabric product. In addition to the normal dry heat treatment, the dry treatment may be a wet heat treatment, if necessary.
Further, when selecting the processing conditions such as the drying processing temperature and time for performing the drying processing, the conditions may be selected not only to simply remove water but also to allow appropriate shrinkage.

【0018】[0018]

【作用】本発明の複合不織布は,合成長繊維不織ウエブ
層Aの両面に再生セルロース短繊維からなる不織ウエブ
層Bが積層され,不織ウエブ層Aの構成繊維間が部分的
に熱圧接されており,不織ウエブ層Aの構成繊維と不織
ウエブ層Bの構成繊維とが相互に三次元的に交絡し,か
つ不織ウエブ層Bの構成繊維同士が三次元的に交絡し,
全体として一体化されてなるものである。本発明におい
ては,前記ウエブ層Aとして,熱圧接領域として0.1
〜1.0mm2 の面積を有し,その密度すなわち圧接点
密度が5〜100点/cm2 好ましくは10〜80点/
cm2 ,かつウエブ層の全表面積に対する全熱圧接領域
の面積の比すなわち圧接面積率が5〜50%好ましくは
8〜40%で,かつ表面温度がウエブ構成繊維中最も低
い融点を有する重合体の融点より50〜80℃低い温度
の熱エンボスロールを用いロールの線圧を5〜30kg
/cmとし部分的熱圧接処理を施して得られる長繊維不
織ウエブを出発原料とする。このような通常の場合より
低温かつ低線圧の熱エンボスロールを用いる熱圧接処理
により,長繊維ウエブの構成繊維間が一旦予備的に熱圧
接される。次いで,前記熱圧接処理後の長繊維不織ウエ
ブの両面に前記不織ウエブ層Bを積層した後,第1段階
の処理として圧力が5〜30kg/cm2 Gの高圧液体
流処理を施し,引き続き第2段階の処理として圧力が4
0〜150kg/cm2 Gの高圧液体流処理を施す。本
発明においては,この第2段階の圧力40〜150kg
/cm2 Gの高圧液体流処理を施すことにより,前記熱
圧接処理後の長繊維不織ウエブの熱圧接領域に存在する
長繊維の予備的繊維間熱圧接が部分的に破壊され長繊維
が分割剥離されるのであるが,このような熱圧接領域の
部分的破壊は全熱圧接領域において生じるものではな
い。すなわち,従前の0.1〜1.0mm2 の面積を有
し,圧接点密度が5〜100点/cm2 好ましくは10
〜80点/cm2 ,圧接面積率が5〜50%好ましくは
8〜40%の熱圧接領域が部分的に破壊され,圧接点密
度で2〜80点/cm2 好ましくは4〜60点/c
2 ,圧接面積率で2〜30%好ましくは4〜20%の
熱圧接領域が残るのである。そして,このような特定の
熱圧接領域を残す長繊維不織ウエブをウエブ層Aとして
用いることによって,すなわち残余の熱圧接領域によっ
て複合不織布としたときに寸法安定性が向上し,また,
多くの非熱圧接領域の存在によって複合不織布としたと
きに不織ウエブ層Aの構成繊維と不織ウエブ層Bの構成
繊維とが相互に三次元的に十分交絡し全体として一体化
され,したがって引張り強力と層間剥離強力等の機械的
特性と柔軟性が向上するのである。また,本発明におい
ては,前記不織ウエブ層Aの両面に前述したような再生
セルロース短繊維からなる不織ウエブ層Bが積層されて
いるため,複合不織布としたときに前記繊維間の三次元
的交絡と相俟って機械的特性と寸法安定性がさらに向上
し,吸水・吸湿性が具備され,しかも静電気の発生も防
止されるのである。
In the composite nonwoven fabric of the present invention, the non-woven web layer B made of regenerated cellulose short fibers is laminated on both sides of the synthetic long fiber non-woven web layer A so that the constituent fibers of the non-woven web layer A are partially heated. The constituent fibers of the non-woven web layer A and the constituent fibers of the non-woven web layer B are three-dimensionally entangled with each other and the constituent fibers of the non-woven web layer B are three-dimensionally entangled with each other. ,
It is integrated as a whole. In the present invention, the web layer A has a thermal pressure contact area of 0.1
Has an area of ˜1.0 mm 2 , and its density, that is, the pressure contact density is 5 to 100 points / cm 2, preferably 10 to 80 points / cm 2.
cm 2 and the ratio of the area of the total heat-bonded region to the total surface area of the web layer, that is, the pressure-bonded area ratio is 5 to 50%, preferably 8 to 40%, and the surface temperature has the lowest melting point in the web-constituting fibers. Using a hot embossing roll at a temperature 50 to 80 ° C lower than the melting point of the roll, the linear pressure of the roll is 5 to 30 kg.
