[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3201671B2 - Manufacturing method of composite nonwoven fabric - Google Patents

Manufacturing method of composite nonwoven fabric

Info

Publication number
JP3201671B2
JP3201671B2 JP05299993A JP5299993A JP3201671B2 JP 3201671 B2 JP3201671 B2 JP 3201671B2 JP 05299993 A JP05299993 A JP 05299993A JP 5299993 A JP5299993 A JP 5299993A JP 3201671 B2 JP3201671 B2 JP 3201671B2
Authority
JP
Japan
Prior art keywords
web layer
fiber
web
pressure
constituent fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05299993A
Other languages
Japanese (ja)
Other versions
JPH06240553A (en
Inventor
信夫 野口
良成 吉岡
安広 米沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP05299993A priority Critical patent/JP3201671B2/en
Publication of JPH06240553A publication Critical patent/JPH06240553A/en
Application granted granted Critical
Publication of JP3201671B2 publication Critical patent/JP3201671B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本願発明は、機械的特性、寸法安
定性及び柔軟性が優れた複合不織布の製造方法に関する
ものである。
The present invention relates is related to the mechanical properties, method for producing a composite nonwoven fabric having excellent dimensional stability and flexibility.

【0002】[0002]

【従来の技術】従来から,基布上に短繊維カードウエブ
を積層・複合した種々の複合不織布が知られている。例
えば,特開昭53−114975号や特開昭53−12
4601号には,織編物を基布としこの上に割繊型複合
短繊維からなる不織ウエブあるいはメルトブローン法に
より得られる極細繊維不織ウエブを積層・複合した複合
不織布が提案されている。しかしながら,これらの複合
不織布は,その用途が合成皮革に限定され,しかもコス
ト的に極めて高価で経済性に劣るものであった。一方,
特開昭63−211354号には,スパンボンド法によ
り得られる長繊維不織布を基布としこの片面あるいは両
面に存在する長繊維を部分的に切断して繊維端を形成
し,この繊維端と基布上に積層した短繊維不織ウエブの
繊維とを絡合させた複合不織布が提案されている。しか
しながら,この複合不織布は,長繊維を部分的に切断す
るため機械的特性が低下し,しかも長繊維不織布本来の
表面平滑性も低下するという問題を有していた。
2. Description of the Related Art Conventionally, various composite nonwoven fabrics in which a short fiber card web is laminated and composited on a base cloth are known. For example, Japanese Patent Application Laid-Open Nos. 53-114975 and 53-12
No. 4601 proposes a composite nonwoven fabric in which a woven or knitted fabric is used as a base fabric, and a nonwoven web made of split split conjugate short fibers or a microfiber nonwoven web obtained by a melt blown method is laminated and composited thereon. However, the use of these composite nonwoven fabrics is limited to synthetic leather, and the cost is extremely high and the economic efficiency is poor. on the other hand,
Japanese Unexamined Patent Publication (Kokai) No. 63-21354 discloses that a long fiber nonwoven fabric obtained by a spunbond method is used as a base fabric, and a long fiber present on one side or both sides is partially cut to form a fiber end. A composite nonwoven fabric has been proposed in which fibers of a short fiber nonwoven web laminated on a fabric are entangled. However, this composite nonwoven fabric has a problem that the mechanical properties are deteriorated because the long fibers are partially cut, and the inherent surface smoothness of the long fiber nonwoven fabric is also deteriorated.

【0003】[0003]

【発明が解決しようとする課題】本発明は,前記問題を
解決し,機械的特性,寸法安定性及び柔軟性が優れ,産
業資材用素材のみならず一般用素材としても好適な複合
不織布と,それを効率良く製造することができる方法を
提供しようとするものである。
SUMMARY OF THE INVENTION The present invention solves the above problems and provides a composite nonwoven fabric which has excellent mechanical properties, dimensional stability and flexibility and is suitable not only for industrial materials but also for general materials. It is an object of the present invention to provide a method capable of efficiently manufacturing it.

【0004】[0004]

【課題を解決するための手段】本発明者らは、前記問題
を解決すべく鋭意検討の結果、本発明に到達した。すな
わち、本発明は、スパンボンド法により形成した合成長
繊維不織ウエブに表面温度がその構成繊維中最も低い融
点を有する重合体の融点より50〜80℃低い温度の熱
エンボスロールを用いロールの線圧を5〜30kg/c
mとし部分的熱圧接処理を施して合成長繊維不織ウエブ
層Aを形成し、次いで得られた合成長繊維不織ウエブ層
Aの両面に短繊維不織ウエブ層Bを積層した後、第1段
階の処理として圧力が5〜30kg/cm2Gの高圧液
体流処理を施して短繊維不織ウエブ層Bの構成繊維同士
を予備的に交絡させ、引き続き第2段階の処理として圧
力が40〜150kg/cm2Gの高圧液体流処理を施
して合成長繊維不織ウエブ層Aの構成繊維と短繊維不織
ウエブ層Bの構成繊維とを相互に三次元的に交絡させ、
かつ短繊維不織ウエブ層Bの構成繊維同士を三次元的に
交絡させ、全体として一体化させることを特徴とする複
合不織布の製造方法を要旨とするものである。
Means for Solving the Problems The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, have reached the present invention. That is, the present invention provides the use of a 50 to 80 ° C. lower temperature heat embossing roll in the melting point of the polymer surface temperature the formed synthetic long fiber nonwoven web having a lowest melting point in the constituent fibers by scan Panbondo method rolls Linear pressure 5-30kg / c
m, a partial hot-pressing treatment is performed to form a synthetic long-fiber non-woven web layer A, and then a short-fiber non-woven web layer B is laminated on both sides of the obtained synthetic long-fiber non-woven web layer A. As a one-stage treatment, a high-pressure liquid flow treatment at a pressure of 5 to 30 kg / cm 2 G is performed to preliminarily entangle the constituent fibers of the short-fiber nonwoven web layer B, and then a pressure of 40 is applied as a second-stage treatment. A high-pressure liquid flow treatment of up to 150 kg / cm 2 G so that the constituent fibers of the synthetic long-fiber nonwoven web layer A and the constituent fibers of the short-fiber nonwoven web layer B are three-dimensionally entangled with each other;
Further, the gist of the present invention is a method for producing a composite nonwoven fabric, in which the constituent fibers of the short fiber nonwoven web layer B are three-dimensionally entangled and integrated as a whole.

