JPH0729907A - Lsi wiring structure and its formation - Google Patents
Lsi wiring structure and its formationInfo
- Publication number
- JPH0729907A JPH0729907A JP19676193A JP19676193A JPH0729907A JP H0729907 A JPH0729907 A JP H0729907A JP 19676193 A JP19676193 A JP 19676193A JP 19676193 A JP19676193 A JP 19676193A JP H0729907 A JPH0729907 A JP H0729907A
- Authority
- JP
- Japan
- Prior art keywords
- wiring
- sio2
- groove
- lsi
- sio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Electrodes Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は半導体素子作成プロセス
の一つであるLSI配線の構造に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of an LSI wiring, which is one of semiconductor element manufacturing processes.
【0002】[0002]
【従来の技術および発明が解決しようとする課題】従
来、LSIの配線材料にはAlあるいはAl合金が用い
られていたが、今後の微細化にはAlあるいはAl合金
では抵抗値の高さによる信号伝達速度の遅れ、マイグレ
ーション耐性の低さによる信頼性の低下が問題となる。
Au、Ag、Cuは低抵抗、高マイグレーション耐性か
らAlに代わる配線材料として期待されている。従来の
AlおよびAl合金配線は、塩素を用いたドライエッチ
ング法により蒸気圧の高いAlCl3を形成し、低温で
加工を行っていた。しかしながらAu、Ag、Cuの塩
素化合物は蒸気圧が低く、ドライエッチング法による低
温での加工は困難である。そこで埋め込み法による配線
形成が試みられている。この方法は配線形状に溝を形成
してその溝に配線材料を選択成長させるか、もしくは配
線材料を溝以外の箇所にも均一に堆積した後にエッチバ
ックすることにより配線を形成する方法である。この埋
め込み配線ではグラフォエピタキシーが期待されている
が、実際には製造プロセス温度が低温であるためグラフ
ォエピタキシーは困難である。本発明の目的は、埋め込
み配線において、低温でのグラフォエピタキシーを実現
し、大粒径、高配向のLSI配線構造とその形成方法を
提供することにある。2. Description of the Related Art Conventionally, Al or Al alloy has been used as a wiring material for LSI, but for further miniaturization in the future, the signal due to the high resistance value of Al or Al alloy is used. There is a problem of low reliability due to delay of transmission speed and low migration resistance.
Au, Ag, and Cu are expected as wiring materials that replace Al because of their low resistance and high migration resistance. Conventional Al and Al alloy wiring have been processed at a low temperature by forming AlCl 3 having a high vapor pressure by a dry etching method using chlorine. However, the chlorine compounds of Au, Ag, and Cu have a low vapor pressure, and it is difficult to process them at a low temperature by the dry etching method. Therefore, wiring formation by an embedding method has been attempted. This method is a method of forming a wiring by forming a groove in a wiring shape and selectively growing a wiring material in the groove, or by uniformly depositing the wiring material on a portion other than the groove and then etching back the wiring material. This embedded wiring is expected to have graphoepitaxy, but in reality, since the manufacturing process temperature is low, graphoepitaxy is difficult. An object of the present invention is to provide an LSI wiring structure having a large grain size and a high orientation, which realizes graphoepitaxy at a low temperature in embedded wiring, and a method for forming the same.
【0003】[0003]
【課題を解決するための手段】本発明は、配線形状に溝
を設けた配線パターンが基板上に形成され、該溝に配線
材料が埋め込まれたLSI配線構造であって、前記配線
パターンの溝部の側壁における底辺部の材料は、前記溝
部の底面および側壁上部の材料よりも配線材料に対する
吸着力の強い材料で構成されてなることを特徴とするL
SI配線構造である。ここで、吸着力の弱い材料と吸着
力の強い材料との組み合わせは、それぞれSiO2とS
ixN1-x、またはSiO2とTiN、またはSiO2とT
iW、またはSixN1-xとTiN、またはSixN1-xと
TiWであることを好適とする。According to the present invention, there is provided an LSI wiring structure in which a wiring pattern having a groove formed in a wiring shape is formed on a substrate, and a wiring material is embedded in the groove, and a groove portion of the wiring pattern. The material of the bottom portion of the side wall of L is made of a material having a stronger adsorption force to the wiring material than the material of the bottom surface and the upper portion of the side wall of the groove.