/ Cm and the long-fiber non-woven web obtained by performing the partial hot-pressing treatment is used as a starting material. By such a thermocompression bonding process using a hot embossing roll having a lower temperature and a lower linear pressure than in the usual case, the constituent fibers of the long fiber web are once preliminarily thermocompressed. Then, the non-woven web layers B are laminated on both surfaces of the long-fiber non-woven web after the heat-pressing treatment, and then subjected to a high-pressure liquid flow treatment at a pressure of 5 to 30 kg / cm 2 G as the first step. Then the pressure is 4 as the second stage treatment.
A high pressure liquid flow treatment of 0 to 150 kg / cm 2 G is applied. In the present invention, this second stage pressure is 40 to 150 kg.
/ Cm 2 G high-pressure liquid flow treatment causes the preliminary inter-fiber heat-welding of the long fibers existing in the hot-pressing region of the long-fiber nonwoven web after the hot-pressing treatment to be partially destroyed and Although they are separated and separated, such partial destruction of the heat-welding region does not occur in the entire heat-welding region. That is, it has a conventional area of 0.1 to 1.0 mm 2 and a pressure contact density of 5 to 100 points / cm 2, preferably 10
80 points / cm 2, pressure area ratio is 5% to 50%, preferably partially destroyed thermally pressed region of 8% to 40%, 2 to 80 points in pressure contact point density / cm 2 preferably 4 to 60 points / c
The thermal pressing area of 2 to 30%, preferably 4 to 20% in terms of m 2 and pressing area ratio remains. Then, by using the long fiber non-woven web that leaves such a specific heat-welding region as the web layer A, that is, when the composite non-woven fabric is formed by the remaining heat-pressing region, the dimensional stability is improved, and
Due to the presence of many non-heat-pressed regions, the constituent fibers of the non-woven web layer A and the constituent fibers of the non-woven web layer B are sufficiently entangled with each other three-dimensionally and integrated as a whole, Mechanical properties such as tensile strength and delamination strength and flexibility are improved. Further, in the present invention, since the non-woven web layer B made of the regenerated cellulose short fibers as described above is laminated on both sides of the non-woven web layer A, when the composite non-woven fabric is formed, the three-dimensional inter-fiber Combined with mechanical entanglement, mechanical properties and dimensional stability are further improved, water and moisture absorption properties are provided, and the generation of static electricity is prevented.