【0005】次に,本発明を詳細に説明する。本発明に
おける合成長繊維不織ウエブ層Aを構成する長繊維と
は,繊維形成性を有するポリオレフイン系重合体,ポリ
エステル系重合体あるいはポリアミド系重合体からなる
ものである。ポリオレフイン系重合体としては,炭素原
子数2〜18の脂肪族α−モノオレフイン,例えばエチ
レン,プロピレン,ブテン−1,ペンテン−1,3−メ
チルブテン−1,ヘキセン−1,オクテン−1,ドデセ
ン−1,オクタデセン−1からなるホモポリオレフイン
重合体が挙げられる。この脂肪族α−モノオレフイン
は,他のエチレン系不飽和モノマ,例えばブタジエン,
イソプレン,ペンタジエン−1・3,スチレン,α−メ
チルスチレンのような類似のエチレン系不飽和モノマが
共重合されたポリオレフイン系共重合体であってもよ
い。また,ポリエチレン系重合体の場合には,エチレン
に対してプロピレン,ブテン−1,ヘキセン−1,オク
テン−1又は類似の高級α−オレフインが10重量%以
下共重合されたものであってもよく,ポリプロピレン系
重合体の場合には,プロピレンに対してエチレン又は類
似の高級α−オレフインが10重量%以下共重合された
ものであってもよいが,前記これらの共重合物の共重合
率が前記重量%を超えると共重合体の融点が低下し,こ
れら共重合体の長繊維からなる不織ウエブを用いて得た
複合不織布を高温条件下で使用したときに,機械的特性
や寸法安定性が低下するので好ましくない。ポリエステ
ル系重合体としては,テレフタル酸,イソフタル酸,ナ
フタリン−2・6−ジカルボン酸等の芳香族ジカルボン
酸あるいはアジピン酸,セバチン酸等の脂肪族ジカルボ
ン酸又はこれらのエステル類を酸成分とし,かつエチレ
ングリコール,ジエチレングリコール,1・4−ブタジ
オール,ネオペンチルグリコール,シクロヘキサン−1
・4−ジメタノール等のジオール化合物をエステル成分
とするホモポリエステル重合体あるいは共重合体が挙げ
られる。なお,これらのポリエステル系重合体には,パ
ラオキシ安息香酸,5−ソジウムスルホイソフタール
酸,ポリアルキレングリコール,ペンタエリスススリト
ール,ビスフエノールA等が添加あるいは共重合されて
いてもよい。ポリアミド系重合体としては,ポリイミノ
−1−オキソテトラメチレン(ナイロン4),ポリテト
ラメチレンアジパミド(ナイロン46),ポリカプラミ
ド(ナイロン6),ポリヘキサメチレンアジパミド(ナ
イロン66),ポリウンデカナミド(ナイロン11),
ポリラウロラクタミド(ナイロン12),ポリメタキシ
レンアジパミド,ポリパラキシリレンデカナミド,ポリ
ビスシクロヘキシルメタンデカナミド又はこれらのモノ
マを構成単位とするポリアミド系共重合体が挙げられ
る。特に,ポリテトラメチレンアジパミドの場合,ポリ
テトラメチレンアジパミドにポリカプラミドやポリヘキ
サメチレンアジパミド,ポリウンデカメチレンテレフタ
ラミド等の他のポリアミド成分が30モル%以下共重合
されたポリテトラメチレンアジパミド系共重合体であっ
てもよい。前記他のポリアミド成分の共重合率が30モ
ル%を超えると共重合体の融点が低下し,これら共重合
体の長繊維からなる不織ウエブを用いて得た複合不織布
を高温条件下で使用したときに,機械的特性や寸法安定
性が低下するので好ましくない。なお,本発明におい
て,前記繊維形成性熱可塑性重合体には,必要に応じ
て,例えば艶消し剤,顔料,防炎剤,消臭剤,光安定
剤,熱安定剤,酸化防止剤等の各種添加剤を本発明の効
果を損なわない範囲内で添加することができる。
Next, the present invention will be described in detail. The long fibers constituting the synthetic long-fiber nonwoven web layer A in the present invention are made of a polyolefin-based polymer, polyester-based polymer or polyamide-based polymer having a fiber-forming property. Examples of the polyolefin polymer include aliphatic α-monoolefins having 2 to 18 carbon atoms, such as ethylene, propylene, butene-1, pentene-1,3-methylbutene-1, hexene-1, octene-1, and dodecene. A homopolyolefin polymer composed of 1, octadecene-1 is exemplified. This aliphatic α-monoolefin can be used in other ethylenically unsaturated monomers such as butadiene,
It may be a polyolefin copolymer in which similar ethylenically unsaturated monomers such as isoprene, pentadiene-1,3, styrene, and α-methylstyrene are copolymerized. In the case of a polyethylene-based polymer, ethylene may be copolymerized with propylene, butene-1, hexene-1, octene-1, or a similar higher α-olefin at 10% by weight or less. In the case of a polypropylene polymer, ethylene or a similar higher α-olefin may be copolymerized in an amount of 10% by weight or less with respect to propylene. If the weight percentage is exceeded, the melting point of the copolymer decreases, and the mechanical properties and dimensional stability of the composite nonwoven fabric obtained by using a nonwoven web composed of long fibers of these copolymers when used under high temperature conditions are reduced. It is not preferable because the property is lowered. As the polyester polymer, an aromatic dicarboxylic acid such as terephthalic acid, isophthalic acid, naphthalene-2,6-dicarboxylic acid or an aliphatic dicarboxylic acid such as adipic acid or sebacic acid or an ester thereof is used as an acid component; Ethylene glycol, diethylene glycol, 1.4-butadiol, neopentyl glycol, cyclohexane-1
A homopolyester polymer or copolymer containing a diol compound such as 4-dimethanol as an ester component is exemplified. In addition, paraoxybenzoic acid, 5-sodium sulfoisophthalic acid, polyalkylene glycol, pentaerythritol, bisphenol A, etc. may be added or copolymerized to these polyester polymers. Examples of polyamide polymers include polyimino-1-oxotetramethylene (nylon 4), polytetramethylene adipamide (nylon 46), polycapramide (nylon 6), polyhexamethylene adipamide (nylon 66), and polyundecana Mid (nylon 11),
Examples thereof include polylaurolactamide (nylon 12), polymethaxylene adipamide, polyparaxylylene decanamide, polybiscyclohexylmethanedecanamide, and a polyamide copolymer having these monomers as a constitutional unit. In particular, in the case of polytetramethylene adipamide, polytetramethylene adipamide is copolymerized with other polyamide components such as polycapramid, polyhexamethylene adipamide, polyundecamethylene terephthalamide and the like in an amount of 30 mol% or less. It may be a tetramethylene adipamide copolymer. When the copolymerization ratio of the other polyamide component exceeds 30 mol%, the melting point of the copolymer decreases, and a composite nonwoven fabric obtained using a nonwoven web composed of long fibers of these copolymers is used under high temperature conditions. When this is done, the mechanical properties and dimensional stability decrease, which is not preferable. In the present invention, if necessary, the fiber-forming thermoplastic polymer may contain, for example, a matting agent, a pigment, a flame retardant, a deodorant, a light stabilizer, a heat stabilizer, and an antioxidant. Various additives can be added within a range that does not impair the effects of the present invention.

【0006】本発明におけるウエブ層Aを構成する長繊
維は,繊維形成性を有する前記重合体から構成されるも
のであるが,その形態は,前記重合体単独からなるもの
の他に,前記重合体の中から選択された2種以上の相異
なる重合体が各々溶融紡糸性を損なわない範囲内でブレ
ンドされたブレンド物からなるものであってもよい。こ
のブレンドでは,例えばポリエステル系重合体とポリオ
レフイン系重合体とがブレンドされたものや,2種の相
異なるポリアミド系重合体がブレンドされたものが挙げ
られる。特に,前者の場合には,溶融紡出直後で未配向
のポリエステル成分の収縮を抑制することができて好ま
しい。また,この長繊維の形態は,前記重合体の中から
選択された2種の相異なる重合体が芯鞘型あるいは並列
型に配されたものであってもよい。この複合では,例え
ばポリエチレンテレフタレート重合体が芯部にかつポリ
エチレン重合体が鞘部に配された芯鞘型,あるいはポリ
カプラミド重合体とポリヘキサメチレンアジパミド重合
体とからなる並列型のような複合形態が挙げられる。
[0006] The long fibers constituting the web layer A in the present invention are composed of the above-mentioned polymer having a fiber-forming property. And two or more different polymers selected from the above may be blends blended within a range that does not impair melt spinnability. Examples of the blend include a blend of a polyester polymer and a polyolefin polymer, and a blend of two different polyamide polymers. In particular, the former case is preferable because shrinkage of an unoriented polyester component immediately after melt spinning can be suppressed. Further, the form of the long fiber may be such that two different polymers selected from the above-mentioned polymers are arranged in a core-sheath type or a parallel type. In this composite, for example, a core-sheath type in which a polyethylene terephthalate polymer is disposed in a core portion and a polyethylene polymer is disposed in a sheath portion, or a parallel type composed of a polycapramid polymer and a polyhexamethylene adipamide polymer. Form.

【0007】本発明におけるウエブ層Aを構成する長繊
維は,繊維形成性を有する前記重合体から構成され,か
つ単繊維繊度が1.5〜8.0デニールのものである。
単繊維繊度が1.5デニール未満であると得られた複合
不織布の機械的特性が低下したり,溶融紡糸工程におい
て製糸性が低下し,一方,単繊維繊度が8.0デニール
を超えると得られたウエブの風合いが硬くなって柔軟性
に富む複合不織布を得ることができず,いずれも好まし
くない。したがって,本発明では,この単繊維繊度が
1.5〜8.0デニール好ましくは2.0〜5.0デニ
ールであるのがよい。
The long fibers constituting the web layer A in the present invention are composed of the above-mentioned polymer having a fiber-forming property and have a single fiber fineness of 1.5 to 8.0 denier.
When the single-fiber fineness is less than 1.5 denier, the mechanical properties of the obtained composite nonwoven fabric are reduced, and the spinning property is reduced in the melt spinning process. The texture of the obtained web becomes hard, so that a composite nonwoven fabric having high flexibility cannot be obtained, which is not preferable. Therefore, in the present invention, the single fiber fineness is preferably 1.5 to 8.0 denier, and more preferably 2.0 to 5.0 denier.

【0008】本発明におけるウエブ層Aは,前記長繊維
から構成され,かつその構成繊維間が部分的に熱圧接さ
れたものである。この部分的な熱圧接とは,加熱され表
面に彫刻模様が刻印されたロールすなわちエンボスロー
ルと加熱され表面が平滑な金属ロールとの間にウエブを
通すことにより前記彫刻模様に該当する部分のウエブ構
成繊維同士を熱的に接着させたものである。さらに詳し
くは,この部分的な熱圧接とは,ウエブ層Aの全表面積
に対して特定の領域を有し,すなわち,個々の熱圧接領
域は必ずしも円形の形状である必要はないが0.1〜
1.0mm2 の面積を有し,その密度すなわち圧接点密
度が2〜80点/cm2 好ましくは4〜60点/cm2
のものであるのがよい。この圧接点密度が2点/cm2
未満であると熱圧接後のウエブの機械的特性や形態保持
性が向上せず,一方,圧接点密度が80点/cm2 を超
えると柔軟性と嵩高性が向上せず,いずれも好ましくな
い。また,ウエブ層Aの全表面積に対する全熱圧接領域
の面積の比すなわち圧接面積率が2〜30%好ましくは
4〜20%のものである。この圧接面積率が2%未満で
あると熱圧接後のウエブの寸法安定性が向上せず,した
がって,このウエブ層Aにウエブ層Bを積層して得られ
た複合不織布の寸法安定性が劣り,好ましくない。
The web layer A in the present invention is composed of the long fibers, and the constituent fibers are partially heat-welded. This partial thermal pressing means that the web corresponding to the engraving pattern is passed by passing a web between a roll which is heated and has an engraving pattern imprinted on its surface, that is, an embossing roll, and a heated metal roll having a smooth surface. The constituent fibers are thermally bonded to each other. More specifically, this partial heat-welding has a specific area with respect to the total surface area of the web layer A, i.e. the individual heat-welded areas do not necessarily have to be circular in shape but have a specific shape. ~
It has an area of 1.0 mm 2 , and its density, that is, the pressure contact density is 2 to 80 points / cm 2, preferably 4 to 60 points / cm 2
Good thing. This contact density is 2 points / cm 2
When the pressure is less than 80, the mechanical properties and shape retention of the web after the heat welding are not improved, and when the pressure contact density exceeds 80 points / cm 2 , the flexibility and bulkiness are not improved, and neither is preferable. . Further, the ratio of the area of the entire heat-welded region to the entire surface area of the web layer A, that is, the contact area ratio is 2 to 30%, preferably 4 to 20%. If the pressed area ratio is less than 2%, the dimensional stability of the web after hot pressing is not improved, and therefore, the dimensional stability of the composite nonwoven fabric obtained by laminating the web layer B on the web layer A is inferior. , Not preferred.