The SI wiring structure. Here, the combination of a material having a weak adsorption force and a material having a strong adsorption force is SiO 2 and S, respectively.
i x N 1-x , or SiO 2 and TiN, or SiO 2 and T
It is preferably iW, or Si x N 1-x and TiN, or Si x N 1-x and TiW.
【0004】また、そのLSI配線構造を形成するため
の方法は、基板上に第1の材料を堆積する工程と、該第
1の材料上に第1の材料よりも配線材料に対する吸着力
の強い第2の材料を堆積する工程と、該第2の材料上に
第2の材料よりも配線材料に対する吸着力の弱い第3の
材料を堆積する工程と、前記第2の材料および前記第3
の材料を加工して、前記第1の材料を溝の底面とする配
線形状の溝を形成する工程と、該溝に配線材料を堆積す
る工程と、溝の外部に堆積された配線材料を除去する工
程とからなることを特徴とする。Further, a method for forming the LSI wiring structure includes a step of depositing a first material on a substrate and a stronger adsorption force to the wiring material than the first material on the first material. Depositing a second material, depositing on the second material a third material having a weaker adsorption force for the wiring material than the second material, the second material and the third material
Processing the material described above to form a wiring-shaped groove having the first material as the bottom surface of the groove, depositing the wiring material in the groove, and removing the wiring material deposited outside the groove. And a step of performing.
【0005】[0005]
【作用】埋め込み配線のパターンの溝の底面および側壁
上部に配線材料に対する吸着力の弱い材料を、側壁の底
辺部分の材料に配線材料に対する吸着力の強い材料を用
いて配線を形成する。グラフォエピタキシーは結晶粒の
配向が下地だけでなく側壁の影響を受けることによりエ
ピタキシャル成長させるのが基本原理である。1000
℃程度以上の高温堆積の場合、埋め込みの穴の部分のど
こで核成長が生じても、結晶粒の面内回転自由度が高い
ため壁との界面エネルギーを最小にするように結晶粒が
回転し全ての結晶粒の配向が揃いグラフォエピタキシャ
ル成長が可能となる。しかしながらLSI製造プロセス
で許されるような低温堆積では埋め込み幅程度の結晶粒
の面内回転は困難であり、グラフォエピタキシーするた
めには核形成を壁と底の境界部分に生じさせ核の段階か
ら配向を揃えなければならない。本発明では溝の底面お
よび側壁上部に吸着力の弱い材料を、側壁の底辺部分に
吸着力の強い材料を用いることにより、底面を表面拡散
した配線材料粒子が壁面でトラップされ核形成は壁と底
の境界から生じ、グラフォエピタキシーが可能となる。
低温でグラフォエピタキシーを実現することにより、埋
め込み配線の大粒径化、高配向化が可能となる。大粒径
化、高配向化により配線のマイグレーション耐性が向上
し、信頼性の高い配線が可能となる。The wiring is formed by using a material having a weak adsorption force to the wiring material on the bottom surface of the groove of the embedded wiring pattern and an upper portion of the side wall, and a material having a strong adsorption force to the wiring material on the bottom portion of the side wall. The basic principle of graphoepitaxy is that the orientation of crystal grains is influenced not only by the underlying layer but also by the side wall to allow epitaxial growth. 1000
In the case of high temperature deposition of about ℃ or more, no matter where the nuclei grow in the buried hole, the crystal grains rotate so that the interfacial energy with the wall is minimized due to the high degree of in-plane rotational freedom of the crystal grains. Grapho-epitaxial growth is possible because all the crystal grains have the same orientation. However, in-plane rotation of crystal grains with a filling width is difficult in low temperature deposition that is allowed in the LSI manufacturing process, and in order to perform graphoepitaxy, nucleation is caused at the boundary between the wall and the bottom, The orientation must be the same. In the present invention, a material having a weak adsorption force is used for the bottom surface and the upper portion of the side wall of the groove, and a material having a strong adsorption force is used for the bottom portion of the side wall. Originating from the bottom boundary, graphoepitaxy is possible.