【0019】[0019]

【実施例】次に,実施例に基づき本発明を具体的に説明
するが,本発明は,これらの実施例によって何ら限定さ
れるものではない。実施例において,各特性値の測定を
次の方法により実施した。 融点(℃):パーキンエルマ社製示差走査型熱量計DS
C−2型を用い,昇温速度20℃/分の条件で測定し,
得られた融解吸熱曲線において極値を与える温度を融点
とした。 相対粘度(イ):ポリエチレンテレフタレートの相対粘
度(イ)を次の方法によって測定した。すなわち,フエ
ノールと四塩化エタンの等重量混合液を溶媒とし,この
溶媒100ccに試料0.5gを溶解し,温度20℃の
条件で常法により測定した。 不織布の目付け(g/m2 ):標準状態の試料から縦1
0cm×横10cmの試料片計10点を作成し,平衡水
分に到らしめた後,各試料片の重量(g)を秤量し,得
られた値の平均値を単位面積(m2 )当たりに換算し目
付け(g/m2)とした。 不織布の引張り強力(kg/5cm幅)及び引張り伸度
(%):JIS−L−1096Aに記載の方法に準じて
測定した。すなわち,試料長が10cm,試料幅が5c
mの試料片計10点を作成し,各試料片毎に不織布の経
方向について,定速伸長型引張り試験機(東洋ボールド
ウイン社製テンシロンUTM−4−1−100)を用
い,引張り速度10cm/分で伸長し,得られた切断時
荷重値(kg/5cm幅)の平均値を引張り強力(kg
/5cm幅),切断時伸長率(%)の平均値を引張り伸
度(%)とした。 層間剥離強力(g/5cm幅):試料長が15cm,試
料幅が5cmの試料片計3点を作成し,各試料片毎に不
織布の経方向について,定速伸長型引張り試験機(東洋
ボールドウイン社製テンシロンUTM−4−1−10
0)を用い,引張り速度10cm/分でウエブ層Bがウ
エブ層Aから不織布の端部から計って5cmの位置まで
強制的に剥離させ,得られた荷重値(g/5cm幅)の
平均値を層間剥離強力(g/5cm幅)とした。 面積収縮率(%):試料長が20cm,試料幅が20c
mの試料片計5点を作成し,各試料片毎に,所定温度の
エアーオーブン型熱処理機を用い5分間熱処理を施し
た。そして,熱処理前の試料片の面積S1 (cm2 )値
と熱処理後の試料片の面積S2 (cm2 )値とを用い,
下記式(1)に従って算出した収縮率(%)の平均値を
面積収縮率(%)とした。 面積収縮率(%)=〔1−(S2 /S1 )〕×100・・・・・・(1) 圧縮剛軟度(g):試料長が10cm,試料幅が5cm
の試料片計5点を作成し,各試料片毎に横方向に曲げて
円筒状物とし,各々その端部を接合したものを圧縮剛軟
度測定試料とした。次いで,各測定試料毎にその軸方向
について,定速伸長型引張り試験機(東洋ボールドウイ
ン社製テンシロンUTM−4−1−100)を用い,圧
縮速度5cm/分で圧縮し,得られた最大荷重値(g)
の平均値を圧縮剛軟度(g)とした。 吸水性(cm/10分):JIS L−1096に記載
のバイレツク法に準じて測定した。
EXAMPLES Next, the present invention will be specifically described based on examples, but the present invention is not limited to these examples. In the examples, each characteristic value was measured by the following method. Melting point (℃): Differential scanning calorimeter DS manufactured by Perkin Elma
Using a C-2 type, the measurement is performed at a temperature rising rate of 20 ° C./min,
The temperature that gives the extreme value in the obtained melting endothermic curve was taken as the melting point. Relative viscosity (a): The relative viscosity (a) of polyethylene terephthalate was measured by the following method. That is, an equal weight mixture of phenol and ethane tetrachloride was used as a solvent, 0.5 g of a sample was dissolved in 100 cc of this solvent, and measurement was carried out by a conventional method at a temperature of 20 ° C. Unit weight of non-woven fabric (g / m 2 ): 1 from the standard sample
After making 10 pieces of 0 cm x 10 cm sample piece in total and reaching the equilibrium water content, the weight (g) of each sample piece was weighed, and the average value of the obtained values was measured per unit area (m 2 ). It was converted into the unit weight (g / m 2 ). Tensile strength (kg / 5 cm width) and tensile elongation (%) of non-woven fabric: Measured according to the method described in JIS-L-1096A. That is, the sample length is 10 cm and the sample width is 5 c
A total of 10 sample pieces of m were prepared, and for each sample piece, with respect to the longitudinal direction of the nonwoven fabric, a constant speed extension type tensile tester (Tensilon UTM-4-1-100 manufactured by Toyo Baldwin Co., Ltd.) was used, and a pulling speed was 10 cm. The tensile strength (kg / 5 cm width) average value obtained at the time of cutting
/ 5 cm width), and the average value of the elongation at break (%) was taken as the tensile elongation (%). Delamination strength (g / 5 cm width): A total of 3 sample pieces with a sample length of 15 cm and a sample width of 5 cm were prepared, and the non-woven fabric warp direction for each sample piece was measured by a constant-speed extension type tensile tester (Toyo Bold Win Tensilon UTM-4-1-10
0), the web layer B was forcibly peeled from the web layer A to a position of 5 cm from the end of the nonwoven fabric at a pulling speed of 10 cm / min, and the average value of the load values (g / 5 cm width) obtained Was defined as the delamination strength (g / 5 cm width). Area shrinkage (%): sample length 20 cm, sample width 20 c
A total of 5 sample pieces of m were prepared, and each sample piece was heat-treated for 5 minutes using an air oven type heat treatment machine at a predetermined temperature. Then, using the area S1 (cm 2 ) value of the sample piece before the heat treatment and the area S2 (cm 2 ) value of the sample piece after the heat treatment,
The average value of the shrinkage rates (%) calculated according to the following formula (1) was defined as the area shrinkage rate (%). Area shrinkage (%) = [1- (S2 / S1)] × 100 (1) Compressive stiffness (g): sample length 10 cm, sample width 5 cm
A total of 5 sample pieces were prepared, and each sample piece was bent in the lateral direction to form a cylindrical object, and the ends were joined together to obtain a sample for measuring compression stiffness. Then, for each measurement sample, the maximum obtained by compressing at a compression rate of 5 cm / min in the axial direction using a constant-speed extension type tensile tester (Tensilon UTM-4-1-100 manufactured by Toyo Baldwin Co., Ltd.) Load value (g)
The average value of was defined as the compression stiffness (g). Water absorption (cm / 10 minutes): Measured according to the Bayrek method described in JIS L-1096.