【0009】本発明におけるウエブ層Aは,その目付け
が10〜200g/m2 のものであるのが好ましい。目
付けが10g/m2 未満であると長繊維同士の緻密な重
なりの程度が低く,このウエブ層Aに短繊維不織ウエブ
層Bを積層し複合して得られた複合不織布の地合いが低
下し,一方,目付けが200g/m2 を超えるとこのウ
エブ層Aにウエブ層Bを積層し高圧液体流処理を施すに
際してウエブ層Aの全構成繊維とウエブ層Bの構成繊維
とが三次元的に十分に交絡せず,全体としての一体化が
なされず,いずれも好ましくない。したがって,本発明
では,この目付けは10〜200g/m2 好ましくは2
0〜100g/m2 であるのがよい。
The web layer A in the present invention preferably has a basis weight of 10 to 200 g / m 2 . If the basis weight is less than 10 g / m 2 , the degree of dense overlap between the long fibers is low, and the formation of a composite nonwoven fabric obtained by laminating the short fiber non-woven web layer B on the web layer A and reducing the composition is reduced. On the other hand, when the basis weight exceeds 200 g / m 2 , when the web layer B is laminated on the web layer A and subjected to the high-pressure liquid flow treatment, all the constituent fibers of the web layer A and the constituent fibers of the web layer B are three-dimensionally. They are not sufficiently entangled, are not integrated as a whole, and are not preferable. Therefore, in the present invention, the basis weight is 10 to 200 g / m 2, preferably 2 g / m 2.
It is good to be 0-100 g / m < 2 >.

【0010】本発明における短繊維不織ウエブ層Bは,
木綿や麻等の天然繊維あるいは天然パルプ,各種レーヨ
ンに代表される再生短繊維,ポリエステル系やポリアミ
ド系あるいはポリオレフイン系等の合成重合体からなる
短繊維から構成されるものである。このウエブとして
は,前記短繊維素材の中から選択された単一素材からな
るものの他に,複数種の素材が混合されてなるものであ
ってもよい。このウエブ層Bは,その目付けが10〜1
00g/m2 のものであるのが好ましい。目付けが10
g/m2 未満であると得られたウエブの形態保持性が向
上せず,一方,目付けが100g/m2 を超えるとウエ
ブ層Aの構成繊維とウエブ層Bの構成繊維との三次元的
交絡及びウエブ層Bの構成繊維同士の三次元的交絡が共
に十分に得られず,いずれも好ましくない。
[0010] The short fiber nonwoven web layer B in the present invention comprises:
It is composed of natural fibers such as cotton and hemp or natural pulp, recycled short fibers typified by various rayons, and short fibers made of a synthetic polymer such as polyester, polyamide or polyolefin. The web may be composed of a single material selected from the short fiber materials, or may be a mixture of a plurality of types of materials. This web layer B has a basis weight of 10 to 1
It is preferably 00 g / m 2 . The basis weight is 10
If the weight is less than g / m 2 , the obtained web does not have good shape retention, whereas if the basis weight exceeds 100 g / m 2 , the three-dimensional structure of the fiber constituting the web layer A and the fiber constituting the web layer B becomes three-dimensional. Neither entanglement nor three-dimensional entanglement between the constituent fibers of the web layer B can be sufficiently obtained, and neither is preferable.

【0011】本発明において得られる複合不織布は、前
述したように、前記熱圧接領域を有する合成長繊維不織
ウエブ層Aの両面に短繊維不織ウエブ層Bが積層され、
ウエブ層Aの構成繊維とウエブ層Bの構成繊維とが相互
に三次元的に交絡し、かつウエブ層Bの構成繊維同士が
三次元的に交絡し、全体として一体化されてなるもので
ある。この三次元的な交絡とは、公知のいわゆる高圧液
体流処理により形成されるものであって、これにより不
織布としての形態が保持され、しかも柔軟性に富む複合
不織布を得ることができる。なお、本発明において、ウ
エブ層Aの両面に積層されるウエブ層Bは、各々同一素
材からなるものであっても、あるいは相異なる素材から
なるものであってもよい。
As described above, the composite nonwoven fabric obtained in the present invention has a short-fiber nonwoven web layer B laminated on both sides of a synthetic long-fiber nonwoven web layer A having the above-mentioned heat-welded region.
The constituent fibers of the web layer A and the constituent fibers of the web layer B are three-dimensionally entangled with each other, and the constituent fibers of the web layer B are three-dimensionally entangled with each other, and are integrated as a whole. . The three-dimensional entanglement is formed by a known so-called high-pressure liquid flow treatment, whereby the form of the nonwoven fabric is maintained, and a highly flexible composite nonwoven fabric can be obtained. In the present invention, the web layers B laminated on both sides of the web layer A may be made of the same material, or may be made of different materials.

【0012】本発明における複合不織布は、次の方
造する。すなわち、スパンボンド法により形成した合
成長繊維不織ウエブ層に表面温度がその構成繊維中最も
低い融点を有する重合体の融点より50〜80℃低い温
度の熱エンボスロールを用いロールの線圧を5〜30k
g/cmとし部分的熱圧接処理を施して合成長繊維不織
ウエブ層Aを形成し、次いで得られた合成長繊維不織ウ
エブ層Aの両面に短繊維不織ウエブ層Bを積層した後、
高圧液体流処理を施して合成長繊維不織ウエブ層Aの構
成繊維と短繊維不織ウエブ層Bの構成繊維とを相互に三
次元的に交絡させ、かつ短繊維不織ウエブ層Bの構成繊
維同士を三次元的に交絡させ、全体として一体化させる
方法である。まず、合成長繊維不織布ウエブ層Aをスパ
ンボンド法で製造する。すなわち、前記繊維形成性を有
するポリオレフィン系重合体、ポリエステル系重合体あ
るいはポリアミド系重合体を単独で、あるいは前記重合
体の中から選択された2種以上の相異なる重合体がブレ
ンドされたブレンド物を、あるいは前記重合体の中から
選択された2種の相異なる重合体を芯鞘型あるいは並列
型に配するようにして溶融紡出し、溶融紡出されたポリ
マ流を冷却した後、エアーサッカ等の引取り手段を用い
引取り速度を3000〜6000m/分として引取った
後、開繊し、移動する捕集面上に捕集・堆積させて単繊
維繊度が1.5〜8.0デニールの単繊維からなるウエ
ブとし、次いで得られたウエブの表面温度がその構成繊
維中最も低い融点を有する重合体の融点より50〜80
℃低い温度の熱エンボスロールを用い熱圧接処理を施し
てウエブ層Aを得る。スパンボンド法で溶融紡出するに
際しては、その引取り速度を3000〜6000m/分
とするのがよい。引取り速度が3000m/分未満であ
ると長繊維の分子配向度が十分に増大しないため得られ
たウエブの機械的特性や寸法安定性が向上せず、一方、
引取り速度が6000m/分を超えると溶融紡糸時の製
糸性が低下し、いずれも好ましくない。
[0012] The composite nonwoven fabric of the present invention, in the following ways:
You manufacture. That is, using a hot embossing roll having a surface temperature of 50 to 80 ° C. lower than the melting point of the polymer having the lowest melting point among the constituent fibers of the synthetic long-fiber nonwoven web layer formed by the spunbond method, 5-30k
g / cm and subjected to a partial hot pressing treatment to form a synthetic long-fiber non-woven web layer A, and then laminating a short-fiber non-woven web layer B on both sides of the obtained synthetic long-fiber non-woven web layer A ,
The constituent fibers of the synthetic long-fiber nonwoven web layer A and the constituent fibers of the short-fiber nonwoven web layer B are three-dimensionally entangled with each other by high-pressure liquid flow treatment, and the short-fiber nonwoven web layer B is formed. This is a method in which fibers are entangled three-dimensionally and integrated as a whole. First, the synthetic long-fiber nonwoven fabric web layer A is manufactured by a spun bond method. That is, a polyolefin-based polymer, a polyester-based polymer or a polyamide-based polymer having the fiber-forming property alone, or a blend of two or more different polymers selected from the above-mentioned polymers. Alternatively, two different polymers selected from the above polymers are melt-spun so as to be arranged in a core-sheath type or a parallel type, and after cooling the melt-spun polymer stream, the air sucker is cooled. After taking up the material at a take-up speed of 3000 to 6000 m / min using a take-up means such as the above, the fiber is opened, collected and deposited on a moving collecting surface, and the single fiber fineness is 1.5 to 8.0. The web is made of denier single fiber, and the surface temperature of the obtained web is 50 to 80 higher than the melting point of the polymer having the lowest melting point among the constituent fibers.
The web layer A is obtained by performing a hot pressing process using a hot embossing roll at a temperature lower by ° C. When the melt spinning is performed by the spun bond method, the take-off speed is preferably 3000 to 6000 m / min. When the take-off speed is less than 3000 m / min, the degree of molecular orientation of the long fibers does not sufficiently increase, so that the mechanical properties and dimensional stability of the obtained web are not improved.
If the take-up speed exceeds 6000 m / min, the spinnability at the time of melt spinning decreases, and both are not preferred.