By realizing graphoepitaxy at low temperature, it becomes possible to increase the grain size and orientation of embedded wiring. By increasing the grain size and increasing the orientation, the migration resistance of the wiring is improved and a highly reliable wiring is possible.
【0006】[0006]
【実施例】次に、本発明の実施例について図面を参考に
して説明する。 実施例1 図1は本発明のLSI配線形成方法の一実施例を示す基
板の断面図である。まず図1(a)に示すように、Si
基板1上に吸着力の弱い第1の材料であるSiO22を
CVD法により100〜10000オングストローム堆
積し、次にSiO22上にSiO2に比べて吸着力の強い
第2の材料であるSixN1-x3をCVD法により5〜1
00オングストローム堆積し、次にSixN1-x3上に吸
着力の弱い第3の材料であるSiO24をCVD法によ
り100〜10000オングストローム堆積する。次に
図1(b)に示すように、通常のドライエッチング技術
によりSixN1-x3およびSiO24を加工し、溝の底
がSiO22となるようにSixN1-xのみを除去し、配
線形状の溝を形成する。次に配線材料のCuを室温〜5
00℃で堆積すると、堆積初期の段階で図1(c)に示
すように底部と側壁部の境界部分からのみCu核5aが
形成する。Cu核5aは底部と側壁部の両方に対し(1
11)配向するため、埋め込まれたCuはグラフォエピ
タキシャル成長する。そのまま堆積を続けると、図1
(d)に示すように、溝の内部には単結晶Cu5が、外
部には多結晶Cu6が形成される。その後、通常のエッ
チバック技術により溝の外部の多結晶Cuを除去し、図
1(e)に示すような単結晶Cu配線が形成される。Embodiments of the present invention will now be described with reference to the drawings. Example 1 FIG. 1 is a sectional view of a substrate showing an example of an LSI wiring forming method of the present invention. First, as shown in FIG.
SiO 2 2, which is a first material having a weak adsorption force, is deposited on the substrate 1 by the CVD method in an amount of 100 to 10,000 angstroms, and is a second material having a stronger adsorption force than SiO 2 on SiO 2 2. 5 to 1 of Si x N 1-x 3 by the CVD method
00 angstrom is deposited, and then SiO 2 4 which is a third material having a weak adsorption force is deposited on Si x N 1 -x 3 by 100 to 10000 angstrom by the CVD method. Next, as shown in FIG. 1 (b), processing the Si x N 1-x 3 and SiO 2 4 by conventional dry etching technique, Si as the bottom of the groove is SiO 2 2 x N 1-x Only this is removed to form a wiring-shaped groove. Next, Cu of wiring material
When deposited at 00 ° C., Cu nuclei 5a are formed only at the boundary between the bottom and the sidewall as shown in FIG. 1C at the initial stage of deposition. The Cu nuclei 5a are (1
11) Because of the orientation, the embedded Cu undergoes graphoepitaxial growth. If deposition is continued as it is, Fig. 1
As shown in (d), single crystal Cu5 is formed inside the groove, and polycrystalline Cu6 is formed outside. After that, the polycrystalline Cu outside the groove is removed by a normal etchback technique to form a single crystal Cu wiring as shown in FIG. 1 (e).
【0007】以上の結果は、吸着力の弱い材料と強い材
料がそれぞれSiO2とSixN1-xでなく、SiO2とT
iN、またはSiO2とTiW、またはSixN1-xとT
iN、またはSixN1-xとTiWであっても同様の結果
を得ることができる。また配線材料の堆積方法はスパッ
タ法でもCVD法でも良い。また吸着力の弱い第1の材
料および第3の材料は、二つとも同じ材料であってもよ
いし、別の材料であってもよい。さらに、配線材料とし
ては、本実施例で用いたCuのほかに、Au,Ag,A
lなどであってもよい。The above results indicate that the weakly adsorbing material and the strongly adsorbing material are not SiO 2 and Si x N 1 -x , but SiO 2 and T, respectively.
iN, or SiO 2 and TiW, or Si x N 1-x and T
Similar results can be obtained with iN or Si x N 1-x and TiW. The wiring material may be deposited by sputtering or CVD. Further, both the first material and the third material having a weak adsorption force may be the same material or may be different materials. Further, as the wiring material, in addition to Cu used in this example, Au, Ag, A
It may be 1 or the like.