【0020】実施例1 融点が259℃,相対粘度(イ)が1.38のポリエチ
レンテレフタレート重合体チツプを用い,スパンボンド
法により長繊維不織ウエブ層Aを製造した。すなわち,
前記重合体チツプを溶融し,これを紡糸孔を通して紡糸
温度290℃で溶融紡出し,溶融紡出されたポリマ流を
冷却した後,エアーサツカを用い引取り速度4800m
/分で引取った後,コロナ放電手段を用いて開繊し,移
動する捕集面上に捕集・堆積させて単繊維繊度が3.0
デニールの長繊維からなるウエブとし,次いで得られた
ウエブに熱圧接処理を施して目付けが30g/m2 のウ
エブ層Aを得た。熱圧接処理を施すに際しては,面積が
0.64mm2 の彫刻模様が圧接点密度20点/cm2
かつ圧接面積率12.8%で配設されたエンボスロール
と表面が平滑な金属ロールとを用いた。このエンボスロ
ールと表面が平滑な金属ロールの表面温度を200℃,
かつ両ロール間の線圧を10kg/cmとした。別途,
木材パルプを原料とし,環状酸化アミンのN−メチルホ
リンNオキシドを溶剤とした溶液紡糸により得られた平
均単繊維繊度が1.4デニール,繊維長が44mmの再
生セルロース短繊維〔レンツイン社の「ソルージヨン
(登録商標)〕を用い,パラレルカード機により目付け
が30g/m2 のパラレルカードウエブ層Bを得た。次
いで,得られたウエブ層Aの両面にウエブ層Bを積層
し,得られた積層物を移動速度30m/分で移動する3
0メツシユの金網上に載置して高圧液体流処理を施し
た。高圧液体流処理は,孔径0.12mmの噴射孔が孔
間隔0.62mmで3群配列で配設された高圧柱状水流
処理装置を用い,積層物の上方80mmの位置から2段
階に別けて柱状水流を作用させた。第1段階の処理では
圧力を20kg/cm2 Gとし,第2段階の処理では圧
力を60kg/cm2 Gとした。なお,第2段階の処理
は,積層物の表裏から各々1回施した。次いで,得られ
た処理積層物からマングルロールを用いて過剰水分を除
去した後,積層物に熱風乾燥機を用い温度98℃の条件
で乾燥処理を施し,複合不織布を得た。上記で得られた
複合不織布は,目付けが90g/m2 ,引張り強力が4
3.0kg/5cm幅,引張り伸度が27%であって機
械的特性が高く,層間剥離強力が420g/5cm幅で
あって耐層間剥離性が高く十分に一体化され,処理温度
が160℃時の面積収縮率が2.7%であって寸法安定
性が優れ,圧縮剛軟度が45gで柔軟性が優れ,吸水性
が18.7cm/10分で優れた吸水性を有するもので
あった。
Example 1 A long fiber non-woven web layer A was produced by a spunbond method using a polyethylene terephthalate polymer chip having a melting point of 259 ° C. and a relative viscosity (a) of 1.38. That is,
The polymer chip is melted, melt-spun through a spinning hole at a spinning temperature of 290 ° C., the melt-spun polymer stream is cooled, and a take-up speed of 4800 m is obtained using an air sucker.
After being collected at a speed of 1 / min, the fibers are opened using a corona discharge means and collected / deposited on a moving collecting surface to obtain a single fiber fineness of 3.0.
A web made of long denier fibers was obtained, and then the obtained web was subjected to a heat press treatment to obtain a web layer A having a basis weight of 30 g / m 2 . When performing the heat pressure welding process, the engraving pattern with an area of 0.64 mm 2 has a pressure contact density of 20 points / cm 2.
In addition, an embossing roll arranged with a pressure contact area ratio of 12.8% and a metal roll having a smooth surface were used. The surface temperature of this embossing roll and the metal roll with a smooth surface is 200 ° C,
Moreover, the linear pressure between both rolls was set to 10 kg / cm. Separately,
Regenerated cellulose short fibers having an average single fiber fineness of 1.4 denier and a fiber length of 44 mm obtained by solution spinning using wood pulp as a raw material and N-methylphorine N oxide of a cyclic amine as a solvent [Lentwin's "Soluyon" (Registered trademark)] and a parallel card machine was used to obtain a parallel card web layer B having a basis weight of 30 g / m 2. Next, the web layer B was laminated on both sides of the obtained web layer A, and the obtained laminate was obtained. Move objects at a moving speed of 30 m / min 3
It was placed on a wire mesh of 0 mesh and subjected to high pressure liquid flow treatment. The high-pressure liquid flow treatment uses a high-pressure columnar water flow treatment device in which injection holes with a hole diameter of 0.12 mm are arranged in a three-group arrangement with a hole interval of 0.62 mm, and columnar is divided into two stages from a position 80 mm above the laminate. A stream of water was applied. The pressure was 20 kg / cm 2 G in the first stage treatment, and the pressure was 60 kg / cm 2 G in the second stage treatment. The second stage treatment was performed once from the front and back of the laminate. Then, excess moisture was removed from the obtained treated laminate using a mangle roll, and the laminate was dried using a hot air dryer at a temperature of 98 ° C to obtain a composite nonwoven fabric. The composite non-woven fabric obtained above had a basis weight of 90 g / m 2 and a tensile strength of 4
3.0kg / 5cm width, tensile elongation 27%, high mechanical properties, delamination strength 420g / 5cm width, high delamination resistance, well integrated, processing temperature 160 ℃ The area shrinkage rate is 2.7%, the dimensional stability is excellent, the compression stiffness is 45 g, the flexibility is excellent, and the water absorption is 18.7 cm / 10 minutes. It was