【0013】ウエブに熱エンボスロールを用いて熱圧接
処理を施すに際しては,熱圧接領域として必ずしも円形
の形状である必要はないが,その面積を0.1〜1.0
mm2 ,その密度すなわち圧接点密度を5〜100点/
cm2 好ましくは10〜80点/cm2 ,かつウエブ層
の全表面積に対する全熱圧接領域の面積の比すなわち圧
接面積率を5〜50%好ましくは8〜40%とする。こ
の圧接点密度が5点/cm2 未満であると熱圧接後のウ
エブの機械的特性や形態保持性が向上せず,一方,圧接
点密度が100点/cm2 を超えるとこのウエブ層Aに
ウエブ層Bを積層し高圧液体流処理を施して得た複合不
織布の柔軟性と嵩高性が向上せず,しかも高圧液体流処
理時の加工性が劣り,いずれも好ましくない。この圧接
面積率が5%未満であると熱圧接後のウエブの寸法安定
性が向上せず,したがって,このウエブ層Aにウエブ層
Bを積層して得られた複合不織布の寸法安定性が劣り,
一方,圧接面積率が50%を超えるとこのウエブ層Aに
ウエブ層Bを積層し高圧液体流処理を施すに際しての加
工性が劣り,いずれも好ましくない。さらに,そのロー
ルの表面温度をウエブ構成繊維中最も低い融点を有する
重合体の融点より50〜80℃低い温度とし,かつロー
ルの線圧を5〜30kg/cmとするのがよい。この温
度と線圧の条件は特に重要で,この温度と前記重合体の
融点との差が80℃を超えかつ線圧が5kg/cm未満
であると熱圧接処理効果が乏しく,得られたウエブ層A
の寸法安定性が向上せず,したがってこのウエブ層Aに
短繊維不織ウエブ層Bを積層し複合して得られた複合不
織布の寸法安定性が向上せず,一方,この温度と前記重
合体の融点との差が50℃未満でかつ線圧が10kg/
cmを超えると熱圧接処理効果が大きくなり過ぎるた
め,このウエブ層Aに短繊維不織ウエブ層Bを積層し高
圧液体流処理を施すに際してウエブ層Aの全構成繊維と
ウエブ層Bの構成繊維とが三次元的に十分に交絡せず,
全体としての一体化がなされず,いずれも好ましくな
い。
When the web is subjected to hot pressing using a hot embossing roll, the hot pressing area does not necessarily have to be a circular shape, but its area is 0.1 to 1.0.
mm 2 , the density, ie, the pressure contact density is 5 to 100 points /
cm 2, preferably 10 to 80 points / cm 2 , and the ratio of the area of the entire heat-welded region to the total surface area of the web layer, that is, the contact area ratio is 5 to 50%, preferably 8 to 40%. If the pressure junction density is less than 5 points / cm 2 , the mechanical properties and the shape retention of the web after hot pressing are not improved, while if the pressure junction density exceeds 100 points / cm 2 , the web layer A The flexibility and bulkiness of the composite nonwoven fabric obtained by laminating the web layer B and subjecting it to high-pressure liquid flow treatment are not improved, and the workability during high-pressure liquid flow treatment is inferior. If the pressed area ratio is less than 5%, the dimensional stability of the web after hot pressing is not improved, and therefore, the dimensional stability of the composite nonwoven fabric obtained by laminating the web layer B on the web layer A is inferior. ,
On the other hand, if the pressed area ratio exceeds 50%, the workability in laminating the web layer B on the web layer A and performing the high-pressure liquid flow treatment is inferior, and neither is preferable. Further, the surface temperature of the roll is preferably 50 to 80 ° C. lower than the melting point of the polymer having the lowest melting point in the fiber constituting the web, and the linear pressure of the roll is preferably 5 to 30 kg / cm. The conditions of the temperature and the linear pressure are particularly important. If the difference between the temperature and the melting point of the polymer exceeds 80 ° C. and the linear pressure is less than 5 kg / cm, the effect of the heat-welding treatment is poor, and the obtained web Layer A
The dimensional stability of the composite nonwoven fabric obtained by laminating the short fiber non-woven web layer B on the web layer A and combining the web layer A with the web layer A does not improve. Is less than 50 ° C. and the linear pressure is 10 kg /
cm, the effect of the thermal pressing treatment becomes too large. Therefore, when the short fiber nonwoven web layer B is laminated on the web layer A and subjected to high-pressure liquid flow treatment, all the constituent fibers of the web layer A and the constituent fibers of the web layer B are used. Are not confounded enough in three dimensions,
The whole is not integrated, and neither is preferable.

【0014】次に,得られたウエブ層Aの両面に前記短
繊維から構成されるウエブ層Bを積層した後,この積層
物に高圧液体流処理を施してウエブ層Aの構成繊維とウ
エブ層Bの構成繊維とを相互に三次元的に交絡させ,か
つウエブ層Bの構成繊維同士を三次元的に交絡させて全
体として一体化させる。積層するウエブ層Bとは,前記
短繊維素材からなるパラレルカードウエブやランダムカ
ードウエブあるいはクロスレイドウエブ等であり,ま
た,その目付けは10〜100g/m2 のものであるの
が好ましい。本発明において,前述したように,このウ
エブ層Bは,前記短繊維素材の中から選択された単一素
材からなるものの他に複数種の素材が混合されてなるも
のであってもよい。また,このウエブ層Bをウエブ層A
の両面に積層するに際し,ウエブ層Bとして各々同一素
材からなるものを採用しても,あるいは必要に応じて相
異なる素材からなるものを採用してもよい。高圧液体流
処理を施すに際しては,例えば,孔径が0.05〜2.
0mm特に0.1〜0.4mmの噴射孔を孔間隔を0.
3〜10mmで1列あるいは複数列に多数配列した装置
を用い,噴射圧力が5〜150kg/cm2 Gの高圧液
体を前記噴射孔から噴射する方法を採用する。噴射孔の
配列は,この積層物の進行方向と直交する方向に列状に
配列する。高圧液体としては,水あるいは温水を用いる
のが一般的である。噴射孔と積層物との間の距離は,1
〜15cmとするのがよい。この距離が1cm未満であ
るとこの処理により得られる複合不織布の地合いが乱
れ,一方,この距離が15cmを超えると液体流が積層
物に衝突したときの衝撃力が低下して三次元的な交絡が
十分に施されず,いずれも好ましくない。
Next, after laminating a web layer B composed of the short fibers on both surfaces of the obtained web layer A, the laminate is subjected to a high-pressure liquid flow treatment to form the fibers constituting the web layer A and the web layer. The constituent fibers of the web layer B are three-dimensionally entangled with the constituent fibers of the web layer B, and integrated as a whole. The web layer B to be laminated is a parallel card web, a random card web, a cross laid web, or the like made of the above-mentioned short fiber material, and the basis weight is preferably 10 to 100 g / m 2 . In the present invention, as described above, the web layer B may be formed of a single material selected from the short fiber materials and a mixture of a plurality of types of materials. This web layer B is replaced with web layer A.
When laminating on both sides, the web layers B may be made of the same material, or may be made of different materials as necessary. When the high-pressure liquid flow treatment is performed, for example, the pore size is 0.05-2.
Injection holes of 0 mm, especially 0.1 to 0.4 mm, with a hole interval of 0.1 mm.
A method in which high-pressure liquid having an injection pressure of 5 to 150 kg / cm 2 G is injected from the injection holes by using a large number of devices arranged in one or a plurality of rows of 3 to 10 mm. The arrangement of the injection holes is arranged in a row in a direction orthogonal to the traveling direction of the laminate. Generally, water or hot water is used as the high-pressure liquid. The distance between the injection hole and the laminate is 1
It is good to be about 15 cm. If this distance is less than 1 cm, the formation of the composite nonwoven fabric obtained by this treatment will be disturbed, while if this distance exceeds 15 cm, the impact force when the liquid stream collides with the laminate will decrease, resulting in three-dimensional confounding. Are not sufficiently performed, and both are not preferable.

【0015】本発明においては,前記高圧液体流処理を
2段階に別けて施す。まず,第1段階の処理として圧力
が5〜30kg/cm2 Gの高圧液体流を噴出し前記積
層物に衝突させ,ウエブ層Bの構成繊維同士を予備的に
交絡させる。この第1段階の処理において,液体流の圧
力が5kg/cm2 G未満であるとウエブ層Bの構成繊
維同士を予備的に交絡させることができず,一方,液体
流の圧力が30kg/cm2 Gを超えると前記積層物に
高圧液体流を噴出し衝突させたときウエブ層Bの構成繊
維が液体流の作用によって乱れ,ウエブ層Bに地合いの
乱れや目付け斑が生じるため,いずれも好ましくない。
次いで,第2段階の処理として圧力が40〜150kg
/cm2 Gの高圧液体流を噴出し前記積層物に衝突さ
せ,ウエブ層Aの構成繊維とウエブ層Bの構成繊維とを
相互に三次元的に交絡させるとともにウエブ層Bの構成
繊維同士を三次元的に交絡させ,前記積層物を全体とし
て一体化させる。この第2段階の処理において,液体流
の圧力が40kg/cm2 G未満であると上述したよう
な繊維間の三次元的交絡を十分に形成することができ
ず,一方,液体流の圧力が150kg/cm2 Gを超え
ると得られた複合不織布の柔軟性と嵩高性が向上せず,
いずれも好ましくない。本発明においては,第2段階の
処理として圧力が40〜150kg/cm2 Gの高圧液
体流を用いるが,この第2段階の処理を前記積層物に施
すに際しては,上述したように,第1段階の処理により
予めウエブ層Bの構成繊維同士を予備的に交絡させてあ
るため,第2段階の高圧の処理を施したときにウエブ層
Bの構成繊維が液体流の作用によって乱れ,ウエブ層B
に地合いの乱れや目付け斑が生じたりすることがない。
高圧液体流処理を施すに際し,前記積層物を担持する支
持材として例えば20〜100メツシユの金網等のメツ
シユスクリーンや有孔板など,高圧液体流が積層物を貫
通し得るものであれば特に限定されない。
In the present invention, the high-pressure liquid flow treatment is performed in two stages. First, as a first stage treatment, a high-pressure liquid stream having a pressure of 5 to 30 kg / cm 2 G is jetted to collide with the laminate, and the constituent fibers of the web layer B are preliminarily entangled. In the treatment of the first stage, if the pressure of the liquid flow is less than 5 kg / cm 2 G, the constituent fibers of the web layer B cannot be preliminarily entangled, while the pressure of the liquid flow is 30 kg / cm 2 When the pressure exceeds 2 G, the constituent fibers of the web layer B are disturbed by the action of the liquid flow when the high-pressure liquid stream is jetted and collided with the laminate, and the formation of the web layer B is disturbed and the weight of the web layer is uneven. Absent.
Next, as the second stage processing, the pressure is 40 to 150 kg.
/ Cm 2 G of high-pressure liquid flow is ejected to impinge on the laminate, so that the constituent fibers of the web layer A and the constituent fibers of the web layer B are three-dimensionally entangled with each other. The laminate is three-dimensionally entangled to integrate the laminate as a whole. If the pressure of the liquid stream is less than 40 kg / cm 2 G in the treatment of the second stage, the above-mentioned three-dimensional confounding between the fibers cannot be sufficiently formed. If it exceeds 150 kg / cm 2 G, the flexibility and bulkiness of the obtained composite nonwoven fabric are not improved,
Neither is preferred. In the present invention, a high-pressure liquid flow having a pressure of 40 to 150 kg / cm 2 G is used as the second stage treatment. When the second stage treatment is performed on the laminate, the first stage treatment is performed as described above. Since the constituent fibers of the web layer B are preliminarily entangled with each other by the treatment at the stage, the constituent fibers of the web layer B are disturbed by the action of the liquid flow when the high-pressure treatment of the second stage is performed, and the web layer B
No irregularities in the formation and no spots are formed.
When the high-pressure liquid flow treatment is performed, the support material for supporting the laminate is, for example, a mesh screen such as a 20 to 100 mesh wire mesh or a perforated plate, as long as the high-pressure liquid flow can penetrate the laminate. Not limited.