【0008】[0008]
【発明の効果】以上説明したように、本発明によれば埋
め込み配線においてグラフォエピタキシーを実現し、大
粒径、高配向のLSI配線構造を提供することができ
る。As described above, according to the present invention, it is possible to realize an LSI wiring structure having a large grain size and a high orientation by realizing graphoepitaxy in a buried wiring.
【図1】本発明によるLSI配線形成方法の一実施例を
示す工程断面図である。FIG. 1 is a process sectional view showing an embodiment of an LSI wiring forming method according to the present invention.
1 Si基板 2 SiO2 3 SixN1-x 4 SiO2 5 単結晶Cu 5a Cu核 6 多結晶Cu1 Si substrate 2 SiO 2 3 Si x N 1-x 4 SiO 2 5 single crystal Cu 5a Cu nucleus 6 polycrystalline Cu
Claims (3)
板上に形成され、該溝に配線材料が埋め込まれたLSI
配線構造であって、前記配線パターンの溝部の側壁にお
ける底辺部の材料は、前記溝部の底面および側壁上部の
材料よりも配線材料に対する吸着力の強い材料で構成さ
れてなることを特徴とするLSI配線構造。1. An LSI in which a wiring pattern having wiring-shaped grooves is formed on a substrate and wiring material is embedded in the grooves.
In the wiring structure, the material of the bottom portion of the side wall of the groove portion of the wiring pattern is made of a material having a stronger adsorptive power to the wiring material than the material of the bottom surface and the upper portion of the side wall of the groove portion. Wiring structure.
の組み合わせが、それぞれSiO2とSixN1-x、また
はSiO2とTiN、またはSiO2とTiW、またはS
ixN1-xとTiN、またはSixN1-xとTiWである請
求項1記載のLSI配線構造。2. A combination of a material having a weak adsorption force and a material having a strong adsorption force is SiO 2 and Si x N 1-x , or SiO 2 and TiN, or SiO 2 and TiW, or S.
The LSI wiring structure according to claim 1, wherein the LSI wiring structure is i x N 1-x and TiN, or Si x N 1-x and TiW.
該第1の材料上に第1の材料よりも配線材料に対する吸
着力の強い第2の材料を堆積する工程と、該第2の材料
上に第2の材料よりも配線材料に対する吸着力の弱い第
3の材料を堆積する工程と、前記第2の材料および前記
第3の材料を加工して、前記第1の材料を溝の底面とす
る配線形状の溝を形成する工程と、該溝に配線材料を堆
積する工程と、溝の外部に堆積された配線材料を除去す
る工程とからなることを特徴とするLSI配線の形成方
法。3. A step of depositing a first material on a substrate,
A step of depositing a second material having a stronger adsorption force on the first material on the wiring material than the first material, and a weaker adsorption force on the second material than the second material on the wiring material A step of depositing a third material, a step of processing the second material and the third material to form a wiring-shaped groove having the first material as a bottom surface of the groove, and A method of forming an LSI wiring, comprising: a step of depositing a wiring material; and a step of removing the wiring material deposited outside the groove.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5196761A JP2606559B2 (en) | 1993-07-15 | 1993-07-15 | LSI wiring structure and method of forming the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5196761A JP2606559B2 (en) | 1993-07-15 | 1993-07-15 | LSI wiring structure and method of forming the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0729907A true JPH0729907A (en) | 1995-01-31 |
JP2606559B2 JP2606559B2 (en) | 1997-05-07 |
Family
ID=16363187
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5196761A Expired - Lifetime JP2606559B2 (en) | 1993-07-15 | 1993-07-15 | LSI wiring structure and method of forming the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2606559B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6566248B1 (en) * | 2001-01-11 | 2003-05-20 | Advanced Micro Devices, Inc. | Graphoepitaxial conductor cores in integrated circuit interconnects |
KR100387257B1 (en) * | 1999-12-28 | 2003-06-11 | 주식회사 하이닉스반도체 | Method of forming a metal line in a semiconductor device |
KR100783274B1 (en) * | 2006-11-29 | 2007-12-06 | 동부일렉트로닉스 주식회사 | Method of manufacturing semiconductor device |
KR20200093439A (en) | 2017-11-30 | 2020-08-05 | 라이온 가부시키가이샤 | Oral Stain Remover, Oral Stain Formation Inhibitor and Oral Composition |