【0021】比較例1 熱圧接処理を施すに際して,エンボスロールと表面が平
滑な金属ロールの表面温度を245℃,かつ両ロール間
の線圧を50kg/cmとした以外は実施例1と同様に
して,ウエブ層Aを得た。次いで,得られたウエブ層A
の両面に実施例1で用いたものと同一のウエブ層Bを積
層し,得られた積層物を金網上に載置し,実施例1と同
様にして高圧柱状水流処理を施した後,過剰水分の除去
と乾燥処理を施し,複合不織布を得た。上記で得られた
複合不織布は,目付けが87g/m2 ,引張り強力が2
5.8kg/5cm幅,引張り伸度が56%,層間剥離
強力が125g/5cm幅,処理温度が160℃時の面
積収縮率が1.6%,圧縮剛軟度が128gであった。
この複合不織布は,上記の特性値からも明らかなよう
に,熱圧接処理温度が高くウエブ層Aの部分的な熱圧接
が強固であるために高圧柱状水流処理を施したときに熱
圧接領域に存在するウエブ層Aの構成繊維が分割剥離せ
ず,すなわち同構成繊維とウエブ層Bの構成繊維とが相
互に三次元的に十分交絡しないため引張り強力と引張り
伸度という機械的特性が劣り,しかも全体としての一体
化も不十分であるため耐層間剥離性も向上しないもので
あった。
Comparative Example 1 In the same manner as in Example 1 except that the embossing roll and the metal roll having a smooth surface had a surface temperature of 245 ° C. and a linear pressure between the two rolls of 50 kg / cm when the hot pressing treatment was performed. A web layer A was obtained. Then, the obtained web layer A
The same web layer B as that used in Example 1 was laminated on both surfaces of the above, the obtained laminate was placed on a wire net, and subjected to high-pressure columnar water treatment in the same manner as in Example 1, After removing water and drying, a composite nonwoven fabric was obtained. The composite non-woven fabric obtained above had a basis weight of 87 g / m 2 and a tensile strength of 2
The width was 5.8 kg / 5 cm, the tensile elongation was 56%, the delamination strength was 125 g / 5 cm, the area shrinkage was 1.6% when the treatment temperature was 160 ° C., and the compression bending resistance was 128 g.
As is clear from the above characteristic values, this composite non-woven fabric has a high temperature for heat-pressure contact treatment, and the partial heat-pressure contact for the web layer A is strong. The existing constituent fibers of the web layer A are not separated and separated, that is, the constituent fibers and the constituent fibers of the web layer B are not sufficiently entangled three-dimensionally with each other, so that the mechanical properties such as tensile strength and tensile elongation are inferior. Moreover, since the integration as a whole is insufficient, the delamination resistance is not improved.