【0016】高圧液体流処理を施した後,処理後の前記
積層物から過剰水分を除去する。この過剰水分を除去す
るに際しては,公知の方法を採用することができる。例
えばマングルロール等の絞り装置を用いて過剰水分をあ
る程度機械的に除去し,引き続き連続熱風乾燥機等の乾
燥装置を用いて残余の水分を除去して最終の複合不織布
製品を得ることができる。なお,この乾燥処理は,通常
の乾熱処理の他に必要に応じて湿熱処理としてもよい。
また,乾燥処理を施すにあたり乾燥処理温度と時間等の
処理条件を選択するに際しては,単なる水分の除去を図
るに止まらず,適度の収縮を許容するように条件を選択
をしてもよい。
After the high-pressure liquid flow treatment, excess moisture is removed from the laminate after the treatment. In removing the excess moisture, a known method can be employed. For example, the excess moisture is mechanically removed to some extent using a squeezing device such as a mangle roll, and the remaining moisture is subsequently removed using a drying device such as a continuous hot air drier to obtain a final composite nonwoven fabric product. This drying treatment may be a wet heat treatment as required in addition to the normal dry heat treatment.
Further, in selecting the processing conditions such as the drying temperature and the time in performing the drying processing, the conditions may be selected so as to allow not only the mere removal of water but also appropriate shrinkage.

【0017】[0017]

【作用】本発明により得られる複合不織布は、合成長繊
維不織ウエブ層Aの両面に短繊維不織ウエブ層Bが積層
され、合成長繊維不織ウエブ層Aの構成繊維間が部分的
に熱圧接されており、合成長繊維不織ウエブ層Aの構成
繊維と短繊維不織ウエブ層Bの構成繊維とが相互に三次
元的に交絡し、かつ短繊維不織ウエブ層Bの構成繊維同
士が三次元的に交絡し、全体として一体化されてなるも
のである。本発明においては、前記ウエブ層Aとして、
熱圧接領域として0.1〜1.0mm2の面積を有し、
その密度すなわち圧接点密度が5〜100点/cm2
ましくは10〜80点/cm2、かつウエブ層の全表面
積に対する全熱圧接領域の面積の比すなわち圧接面積率
が5〜50%好ましくは8〜40%で、かつ表面温度が
ウエブ構成繊維中最も低い融点を有する重合体の融点よ
り50〜80℃低い温度の熱エンボスロールを用いロー
ル線圧を5〜30kg/cmとし部分的熱圧接処理を施
して得られる長繊維ウエブを出発原料とする。このよう
な通常の場合より低温かつ低線圧の熱エンボスロールを
用いる熱圧接処理により、長繊維ウエブの構成繊維間が
一旦予備的に熱圧接される。次いで、前記熱圧接処理後
の長繊維ウエブの両面に前記ウエブ層Bを積層した後、
第1段階の処理として圧力が5〜30kg/cm2Gの
高圧液体流処理を施し、引き続き第2段階の処理として
圧力が40〜150kg/cm2Gの高圧液体流処理を
施す。本発明においては、この第2段階の圧力40〜1
50kg/cm2Gの高圧液体流処理を施すことによ
り,前記熱圧接処理後の長繊維ウエブの熱圧接領域に存
在する長繊維の予備的繊維間熱圧接が部分的に破壊され
長繊維が分割剥離されるのであるが,このような熱圧接
領域の部分的破壊は全熱圧接領域において生じるもので
はない。すなわち,従前の0.1〜1.0mm2の面積
を有し,圧接点密度が5〜100点/cm2好ましくは
10〜80点/cm2,圧接面積率が5〜50%好まし
くは8〜40%の熱圧接領域が部分的に破壊され,圧接
点密度で2〜80点/cm2 好ましくは4〜60点/c
2 ,圧接面積率で2〜30%好ましくは4〜20%の
熱圧接領域が残るのである。そして,このような特定の
熱圧接領域を残す長繊維ウエブをウエブ層Aとして用い
ることによって,残余の熱圧接領域によって複合不織布
としたときに寸法安定性が向上し,また,多くの非熱圧
接領域の存在によって複合不織布としたときにウエブ層
Aの構成繊維とウエブ層Bの構成繊維とが相互に三次元
的に十分交絡し全体として一体化されるのである。
The composite nonwoven fabric obtained according to the present invention comprises a synthetic long-fiber non-woven web layer A, a short-fiber non-woven web layer B laminated on both sides, and a partial gap between the constituent fibers of the synthetic long-fiber non-woven web layer A. The constituent fibers of the synthetic long-fiber nonwoven web layer A and the constituent fibers of the short-fiber nonwoven web layer B are three-dimensionally entangled with each other, and are the constituent fibers of the short-fiber nonwoven web layer B They are three-dimensionally entangled and integrated as a whole. In the present invention, as the web layer A,
It has an area of 0.1 to 1.0 mm 2 as a thermal pressure welding area,
The density, that is, the pressure contact density is 5 to 100 points / cm 2, preferably 10 to 80 points / cm 2 , and the ratio of the area of the entire heat-welded region to the total surface area of the web layer, that is, the contact area ratio is 5 to 50%, preferably Partial heat welding using a hot embossing roll having a temperature of 8 to 40% and a surface temperature of 50 to 80 ° C. lower than the melting point of the polymer having the lowest melting point in the web constituting fiber, with a roll linear pressure of 5 to 30 kg / cm. The long fiber web obtained by the treatment is used as a starting material. By the hot pressing process using a hot embossing roll having a lower temperature and a lower linear pressure than in the usual case, the constituent fibers of the long fiber web are once preliminarily hot pressed. Next, after laminating the web layer B on both sides of the long fiber web after the heat pressing treatment,
A high-pressure liquid flow treatment at a pressure of 5 to 30 kg / cm 2 G is performed as a first-stage treatment, followed by a high-pressure liquid flow treatment at a pressure of 40 to 150 kg / cm 2 G as a second-stage treatment. In the present invention, the pressure in the second stage is 40 to 1
By applying the high-pressure liquid flow treatment of 50 kg / cm 2 G, the preliminary inter-fiber heat welding of the long fibers existing in the heat-welded region of the long fiber web after the heat-welding treatment is partially broken, and the long fibers are split. Although it is peeled, such partial destruction of the heat-welded area does not occur in the entire heat-welded area. That is, it has a conventional area of 0.1 to 1.0 mm 2 , a press contact density of 5 to 100 points / cm 2, preferably 10 to 80 points / cm 2 , and a press contact area ratio of 5 to 50%, preferably 8 4040% of the heat-welded area is partially destroyed, and the density of the pressure contact is 2 to 80 points / cm 2, preferably 4 to 60 points / c.
m 2 , 2 to 30%, preferably 4 to 20%, in terms of the press contact area ratio, remains the heat press contact area. By using the long-fiber web which leaves such a specific heat-welded area as the web layer A, the dimensional stability is improved when the composite non-woven fabric is formed by the remaining heat-welded area. When the composite nonwoven fabric is formed by the existence of the region, the constituent fibers of the web layer A and the constituent fibers of the web layer B are sufficiently entangled with each other three-dimensionally and integrated as a whole.

【0018】[0018]