KR20200093514A (en) | 2017-11-30 | 2020-08-05 | 라이온 가부시키가이샤 | Oral biofilm formation inhibitor and oral composition |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59195844A (en) * | 1983-04-20 | 1984-11-07 | Toshiba Corp | Manufacture of semiconductor device |
-
1993
- 1993-07-15 JP JP5196761A patent/JP2606559B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59195844A (en) * | 1983-04-20 | 1984-11-07 | Toshiba Corp | Manufacture of semiconductor device |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100387257B1 (en) * | 1999-12-28 | 2003-06-11 | 주식회사 하이닉스반도체 | Method of forming a metal line in a semiconductor device |
US6566248B1 (en) * | 2001-01-11 | 2003-05-20 | Advanced Micro Devices, Inc. | Graphoepitaxial conductor cores in integrated circuit interconnects |
KR100783274B1 (en) * | 2006-11-29 | 2007-12-06 | 동부일렉트로닉스 주식회사 | Method of manufacturing semiconductor device |
KR20200093439A (en) | 2017-11-30 | 2020-08-05 | 라이온 가부시키가이샤 | Oral Stain Remover, Oral Stain Formation Inhibitor and Oral Composition |
KR20200093514A (en) | 2017-11-30 | 2020-08-05 | 라이온 가부시키가이샤 | Oral biofilm formation inhibitor and oral composition |
Also Published As
Publication number | Publication date |
---|---|
JP2606559B2 (en) | 1997-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100214852B1 (en) | Forming method for metal wiring in semiconductor device | |
US6720262B2 (en) | Method of forming copper interconnections and thin films using chemical vapor deposition with catalyst | |
JP3927771B2 (en) | Method for forming a microelectronic structure | |
JP4771526B2 (en) | Soft metal conductor | |
WO1992009098A2 (en) | Process for forming extremely thin integrated circuit dice | |
US8492270B2 (en) | Structure for nano-scale metallization and method for fabricating same | |
US6674168B1 (en) | Single and multilevel rework | |
US20060108696A1 (en) | Structure for reducing stress-induced voiding in an interconnect of integrated circuits | |
KR100331906B1 (en) | Method for manufacturing a semiconductor device | |
JPH0729907A (en) | Lsi wiring structure and its formation | |
CN1110083C (en) | Method for making semiconductor device | |
US5953628A (en) | Method for forming wiring for a semiconductor device | |
JPH07115130A (en) | Manufacture of semiconductor device | |
JPS60115221A (en) | Manufacture of semiconductor device | |
JP2606548B2 (en) | Cu wiring and method for forming the same | |
JP3099406B2 (en) | Multilayer wiring structure of integrated circuit | |
JPH09283467A (en) | Manufacture of semiconductor device | |
JPH0577331B2 (en) | ||
JP2867443B2 (en) | Method for manufacturing semiconductor device | |
JP2592281B2 (en) | Method for manufacturing semiconductor device | |
JPH05136060A (en) | Formation of crystalline thin film | |
JP2808998B2 (en) | Method for manufacturing semiconductor device | |
JPH04132218A (en) | Formation method of aluminum film | |
JP2001230253A (en) | Semiconductor device, its manufacturing method and manufacturing apparatus thereof | |
JPH11317407A (en) | Semiconductor device and manufacture of the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080213 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090213 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100213 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 13 Free format text: PAYMENT UNTIL: 20100213 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110213 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 14 Free format text: PAYMENT UNTIL: 20110213 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 15 Free format text: PAYMENT UNTIL: 20120213 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120213 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130213 Year of fee payment: 16 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 16 Free format text: PAYMENT UNTIL: 20130213 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140213 Year of fee payment: 17 |
|
EXPY | Cancellation because of completion of term |