【0022】比較例2 ウエブ層Bとして,ポリエチレンテレフタレート重合体
からなる単繊維繊度が2.0デニールで繊維長が51m
mの短繊維綿を用い,パラレルカード機により目付けが
20g/m2 のパラレルカードウエブ層Bを得た。次い
で,実施例1で得られたウエブ層Aの両面にウエブ層B
を積層し,得られた積層物を移動速度30m/分で移動
する30メツシユの金網上に載置して高圧液体流処理を
施した。高圧液体流処理は,孔径0.12mmの噴射孔
が孔間隔0.62mmで3群配列で配設された高圧柱状
水流処理装置を用い,積層物の上方80mmの位置から
2段階に別けて柱状水流を作用させた。第1段階の処理
では圧力を20kg/cm2 Gとし,第2段階の処理で
は圧力を60kg/cm2 Gとした。なお,第2段階の
処理は,積層物の表裏から各々1回施した。次いで,得
られた処理積層物からマングルロールを用いて過剰水分
を除去した後,積層物に熱風乾燥機を用い温度98℃の
条件で乾燥処理を施し,複合不織布を得た。上記で得ら
れた複合不織布は,目付けが69g/m2 ,引張り強力
が42.2kg/5cm幅,引張り伸度が66%,層間
剥離強力が319g/5cm幅,処理温度が160℃時
の面積収縮率が2.1%,圧縮剛軟度が34gであっ
て,引張り強力と引張り伸度という機械的特性と耐層間
剥離性,寸法安定性,そして柔軟性はいずれも優れるも
のの,吸水性が1.3cm/10分と低く,不織布表面
が吸水性をほとんど有しないものであった。
Comparative Example 2 As the web layer B, a single fiber made of polyethylene terephthalate polymer has a fineness of 2.0 denier and a fiber length of 51 m.
A parallel card web layer B having a basis weight of 20 g / m 2 was obtained using a parallel card machine using m short fiber cotton. Then, a web layer B was formed on both sides of the web layer A obtained in Example 1.
Was laminated, and the obtained laminate was placed on a wire mesh of 30 mesh which moved at a moving speed of 30 m / min and subjected to high-pressure liquid flow treatment. The high-pressure liquid flow treatment uses a high-pressure columnar water flow treatment device in which injection holes with a hole diameter of 0.12 mm are arranged in a three-group arrangement with a hole interval of 0.62 mm, and columnar is divided into two stages from a position 80 mm above the laminate. A stream of water was applied. The pressure was 20 kg / cm 2 G in the first stage treatment, and the pressure was 60 kg / cm 2 G in the second stage treatment. The second stage treatment was performed once from the front and back of the laminate. Then, excess moisture was removed from the obtained treated laminate using a mangle roll, and the laminate was dried using a hot air dryer at a temperature of 98 ° C to obtain a composite nonwoven fabric. The composite non-woven fabric obtained above had a basis weight of 69 g / m 2 , a tensile strength of 42.2 kg / 5 cm width, a tensile elongation of 66%, a delamination strength of 319 g / 5 cm width, and an area at a treatment temperature of 160 ° C. The shrinkage rate is 2.1%, the compression bending resistance is 34g, and the mechanical properties such as tensile strength and tensile elongation, delamination resistance, dimensional stability, and flexibility are all excellent, but the water absorption is high. It was as low as 1.3 cm / 10 minutes, and the nonwoven fabric surface had almost no water absorption.

【0023】比較例3 実施例1で用いたウエブ層Aの片面のみに実施例1で用
いたものと同一のウエブ層Bを積層し,得られた積層物
を金網上に載置し,第2段階の高圧柱状水流処理の圧力
を70kg/cm2 Gとした以外は実施例1と同様にし
て,複合不織布を得た。上記で得られた複合不織布は,
目付けが60g/m2 ,引張り強力が26.6kg/5
cm幅,引張り伸度が59%,層間剥離強力が427g
/5cm幅,処理温度が160℃時の面積収縮率が2.
3%,圧縮剛軟度が28gであった。この複合不織布
は,高圧柱状水流処理を施したときにウエブ層Aの構成
繊維とウエブ層Bの構成繊維とが相互に三次元的に交絡
するため機械的特性や耐層間剥離性は実用上問題のない
ものであるものの,他面のウエブ層Aが露出している面
ではその構成繊維が十分に交絡しないため,耐摩耗性が
劣るものであった。
Comparative Example 3 The same web layer B as that used in Example 1 was laminated on only one side of the web layer A used in Example 1, and the obtained laminate was placed on a wire mesh, A composite non-woven fabric was obtained in the same manner as in Example 1 except that the pressure of the two-stage high-pressure columnar water treatment was 70 kg / cm 2 G. The composite non-woven fabric obtained above is
Unit weight is 60 g / m 2 , tensile strength is 26.6 kg / 5
cm width, tensile elongation 59%, delamination strength 427g
Area shrinkage at a width of / 5 cm and a processing temperature of 160 ° C is 2.
3%, the compression bending resistance was 28 g. This composite non-woven fabric has mechanical properties and delamination resistance that are practically problematic because the constituent fibers of the web layer A and the constituent fibers of the web layer B are three-dimensionally entangled with each other when subjected to high-pressure columnar water flow treatment. However, the abrasion resistance was inferior because the constituent fibers were not sufficiently entangled on the surface of the other surface where the web layer A was exposed.