【実施例】次に,実施例に基づき本発明を具体的に説明
するが,本発明は,これらの実施例によって何ら限定さ
れるものではない。実施例において,各特性値の測定を
次の方法により実施した。 融点(℃):パーキンエルマ社製示差走査型熱量計DS
C−2型を用い,昇温速度20℃/分の条件で測定し,
得られた融解吸熱曲線において極値を与える温度を融点
とした。 メルトインデツクス:ASTM−D−1238(E)に
記載の方法に準じて測定した。 相対粘度(イ):ポリエチレンテレフタレートの相対粘
度()を次の方法によって測定した。すなわち,フエ
ノールと四塩化エタンの等重量混合液を溶媒とし,この
溶媒100ccに試料0.5gを溶解し,温度20℃の
条件で常法により測定した。 相対粘度(ロ):ポリカプラミド(ナイロン6)の相対
粘度()を次の方法によって測定した。すなわち,9
6%硫酸100ccに試料1gを溶解し,温度25℃の
条件で常法により測定した。 不織布の目付け(g/m2 ):標準状態の試料から縦1
0cm×横10cmの試料片計10点を作成し,平衡水
分に到らしめた後,各試料片の重量(g)を秤量し,得
られた値の平均値を単位面積(m2 )当たりに換算し目
付け(g/m2)とした。 不織布の引張強力(kg/5cm)及び引張伸度
(%):JIS−L−1096Aに記載の方法に準じて
測定した。すなわち,試料長が10cm,試料幅が5c
mの試料片計10点を作成し,各試料片毎に不織布の経
方向について,定速伸長型引張試験機(東洋ボールドウ
イン社製テンシロンUTM−4−1−100)を用い,
引張速度10cm/分で伸長し,得られた切断時荷重値
(kg/5cm)の平均値を引張強力(kg/5c
m),切断時伸長率(%)の平均値を引張伸度(%)と
した。 面積収縮率(%):試料長が20cm,試料幅が20c
mの試料片計5点を作成し,各試料片毎に,所定温度の
エアーオーブン型熱処理機を用い5分間熱処理を施し
た。そして,熱処理前の試料片の面積S1 (cm 2 )値
と熱処理後の試料片の面積S2 (cm 2 )値とを用い,
下記式(イ)に従って算出した収縮率(%)の平均値を
面積収縮率(%)とした。 面積収縮率(%)=〔1−(S2 /S1 )〕×100・・・・・・(イ) 圧縮剛軟度(g):試料長が10cm,試料幅が5cm
の試料片計5点を作成し,各試料片毎に横方向に曲げて
円筒状物とし,各々その端部を接合したものを圧縮剛軟
度測定試料とした。次いで,各測定試料毎にその軸方向
について,定速伸長型引張試験機(東洋ボールドウイン
社製テンシロンUTM−4−1−100)を用い,圧縮
速度5cm/分で圧縮し,得られた最大荷重値(g)の
平均値を圧縮剛軟度(g)とした。 層間剥離強力(g/5cm):試料長が15cm,試料
幅が5cmの試料片計3点を作成し,各試料片毎に不織
布の経方向について,定速伸長型引張試験機(東洋ボー
ルドウイン社製テンシロンUTM−4−1−100)を
用い,引張速度10cm/分でウエブ層Bがウエブ層A
から不織布の端部から計って5cmの位置まで強制的に
剥離させ,得られた荷重値(g/5cm)の平均値を層
間剥離強力(g/5cm)とした。
EXAMPLES Next, the present invention will be specifically described based on examples, but the present invention is not limited to these examples. In the examples, the measurement of each characteristic value was performed by the following method. Melting point (° C): Differential scanning calorimeter DS manufactured by PerkinElmer
Measured at a heating rate of 20 ° C / min using C-2 type,
The temperature at which an extreme value was obtained in the obtained melting endothermic curve was defined as the melting point. Melt index: Measured according to the method described in ASTM-D-1238 (E). The relative viscosity (a): the relative viscosity of the polyethylene terephthalate (A) was measured by the following methods. That is, a mixture of phenol and ethane tetrachloride was used as a solvent in an equal weight mixture, 0.5 g of a sample was dissolved in 100 cc of the solvent, and the measurement was carried out by a conventional method at a temperature of 20 ° C. The relative viscosity (b): a relative viscosity of polycapramide (nylon 6) (b) were measured by the following method. That is, 9
1 g of a sample was dissolved in 100 cc of 6% sulfuric acid, and the measurement was performed by a conventional method at a temperature of 25 ° C. Non-woven fabric weight (g / m 2 ): 1 length from standard sample
After making a total of 10 sample pieces of 0 cm × 10 cm in width and reaching the equilibrium moisture, the weight (g) of each sample piece was weighed, and the average of the obtained values was calculated per unit area (m 2 ). And converted to the basis weight (g / m 2 ). Tensile strength (kg / 5 cm) and tensile elongation (%) of nonwoven fabric: Measured according to the method described in JIS-L-1096A. That is, the sample length is 10 cm and the sample width is 5 c
A total of 10 sample pieces of m were prepared, and the longitudinal direction of the non-woven fabric for each sample piece was measured using a constant-speed elongation type tensile tester (Tensilon UTM-4-1-100 manufactured by Toyo Baldwin Co., Ltd.).
The film was elongated at a tensile speed of 10 cm / min, and the average value of the obtained load values at cutting (kg / 5 cm) was calculated as the tensile strength (kg / 5 c).
m), the average value of the elongation at break (%) was defined as the tensile elongation (%). Area shrinkage (%): sample length 20 cm, sample width 20 c
A total of five sample pieces of m were prepared, and each sample piece was subjected to a heat treatment for 5 minutes using an air oven type heat treatment machine at a predetermined temperature. Then, using the area S1 ( cm 2 ) value of the sample piece before the heat treatment and the area S2 ( cm 2 ) value of the sample piece after the heat treatment,
The average value of the shrinkage rates (%) calculated according to the following equation (a) was defined as the area shrinkage rate (%). Area shrinkage (%) = [1- (S2 / S1)]. Times.100 (b) Compression stiffness (g): sample length 10 cm, sample width 5 cm
A total of five specimens were prepared, and each specimen was bent in the transverse direction to form a cylindrical body, and the end of each cylinder was joined to obtain a compression-hardness measurement sample. Next, each measurement sample was compressed in the axial direction thereof at a compression rate of 5 cm / min using a constant-speed elongation type tensile tester (Tensilon UTM-4-1-100 manufactured by Toyo Baldwin Co., Ltd.). The average value of the load values (g) was taken as the compression stiffness (g). Delamination strength ( g / 5cm ): A total of three sample pieces with a sample length of 15cm and a sample width of 5cm were prepared, and a constant-speed elongation type tensile tester (Toyo Baldwin Web layer B at a tensile speed of 10 cm / min using Tensilon UTM-4-1-100 manufactured by
From the end of the non-woven fabric to a position 5 cm from the end of the non-woven fabric, and the average value of the obtained load values (g / 5 cm) was defined as the delamination strength ( g / 5 cm 3 ).

【0019】実施例1 融点が259℃,相対粘度(イ)が1.38のポリエチ
レンテレフタレート重合体チツプを用い,スパンボンド
法により長繊維不織ウエブ層Aを製造した。すなわち,
前記重合体チツプを溶融し,これを紡糸孔を通して紡糸
温度290℃で溶融紡出し,溶融紡出されたポリマ流を
ポリマ流を冷却した後,エアーサツカを用い引取り速度
4800m/分で引取った後,コロナ放電手段を用いて
開繊し,移動する捕集面上に捕集・堆積させて単繊維繊
度が3.0デニールの長繊維からなるウエブとし,次い
で得られたウエブに熱圧接処理を施して目付けが30g
/m2 のウエブ層Aを得た。熱圧接処理を施すに際して
は,面積が0.6mm2 の彫刻模様が圧接点密度20点
/cm2 かつ圧接面積率15%で配設されたエンボスロ
ールと表面が平滑な金属ロールとを用いた。このエンボ
スロールと表面が平滑な金属ロールの表面温度を200
℃,かつ両ロール間の線圧を10kg/cmとした。別
途,ポリエチレンテレフタレート重合体からなる単繊維
繊度が2.0デニールで繊維長が51mmの短繊維綿を
用い,パラレルカード機により目付けが15g/m2
パラレルカードウエブ層Bを製造した。次いで,得られ
たウエブ層Aの両面にウエブ層Bを積層し,得られた積
層物を移動速度30m/分で移動する30メツシユの金
網上に載置して高圧液体流処理を施した。高圧液体流処
理は,孔径0.12mmの噴射孔が孔間隔0.62mm
で3群配列で配設された高圧柱状水流処理装置を用い,
積層物の上方80mmの位置から2段階に別けて柱状水
流を作用させた。第1段階の処理では圧力を20kg/
cm2 Gとし,第2段階の処理では圧力を60kg/c
2 Gとした。なお,第2段階の処理は,積層物の表裏
から各々1回施した。次いで,得られた処理積層物から
マングルロールを用いて過剰水分を除去した後,積層物
に熱風乾燥機を用い温度98℃の条件で乾燥処理を施
し,複合不織布を得た。上記で得られた複合不織布は,
目付けが60g/m2 ,引張強力が48kg/5cm,
引張伸度が54%,処理温度が160℃時の面積収縮率
が2.1%であって機械的特性と寸法安定性が優れ,層
間剥離強力が320g/5cmで耐層間剥離性が高く十
分に一体化され,しかも圧縮剛軟度が34gで柔軟性が
優れたものであった。
Example 1 A long fiber nonwoven web layer A was produced by a spunbond method using a polyethylene terephthalate polymer chip having a melting point of 259 ° C. and a relative viscosity (a) of 1.38. That is,
The polymer chip was melted, melted and spun through a spinning hole at a spinning temperature of 290 ° C., and the melted and spun polymer stream was cooled and then taken off at 4800 m / min using an air sucker. Then, the fiber is opened using a corona discharge means, collected and deposited on a moving collecting surface to form a web having a single-fiber fineness of 3.0 denier, and then heat-welded to the obtained web. To give a weight of 30g
/ M 2 of web layer A was obtained. In performing the heat-pressing treatment, an embossing roll in which an engraved pattern having an area of 0.6 mm 2 was disposed at a press-contact density of 20 points / cm 2 and a press-contact area ratio of 15%, and a metal roll having a smooth surface were used. . The surface temperature of the embossing roll and the metal roll having a smooth surface is set to 200.
° C and the linear pressure between both rolls was 10 kg / cm. Separately, using a short fiber cotton having a single fiber fineness of 2.0 denier and a fiber length of 51 mm made of a polyethylene terephthalate polymer, a parallel card machine was used to produce a parallel card web layer B having a basis weight of 15 g / m 2 . Next, a web layer B was laminated on both sides of the obtained web layer A, and the obtained laminate was placed on a 30-mesh wire net moving at a moving speed of 30 m / min, and subjected to a high-pressure liquid flow treatment. In the high-pressure liquid flow treatment, the injection hole with a hole diameter of 0.12 mm has a hole interval of 0.62 mm.
Using a high-pressure columnar water flow treatment device arranged in three groups
A columnar water flow was applied in two stages from a position 80 mm above the laminate. In the first stage processing, the pressure is 20 kg /
cm 2 G and the pressure in the second stage treatment was 60 kg / c
m 2 G. In addition, the process of the 2nd stage was performed once each from the front and back of the laminate. Next, after removing excess moisture from the obtained treated laminate using a mangle roll, the laminate was subjected to a drying treatment at a temperature of 98 ° C. using a hot air drier to obtain a composite nonwoven fabric. The composite nonwoven fabric obtained above is
The basis weight is 60 g / m 2 , the tensile strength is 48 kg / 5 cm,
The tensile elongation is 54%, the area shrinkage at the treatment temperature of 160 ° C is 2.1%, the mechanical properties and dimensional stability are excellent, the delamination strength is 320g / 5cm, and the delamination resistance is high enough. And the flexibility was 34 g and the flexibility was excellent.