【0024】[0024]

【発明の効果】本発明の複合不織布は,合成長繊維不織
ウエブ層Aの両面に再生セルロース短繊維からなる不織
ウエブ層Bが積層され 不織ウエブ層Aの構成繊維間が
部分的に熱圧接されており,不織ウエブ層Aの構成繊維
と不織ウエブ層Bの構成繊維とが相互に三次元的に交絡
し,かつ不織ウエブ層Bの構成繊維同士が三次元的に交
絡し,全体として一体化されてなるものであって,引張
り強力と層間剥離強力等の機械的特性,寸法安定性,柔
軟性及び吸水・吸湿性がいずれも優れ,しかも静電気の
発生を防止することもでき,産業資材用素材のみならず
一般用素材としても好適である。また,本発明の複合不
織布の製造方法によれば,前記不織布を効率良く製造す
ることができる。
Industrial Applicability The composite nonwoven fabric of the present invention comprises a synthetic long fiber non-woven web layer A and a non-woven web layer B made of regenerated cellulose short fibers laminated on both sides of the non-woven web layer A. The constituent fibers of the non-woven web layer A and the constituent fibers of the non-woven web layer B are three-dimensionally entangled with each other, and the constituent fibers of the non-woven web layer B are three-dimensionally entangled with each other. However, it must be integrated as a whole, and has excellent mechanical properties such as tensile strength and delamination strength, dimensional stability, flexibility, and water absorption / moisture absorption, and must also prevent the generation of static electricity. Therefore, it is suitable not only as a material for industrial materials but also as a general material. Moreover, according to the method for producing a composite nonwoven fabric of the present invention, the nonwoven fabric can be efficiently produced.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 合成長繊維不織ウエブ層Aの両面に再生
セルロース短繊維からなる不織ウエブ層Bが積層されて
なる複合不織布であって,不織ウエブ層Aの構成繊維間
が部分的に熱圧接されており,不織ウエブ層Aの構成繊
維と不織ウエブ層Bの構成繊維とが相互に三次元的に交
絡し,かつ不織ウエブ層Bの構成繊維同士が三次元的に
交絡し,全体として一体化されてなることを特徴とする
複合不織布。
1. A composite non-woven fabric in which a nonwoven web layer B made of regenerated cellulose short fibers is laminated on both sides of a composite growth fiber nonwoven web layer A, wherein the constituent fibers of the nonwoven web layer A are partially separated. The constituent fibers of the non-woven web layer A and the constituent fibers of the non-woven web layer B are three-dimensionally entangled with each other, and the constituent fibers of the non-woven web layer B are three-dimensionally entangled with each other. A composite non-woven fabric characterized by being entangled and integrated as a whole.
【請求項2】 スパンボンド法により形成した合成長繊
維不織ウエブに表面温度がその構成繊維中最も低い融点
を有する重合体の融点より50〜80℃低い温度の熱エ
ンボスロールを用いロールの線圧を5〜30kg/cm
とし部分的熱圧接処理を施して合成長繊維不織ウエブ層
Aを形成し,次いで得られた不織ウエブ層Aの両面に再
生セルロース短繊維からなる不織ウエブ層Bを積層した
後,第1段階の処理として圧力が5〜30kg/cm2
Gの高圧液体流処理を施して不織ウエブ層Bの構成繊維
同士を予備的に交絡させ,引き続き第2段階の処理とし
て圧力が40〜150kg/cm2 Gの高圧液体流処理
を施して不織ウエブ層Aの構成繊維と不織ウエブ層Bの
構成繊維とを相互に三次元的に交絡させ,かつ不織ウエ
ブ層Bの構成繊維同士を三次元的に交絡させ,全体とし
て一体化させることを特徴とする複合不織布の製造方
法。
2. A wire of a roll using a hot embossing roll whose surface temperature is 50 to 80 ° C. lower than the melting point of the polymer having the lowest melting point among the constituent fibers of the synthetic long fiber nonwoven web formed by the spunbond method. Pressure is 5 to 30 kg / cm
After forming a synthetic long fiber non-woven web layer A by partial heat-pressing treatment, and then laminating a non-woven web layer B made of regenerated cellulose short fibers on both sides of the obtained non-woven web layer A, The pressure is 5 to 30 kg / cm 2 as a one-step treatment.
G by applying a high pressure liquid flow treatment to G to pre-entangle the constituent fibers of the non-woven web layer B with each other, and subsequently performing a high pressure liquid flow treatment at a pressure of 40 to 150 kg / cm 2 G as the second stage treatment. The constituent fibers of the woven web layer A and the constituent fibers of the non-woven web layer B are three-dimensionally entangled with each other, and the constituent fibers of the non-woven web layer B are three-dimensionally entangled to be integrated as a whole. A method for producing a composite non-woven fabric, comprising:
JP6129690A 1994-05-18 1994-05-18 Composite non-woven fabric and its production Pending JPH07316968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6129690A JPH07316968A (en) 1994-05-18 1994-05-18 Composite non-woven fabric and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6129690A JPH07316968A (en) 1994-05-18 1994-05-18 Composite non-woven fabric and its production

Publications (1)

Publication Number Publication Date
JPH07316968A true JPH07316968A (en) 1995-12-05

Family

ID=15015786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6129690A Pending JPH07316968A (en) 1994-05-18 1994-05-18 Composite non-woven fabric and its production

Country Status (1)

Country Link
JP (1) JPH07316968A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09195154A (en) * 1996-01-16 1997-07-29 Unitika Ltd Nonwoven fabric for hook-and-loop fastener and its production
JP2004338384A (en) * 2003-04-02 2004-12-02 Reifenhaeuser Gmbh & Co Mas Fab Manufacturing method for fiber laminated body
WO2018131699A1 (en) * 2017-01-16 2018-07-19 東洋紡株式会社 Hydroentangled nonwoven fabric

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09195154A (en) * 1996-01-16 1997-07-29 Unitika Ltd Nonwoven fabric for hook-and-loop fastener and its production
JP2004338384A (en) * 2003-04-02 2004-12-02 Reifenhaeuser Gmbh & Co Mas Fab Manufacturing method for fiber laminated body
WO2018131699A1 (en) * 2017-01-16 2018-07-19 東洋紡株式会社 Hydroentangled nonwoven fabric
JPWO2018131699A1 (en) * 2017-01-16 2019-11-07 東洋紡株式会社 Hydroentangled nonwoven fabric

Similar Documents

Publication Publication Date Title
JP3201671B2 (en) Manufacturing method of composite nonwoven fabric
JPH10219555A (en) Laminated nonwoven fabric and its production
JP3948781B2 (en) Short fiber nonwoven fabric and method for producing the same
JPH10331063A (en) Composite nonwoven fabric and its production
JPH07316968A (en) Composite non-woven fabric and its production
JP3305453B2 (en) Laminated non-woven structure
JP3905916B2 (en) Method for producing composite nonwoven fabric containing ultrafine fibers
JP3580626B2 (en) Nonwoven fabric for hook-and-loop fastener and method for producing the same
JP3259936B2 (en) Laminated nonwoven fabric and method for producing the same
JPH09119055A (en) Heat-resistant composite nonwoven fabric and its production
JPH10280262A (en) Nonwoven fabric and its production
JPH11158763A (en) Conjugate nonwoven cloth and its production
JPH0768686A (en) Laminated nonwoven structure
JPH07310272A (en) Composite nonwoven fabric and its production
JP4026279B2 (en) Split type composite fiber and fiber molded body using the same
JPH08109567A (en) Laminated nonwoven structure and its production
JP2000017558A (en) Ultrafine staple-containing composite nonwoven fabric and its production
JPH0913254A (en) Flame retardant composite fabric and its production
JP3784093B2 (en) Disposable handbag
JP3221200B2 (en) Laminated nonwoven fabric and method for producing the same
JPH1121752A (en) Composite nonwoven fabric and its production
JPH07266479A (en) Laminated nonwoven structure
JPH10273870A (en) Composite non-woven fabric and its production
JPH10195749A (en) Laminated nonwoven fabric and its production
JPH0730837U (en) Bedding sheets

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20081121

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20081121

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20101121

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 14