【0020】実施例2 ウエブ層Bとして,平均繊維長が22mmのコツトン晒
綿からなる目付けが15g/m2 のパラレルカードウエ
ブを用い,第2段階の高圧柱状水流処理の圧力を50k
g/cm2 Gとした以外は実施例1と同様にして,複合
不織布を得た。上記で得られた複合不織布は,目付けが
60g/m2 ,引張強力が30kg/5cm,引張伸度
が45%,処理温度が160℃時の面積収縮率が1.2
%であって機械的特性と寸法安定性が優れ,層間剥離強
力が360g/5cmで耐層間剥離性が高く十分に一体
化され,しかも圧縮剛軟度が45gで柔軟性が優れたも
のであった。
Example 2 As the web layer B, a parallel card web made of cotton bleached cotton having an average fiber length of 22 mm and having a basis weight of 15 g / m 2 was used.
A composite nonwoven fabric was obtained in the same manner as in Example 1 except that g / cm 2 G was used. The composite nonwoven fabric obtained above had a basis weight of 60 g / m 2 , a tensile strength of 30 kg / 5 cm, a tensile elongation of 45%, and an area shrinkage of 1.2 at a treatment temperature of 160 ° C.
%, Excellent in mechanical properties and dimensional stability, delamination strength is 360 g / 5 cm, delamination resistance is high and fully integrated, and compression flexibility is 45 g and flexibility is excellent. Was.

【0021】実施例3 融点が259℃,相対粘度(イ)が1.38のポリエチ
レンテレフタレート重合体チツプと融点が132℃,メ
ルトインデツクスが20g/10分のポリエチレン重合
体チツプを用い,スパンボンド法により複合長繊維不織
ウエブ層Aを製造した。すなわち,前記両重合体チツプ
を溶融し,ポリエチレンテレフタレート重合体の紡糸温
度290℃かつポリエチレン重合体の紡糸温度250℃
でポリエチレンテレフタレート重合体が芯部かつポリエ
チレン重合体が鞘部に配されるように複合紡糸孔を通し
て溶融複合紡出し,溶融紡出されたポリマ流をポリマ流
を冷却した後,エアーサツカを用い引取り速度4500
m/分で引取った後,コロナ放電手段を用いて開繊し,
移動する捕集面上に捕集・堆積させて,ポリエチレンテ
レフタレート重合体が芯部にかつポリエチレン重合体が
鞘部に配された複合比が1/1であって,かつ単繊維繊
度が3.0デニールの複合長繊維からなるウエブとし,
次いで得られたウエブに熱圧接処理を施して目付けが3
0g/m2 のウエブ層Aを得た。熱圧接処理を施すに際
しては,面積が0.6mm2 の彫刻模様が圧接点密度2
0点/cm2 かつ圧接面積率15%で配設されたエンボ
スロールと表面が平滑な金属ロールとを用いた。このエ
ンボスロールと表面が平滑な金属ロールの表面温度を8
5℃,かつ両ロール間の線圧を10kg/cmとした。
次いで,得られたウエブ層Aの両面に実施例1で用いた
ものと同一のウエブ層Bを積層し,得られた積層物を金
網上に載置し,実施例1と同様にして高圧柱状水流処理
を施した後,過剰水分の除去と乾燥処理を施し,複合不
織布を得た。上記で得られた複合不織布は,目付けが6
0g/m2 ,引張強力が25kg/5cm,引張伸度が
43%,処理温度が110℃時の面積収縮率が1.1%
であって機械的特性と寸法安定性が優れ,層間剥離強力
が320g/5cmで耐層間剥離性が高く十分に一体化
され,しかも圧縮剛軟度が28gで柔軟性が優れたもの
であった。
EXAMPLE 3 A polyethylene terephthalate polymer chip having a melting point of 259 ° C. and a relative viscosity (a) of 1.38 and a polyethylene polymer chip having a melting point of 132 ° C. and a melt index of 20 g / 10 min were spunbonded. A composite long fiber nonwoven web layer A was produced by the method. That is, the two polymer chips were melted, and the spinning temperature of the polyethylene terephthalate polymer was 290 ° C. and the spinning temperature of the polyethylene polymer was 250 ° C.
Melt spinning through the composite spinning hole so that the polyethylene terephthalate polymer is disposed at the core and the polyethylene polymer is disposed at the sheath, and the melt-spun polymer stream is cooled and then taken up using an air filter. Speed 4500
m / min, open using corona discharge means,
It is collected and deposited on a moving collecting surface, and the polyethylene terephthalate polymer is disposed in the core and the polyethylene polymer is disposed in the sheath, the composite ratio is 1/1, and the single fiber fineness is 3. The web is made of 0 denier composite filament,
Next, the obtained web is subjected to a heat-pressure treatment to obtain a basis weight of 3
A web layer A of 0 g / m 2 was obtained. Thermocompression bonding process during the performing the engraving pattern pressure point area 0.6 mm 2 Density 2
An embossing roll provided at 0 points / cm 2 and a pressing area ratio of 15% and a metal roll having a smooth surface were used. The surface temperature of the embossing roll and the metal roll having a smooth surface is set to 8
The temperature was 5 ° C. and the linear pressure between both rolls was 10 kg / cm.
Next, the same web layer B as that used in Example 1 was laminated on both sides of the obtained web layer A, and the obtained laminate was placed on a wire mesh. After the water flow treatment, the excess water was removed and dried to obtain a composite nonwoven fabric. The composite nonwoven fabric obtained above has a basis weight of 6
0 g / m 2 , tensile strength 25 kg / 5 cm, tensile elongation 43%, area shrinkage at processing temperature 110 ° C. 1.1%
It was excellent in mechanical properties and dimensional stability, had a delamination strength of 320 g / 5 cm, had high delamination resistance, and was sufficiently integrated, and had a compression stiffness of 28 g and excellent flexibility. .

【0022】実施例4 ウエブ層Bとして,相対粘度(ロ)が2.61のポリカ
プラミド(ナイロン6)重合体からなる単繊維繊度が
2.0デニールで繊維長が51mmの短繊維綿からなる
目付けが15g/m2 のパラレルカードウエブを用いた
以外は実施例3と同様にして,複合不織布を得た。上記
で得られた複合不織布は,目付けが60g/m2 ,引張
強力が47kg/5cm,引張伸度が63%,処理温度
が110℃時の面積収縮率が0.8%であって機械的特
性と寸法安定性が優れ,層間剥離強力が290g/5c
mで耐層間剥離性が高く十分に一体化され,しかも圧縮
剛軟度が22gで柔軟性が優れたものであった。
Example 4 The web layer B is made of short fiber cotton having a single fiber fineness of 2.0 denier and a fiber length of 51 mm made of a polycapramide (nylon 6) polymer having a relative viscosity (b) of 2.61. Was obtained in the same manner as in Example 3 except that a parallel card web of 15 g / m 2 was used. The composite nonwoven fabric obtained above had a basis weight of 60 g / m 2 , a tensile strength of 47 kg / 5 cm, a tensile elongation of 63%, and an area shrinkage at a treatment temperature of 110 ° C. of 0.8%. Excellent properties and dimensional stability, 290 g / 5c delamination strength
m, the resin had high delamination resistance and was sufficiently integrated, and had a compression stiffness of 22 g and excellent flexibility.

【0023】比較実施例1 熱圧接処理を施すに際して,エンボスロールと表面が平
滑な金属ロールの表面温度を245℃,かつ両ロール間
の線圧を50kg/cmとした以外は実施例1と同様に
してウエブ層Aを製造した。次いで,得られたウエブ層
Aの両面に実施例1で用いたものと同一のウエブ層Bを
積層し,得られた積層物を金網上に載置し,実施例1と
同様にして高圧柱状水流処理を施した後,過剰水分の除
去と乾燥処理を施し,複合不織布を得た。上記で得られ
た複合不織布は,目付けが60g/m2 ,引張強力が1
8kg/5cm,引張伸度が35%,処理温度が160
℃時の面積収縮率が4.8%,層間剥離強力が15g/
5cm,圧縮剛軟度が114gであった。この複合不織
布は,上記の特性値からも明らかなように,熱圧接処理
温度が高くウエブ層Aの部分的な熱圧接が強固であるた
めに高圧柱状水流処理を施したときに熱圧接領域に存在
するウエブ層Aの構成繊維が分割剥離せず,すなわち同
構成繊維とウエブ層Bの構成繊維とが相互に三次元的に
十分交絡しないため機械的特性が劣り,しかも全体とし
ての一体化も不十分であるため耐層間剥離性も向上しな
いものであった。
Comparative Example 1 The same procedure as in Example 1 was carried out except that the surface temperature of the embossing roll and the metal roll having a smooth surface were 245 ° C. and the linear pressure between the two rolls was 50 kg / cm. Thus, a web layer A was manufactured. Next, the same web layer B as that used in Example 1 was laminated on both sides of the obtained web layer A, and the obtained laminate was placed on a wire mesh. After the water flow treatment, the excess water was removed and dried to obtain a composite nonwoven fabric. The composite nonwoven fabric obtained above has a basis weight of 60 g / m 2 and a tensile strength of 1
8kg / 5cm, tensile elongation 35%, processing temperature 160
The area shrinkage at ℃ is 4.8%, and the delamination strength is 15 g /
5 cm and compression bristles were 114 g. As is clear from the above characteristic values, this composite nonwoven fabric has a high thermal pressure treatment temperature and a strong partial thermal pressure welding of the web layer A. The existing constituent fibers of the web layer A do not separate and separate, that is, the constituent fibers and the constituent fibers of the web layer B are not sufficiently three-dimensionally entangled with each other, so that the mechanical properties are inferior. Because of insufficient properties, the delamination resistance was not improved.

【0024】比較例1 実施例1で用いたウエブ層Aの片面のみに,目付けを3
0g/m2 とした以外は実施例1で用いたものと同一の
ウエブ層Bを積層し,得られた積層物を金網上に載置
し,第2段階の高圧柱状水流処理の圧力を50kg/c
2 Gとした以外は実施例1と同様にして,複合不織布
を得た。上記で得られた複合不織布は,目付けが60g
/m2 ,引張強力が23kg/5cm,引張伸度が62
%,処理温度が160℃時の面積収縮率が3.4%,層
間剥離強力が290g/5cm,圧縮剛軟度が22gで
あった。この複合不織布は,高圧柱状水流処理を施した
ときにウエブ層Aの構成繊維とウエブ層Bの構成繊維と
が相互に三次元的に交絡するため機械的特性や耐層間剥
離性は実用上問題のないものであるものの,他面のウエ
ブ層Aが露出している面ではその構成繊維が十分に交絡
しないため,耐摩耗性が劣るものであった。
Comparative Example 1 The basis weight was set to 3 on only one side of the web layer A used in Example 1.
The same web layer B as that used in Example 1 was laminated except that it was 0 g / m 2 , the obtained laminate was placed on a wire mesh, and the pressure of the second stage high pressure columnar water treatment was 50 kg. / C
A composite nonwoven fabric was obtained in the same manner as in Example 1 except that m 2 G was used. The composite nonwoven fabric obtained above has a basis weight of 60 g.
/ M 2 , tensile strength 23 kg / 5 cm, tensile elongation 62
%, The area shrinkage at a treatment temperature of 160 ° C. was 3.4%, the delamination strength was 290 g / 5 cm, and the compression stiffness was 22 g. In this composite nonwoven fabric, the constituent fibers of the web layer A and the constituent fibers of the web layer B are three-dimensionally entangled with each other when subjected to a high-pressure columnar water flow treatment, so that mechanical properties and delamination resistance are practical problems. Although the surface layer was not present, the constituent fibers were not sufficiently entangled on the surface of the other surface where the web layer A was exposed, so that the abrasion resistance was poor.

【0025】[0025]

【発明の効果】本発明により得られる複合不織布は,合
成長繊維不織ウエブ層Aの両面に短繊維不織ウエブ層B
が積層され,合成長繊維不織ウエブ層Aの構成繊維間が
部分的に熱圧接されており,合成長繊維不織ウエブ層A
の構成繊維と短繊維不織ウエブ層Bの構成繊維とが相互
に三次元的に交絡し,かつ短繊維不織ウエブ層Bの構成
繊維同士が三次元的に交絡し,全体として一体化されて
なるものであって,機械的特性,寸法安定性及び柔軟性
が優れ,産業資材用素材のみならず一般用素材としても
好適である。また,本発明の複合不織布の製造方法によ
れば,前記不織布を効率良く製造することができる。
The composite nonwoven fabric obtained by the present invention comprises a synthetic long fiber nonwoven web layer A and a short fiber nonwoven web layer B on both sides.
Are laminated, and the constituent fibers of the synthetic long-fiber nonwoven web layer A are partially hot-pressed to each other.
And the constituent fibers of the short-fiber non-woven web layer B are three-dimensionally entangled with each other, and the constituent fibers of the short-fiber non-woven web layer B are three-dimensionally entangled with each other to be integrated as a whole. It has excellent mechanical properties, dimensional stability and flexibility, and is suitable not only for industrial materials but also for general materials. Further, according to the method for producing a composite nonwoven fabric of the present invention, the nonwoven fabric can be produced efficiently.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) D04H 1/00 - 18/00 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) D04H 1/00-18/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 スパンボンド法により形成した合成長繊
維不織ウエブに表面温度がその構成繊維中最も低い融点
を有する重合体の融点より50〜80℃低い温度の熱エ
ンボスロールを用いロールの線圧を5〜30kg/cm
とし部分的熱圧接処理を施して合成長繊維不織ウエブ層
Aを形成し、次いで得られた合成長繊維不織ウエブ層A
の両面に短繊維不織ウエブ層Bを積層した後、第1段階
の処理として圧力が5〜30kg/cm2Gの高圧液体
流処理を施して短繊維不織ウエブ層Bの構成繊維同士を
予備的に交絡させ、引き続き第2段階の処理として圧力
が40〜150kg/cm2Gの高圧液体流処理を施し
て合成長繊維不織ウエブ層Aの構成繊維と短繊維不織ウ
エブ層Bの構成繊維とを相互に三次元的に交絡させ、か
つ短繊維不織ウエブ層Bの構成繊維同士を三次元的に交
絡させ、全体として一体化させることを特徴とする複合
不織布の製造方法。
1. A hot embossing roll having a surface temperature of 50 to 80 ° C. lower than the melting point of a polymer having the lowest melting point among the constituent fibers of a synthetic long-fiber nonwoven web formed by a spunbond method. Pressure 5-30kg / cm
To form a synthetic long-fiber nonwoven web layer A, and then to obtain a synthetic long-fiber nonwoven web layer A
After laminating the short fiber non-woven web layer B on both sides of the web, a high-pressure liquid flow treatment at a pressure of 5 to 30 kg / cm 2 G is performed as a first stage treatment to separate the constituent fibers of the short fiber non-woven web layer B from each other. Preliminarily entangled and subsequently subjected to a high-pressure liquid flow treatment at a pressure of 40 to 150 kg / cm 2 G as a second stage treatment to form the constituent fibers of the synthetic long-fiber nonwoven web layer A and the short-fiber nonwoven web layer B. A method for producing a composite nonwoven fabric, comprising three-dimensionally entanglement of constituent fibers with each other, and three-dimensionally entanglement of constituent fibers of the short fiber nonwoven web layer B, and integrating them as a whole.
JP05299993A 1993-02-17 1993-02-17 Manufacturing method of composite nonwoven fabric Expired - Fee Related JP3201671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05299993A JP3201671B2 (en) 1993-02-17 1993-02-17 Manufacturing method of composite nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05299993A JP3201671B2 (en) 1993-02-17 1993-02-17 Manufacturing method of composite nonwoven fabric

Publications (2)

Publication Number Publication Date
JPH06240553A JPH06240553A (en) 1994-08-30
JP3201671B2 true JP3201671B2 (en) 2001-08-27

Family

ID=12930634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05299993A Expired - Fee Related JP3201671B2 (en) 1993-02-17 1993-02-17 Manufacturing method of composite nonwoven fabric

Country Status (1)

Country Link
JP (1) JP3201671B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052148A (en) * 2007-07-30 2009-03-12 Unitika Ltd Spunlaced composite nonwoven fabric

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2794776B1 (en) * 1999-06-10 2001-10-05 Icbt Perfojet Sa PROCESS FOR THE PRODUCTION OF A NONWOVEN MATERIAL, INSTALLATION FOR ITS IMPLEMENTATION AND NONWOVEN THUS OBTAINED
JP5329860B2 (en) * 2008-07-14 2013-10-30 ユニチカ株式会社 Composite sheet and manufacturing method thereof
JP6462344B2 (en) * 2014-12-05 2019-01-30 ユニチカ株式会社 Method for producing nonwoven fabric with uneven pattern and excellent water absorption
JP2018176522A (en) * 2017-04-11 2018-11-15 ダイワボウホールディングス株式会社 Laminated nonwoven fabric and production method therefor, liquid impregnation sheet, liquid impregnated sheet, and face mask
WO2020101124A1 (en) * 2018-11-14 2020-05-22 주식회사 휴비스 Three-layered hydroentangled nonwoven mask pack sheet and method for manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052148A (en) * 2007-07-30 2009-03-12 Unitika Ltd Spunlaced composite nonwoven fabric

Also Published As

Publication number Publication date
JPH06240553A (en) 1994-08-30

Similar Documents

Publication Publication Date Title
JPH03294558A (en) Interlaced non-woven fabric and production thereof
JP3201671B2 (en) Manufacturing method of composite nonwoven fabric
JPH10219555A (en) Laminated nonwoven fabric and its production
JP3948781B2 (en) Short fiber nonwoven fabric and method for producing the same
JPH10331063A (en) Composite nonwoven fabric and its production
JP3305453B2 (en) Laminated non-woven structure
JP3580626B2 (en) Nonwoven fabric for hook-and-loop fastener and method for producing the same
JPH07316968A (en) Composite non-woven fabric and its production
JP3905916B2 (en) Method for producing composite nonwoven fabric containing ultrafine fibers
JPH10280262A (en) Nonwoven fabric and its production
JP3259936B2 (en) Laminated nonwoven fabric and method for producing the same
JPH11158763A (en) Conjugate nonwoven cloth and its production
JP2000017558A (en) Ultrafine staple-containing composite nonwoven fabric and its production
JPH09119055A (en) Heat-resistant composite nonwoven fabric and its production
JP3784093B2 (en) Disposable handbag
JPH07227338A (en) Head rest cover
JPH0768686A (en) Laminated nonwoven structure
JPH07310272A (en) Composite nonwoven fabric and its production
JPH08109567A (en) Laminated nonwoven structure and its production
JPH10273870A (en) Composite non-woven fabric and its production
JPH1121752A (en) Composite nonwoven fabric and its production
JPH0913254A (en) Flame retardant composite fabric and its production
JPH10195749A (en) Laminated nonwoven fabric and its production
JPH10273864A (en) Composite nonwoven fabric and its production
JP2002088580A (en) Dividable fiber and fabric using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees