JPH07193210A - Semiconductor photointegrated element - Google Patents
Semiconductor photointegrated elementInfo
- Publication number
- JPH07193210A JPH07193210A JP34700293A JP34700293A JPH07193210A JP H07193210 A JPH07193210 A JP H07193210A JP 34700293 A JP34700293 A JP 34700293A JP 34700293 A JP34700293 A JP 34700293A JP H07193210 A JPH07193210 A JP H07193210A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- semiconductor
- mask
- optical
- selective growth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は半導体光集積素子に関
し、特に変調部を有する半導体光集積素子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor optical integrated device, and more particularly to a semiconductor optical integrated device having a modulator.
【0002】[0002]
【従来の技術】光技術を用いた超高速大容量伝送および
情報処理が急速に進展している。中でもMOVPE(有
機金属気相成長)法など成長技術の進展により高性能な
多重量子井戸構造半導体レーザ(MQW−LD)が実現
され、超高速変調素子やコヒーレント伝送用素子あるい
はアナログ変調素子など様々なシステム応用についての
研究開発が活発化している。例えば、超高速光半導体素
子としては、分布帰還型半導体レーザ(Distributed Fe
edback Laser Diode : DFB LD)や分布反射半導体
レーザ(Distributed Bragg Reflector Diode : DBR
LD)などがある。しかし、半導体レーザを直接変調
した場合には、注入キャリアの変動に起因するレーザ媒
質の屈折率変動により、スペクトル幅の増大、いわゆる
動的波長チャーピングが生じる。この波長チャーピング
は、高速変調時の伝送距離を制限する要因となるため、
直接変調に依らない外部変調器が提案されている。2. Description of the Related Art Ultra-high-speed, large-capacity transmission and information processing using optical technology are rapidly advancing. Above all, a high-performance multi-quantum well semiconductor laser (MQW-LD) has been realized by the progress of growth techniques such as MOVPE (Metal Organic Chemical Vapor Deposition) method, and various devices such as ultra-high speed modulator, coherent transmission device or analog modulator have been realized. Research and development on system applications are becoming active. For example, as an ultrafast optical semiconductor device, a distributed feedback semiconductor laser (Distributed Fe
edback Laser Diode: DFB LD) and Distributed Bragg Reflector Diode: DBR
LD) etc. However, when the semiconductor laser is directly modulated, fluctuations in the refractive index of the laser medium caused by fluctuations in the injected carriers cause an increase in the spectral width, so-called dynamic wavelength chirping. Since this wavelength chirping becomes a factor that limits the transmission distance during high-speed modulation,
External modulators that do not rely on direct modulation have been proposed.
【0003】半導体を用いた変調器では、吸収層にバル
ク半導体を用い、フランツーケルデッシュ(Franz-Keld
ysch)効果による吸収端の変化を利用したバルク構造変
調器、またバルク構造よりも大きな吸収端の変化が生じ
る量子閉じ込めシュタルク効果(QCSE:Quantum Co
nfined Stark Effect)を利用した量子井戸構造変調器
がある。他にも、マッハツェンダー(Mach-Zehnder)干
渉計の原理である光の位相変調を応用したマッハツェン
ダー型変調器がある。In a modulator using a semiconductor, a bulk semiconductor is used for the absorption layer, and a Franz-Keld (Franz-Keld) is used.
bulk structure modulator that utilizes the change in absorption edge due to the ysch) effect, and the quantum confined Stark effect (QCSE: Quantum Co
There is a quantum well structure modulator using the nfined Stark Effect). In addition, there is a Mach-Zehnder interferometer that applies the phase modulation of light, which is the principle of a Mach-Zehnder interferometer.
【0004】また結晶成長技術として、近年、有機金属
気相エピタキシー(MOVPE)法、分子線エピタキシ
ー(MBE)法等の薄膜結晶成長技術の急速な進展に伴
い、単原子層の厚さの精度で急峻な組成変化を持った良
質な半導体ヘテロ接合界面が製作されるようになった。
これらヘテロ接合によって形成されるポテンシャル井戸
構造、超格子構造では電子の波動性に起因する特異な光
学特性、電気特性を有しており、デバイス応用への研究
開発が活発化している。特に近年、基板面内で半導体層
の組成や層厚を制御する方法が提案され注目されてい
る。O.カイザーは1991年のジャーナル・オブ・クリス
タル・グロース誌第107巻、989-998頁(O. Kayser : Jo
urnal of Crystal Growth 107(1991)989-998)で、また
E.コラス等は同誌第107巻、226-230頁(E. Colas et
al.: Journal of Crystal Growth 107(1991)226-230)
でSiO2をマスクとして用いた選択成長について詳細
に報告している。また、T.カトー等は1991年の国際会
議ECOC’91(European Conference on Optical C
ommunication)のWeB7−1で、上記の選択成長のメ
カニズムを応用した光変調器集積型MQW−DFB−L
D、さらにS.タカノ等は1992年の国際会議ECOC’
92のTuB5−3で同様に選択成長を利用した波長可
変MQW−DBR−LDに関して報告している。上記の
ような集積型素子では、光ファイバーとの結合損失が無
いため高出力が得られる、複雑な光学系を用いないので
取扱いが容易で安定性が高い、などの長所を有してい
る。In recent years, as a crystal growth technique, with the rapid progress of thin film crystal growth techniques such as a metal organic vapor phase epitaxy (MOVPE) method and a molecular beam epitaxy (MBE) method, the thickness of a monoatomic layer can be accurately controlled. A high-quality semiconductor heterojunction interface having a sharp composition change has been manufactured.
The potential well structure and the superlattice structure formed by these heterojunctions have peculiar optical and electrical properties due to the wave nature of electrons, and research and development for device applications are becoming active. In particular, in recent years, a method of controlling the composition and layer thickness of the semiconductor layer within the substrate surface has been proposed and attracted attention. O. Kaiser, 1991, Journal of Crystal Growth, Volume 107, pages 989-998 (O. Kayser: Jo
urnal of Crystal Growth 107 (1991) 989-998), and E. Kolas et al., Vol. 107, pp. 226-230 (E. Colas et.
al .: Journal of Crystal Growth 107 (1991) 226-230)
Reported in detail on selective growth using SiO 2 as a mask. In addition, T. Kato et al. Are the 1991 European Conference on Optical C
optical modulator integrated MQW-DFB-L using the above selective growth mechanism.
D, and S. Takano et al., 1992 International Conference ECOC '
TuB5-3 of 92 also reports a wavelength tunable MQW-DBR-LD that also utilizes selective growth. The integrated element as described above has advantages such as high output power without coupling loss with an optical fiber, easy handling and high stability since no complicated optical system is used.
【0005】図6は、上記の選択成長のメカニズムを応
用した光変調器集積型MQW−DFB−LD素子の選択
成長マスク(SiO2)の形状(図6(a))、選択成
長層の光導波路方向の素子断面図(図6(b))および
バンドギャップ(図6(c))を示したものである。図
中、9はSiO2マスク、10は半導体基板、12は回
折格子、15,16は光導波路層、21は選択成長部
で、そのうち21aは変調器領域側、21b側はLD領
域側、51は量子井戸層で、そのうち51aは変調器
部、51bはLD部である。また、60はp−InPク
ラッド層、65はp−InP層、70はp+−InGa
AsP層、91a,91bは電極である。FIG. 6 shows the shape (FIG. 6A) of the selective growth mask (SiO 2 ) of the optical modulator integrated MQW-DFB-LD device to which the above selective growth mechanism is applied, and the optical growth of the selective growth layer. FIG. 7 shows a cross-sectional view of the element in the waveguide direction (FIG. 6B) and a band gap (FIG. 6C). In the figure, 9 is a SiO 2 mask, 10 is a semiconductor substrate, 12 is a diffraction grating, 15 and 16 are optical waveguide layers, 21 is a selective growth portion, of which 21a is the modulator region side, 21b is the LD region side, and 51 is the LD region side. Is a quantum well layer, of which 51a is a modulator section and 51b is an LD section. Further, 60 is a p-InP clad layer, 65 is a p-InP layer, and 70 is p + -InGa.
AsP layers and 91a and 91b are electrodes.
【0006】[0006]
【発明が解決しようとする課題】しかし前述のような集
積型の素子では、変調器部やDBR部をパルス変調ある
いは周波数(FM)変調した場合に、レーザ部との間で
キャリアの移動・拡散によるクロストークが生じていた
ために副モード抑圧比の低下や雑音の増大などレーザ動
作の不安定を招くという欠点を有していた。本発明の目
的は、このような従来の問題点を解決した半導体光集積
素子を提供することにある。However, in the integrated device as described above, when the modulator section or the DBR section is pulse-modulated or frequency (FM) -modulated, carrier movement / diffusion with the laser section is performed. Due to the crosstalk caused by the above, there is a drawback that the laser operation becomes unstable, such as a decrease in the submode suppression ratio and an increase in noise. An object of the present invention is to provide a semiconductor optical integrated device that solves the above conventional problems.
【0007】[0007]
【課題を解決するための手段】前述の課題を解決するた
めに本発明が提供する手段は、光ガイド層あるいは光能
動層を含む半導体層からなる素子を複数集積してなる半
導体光集積素子において、素子のうち少なくとも2つの
素子が光ガイド層よりもバンドギャップの大きな半導体
によって隔てられていることを特徴とする半導体光集積
素子である。ここで光能動層あるいは光ガイド層は、量
子井戸構造からなるものが好適である。Means provided by the present invention for solving the above-mentioned problems are to provide a semiconductor optical integrated device in which a plurality of devices each including a semiconductor layer including an optical guide layer or a photoactive layer are integrated. The semiconductor optical integrated device is characterized in that at least two of the devices are separated by a semiconductor having a band gap larger than that of the light guide layer. Here, the photoactive layer or the optical guide layer preferably has a quantum well structure.
【0008】[0008]
【実施例】次に本発明の実施例について、図面を参照し
て説明する。 実施例1 本発明による第一の実施例として光変調器集積型MQW
−DFB−LD素子を例に図を参照して詳細に説明す
る。図1(a)、(b)、(c)にそれぞれ本発明によ
る素子の選択成長マスク(SiO2)の形状、選択成長
層の光導波路方向の素子断面およびバンドギャップを示
す。また、図2は本発明による素子の斜視図である。図
1および図2において、8はSiO2マスク、10は半
導体基板、12は回折格子、15,16は光導波路層、
21aは選択成長部(変調器領域)、21bは選択成長
部(LD領域)、50a,50bは量子井戸層、60は
p−InPクラッド層、65はp−InP層、70はp
+−InGaAsP層、91a,91bは電極である。
本発明が従来技術と異なるのは、図1(a)に示すよう
に、両領域間の遷移領域にSiO2マスクを残し、LD
部と変調器部との選択成長部を隔て、後に光ガイド層よ
りもバンドギャップの大きな半導体層での埋め込み成長
(図1(b),(c))をすることによって、キャリア
の移動・拡散を抑制し、クロストークを低減する点にあ
る。また、この部分の長さは4μmと短いため、LD光
出力の変調器部への結合効率は90%以上と極めて良好
である。Embodiments of the present invention will now be described with reference to the drawings. Embodiment 1 An optical modulator integrated type MQW as a first embodiment according to the present invention
The -DFB-LD element will be described in detail with reference to the drawings. 1A, 1B and 1C show the shape of the selective growth mask (SiO 2 ) of the device according to the present invention, the device cross section of the selective growth layer in the optical waveguide direction and the band gap, respectively. 2 is a perspective view of the device according to the present invention. 1 and 2, 8 is a SiO 2 mask, 10 is a semiconductor substrate, 12 is a diffraction grating, 15 and 16 are optical waveguide layers,
21a is a selective growth part (modulator region), 21b is a selective growth part (LD region), 50a and 50b are quantum well layers, 60 is a p-InP clad layer, 65 is a p-InP layer, and 70 is p.
+ -InGaAsP layer, and 91a and 91b are electrodes.
The present invention is different from the prior art in that as shown in FIG. 1A, the SiO 2 mask is left in the transition region between the two regions and the LD
And diffusion of carriers by separating the selective growth portions of the modulator portion and the modulator portion and then performing buried growth in a semiconductor layer having a bandgap larger than that of the optical guide layer (FIGS. 1B and 1C). Is suppressed and crosstalk is reduced. Further, since the length of this portion is as short as 4 μm, the coupling efficiency of the LD light output to the modulator portion is 90% or more, which is extremely good.
【0009】次に、上記の素子の作製方法を図3(a)
〜(c)に順次示す。まず部分的に回折格子12を形成
した半導体基板10上にSiO2マスク8を回折格子上
部の選択成長部(LD領域:長さ420μm)21bで
12μm幅、他の部分(変調器領域:長さ150μm)
21aで4μm幅に形成した。開口部の幅は1.5μm
である。マスク形成後、光導波路層15(1.2μm組
成InGaAsP、層厚:0.1μm)、量子井戸層5
0(7層ウエル)、光導波路層16(1.2μm組成I
nGaAsP、層厚:0.1μm)、p−InPクラッ
ド層60(層厚:0.05μm、キャリア濃度:5x1
017cm-3)を順次積層して図3(a)に示す構造とし
た。この場合、前述のようにマスク幅に応じて組成およ
び層厚が素子内で異なっている(上記では全て変調部に
おける層厚を示した。)。すなわち変調器領域ではLD
領域に比べ組成は短波長化し、層厚は薄くなっている。
すなわち、LD領域の量子井戸50bではウエル層は歪
InGaAsP(圧縮歪+0.8%、波長組成1.72
μm:層厚5.5nm)、バリア層はInGaAsP
(無歪1.15μm組成:層厚7nm)であり、1.5
5μmの波長に対応するバンドギャップ・エネルギー
(0.8eV)を有している。一方、変調器領域の量子
井戸50aではウエル層は歪InGaAsP(圧縮歪+
0.5%、波長組成1.66μm:層厚3.8nm)、
バリア層はInGaAsP(1.1μm組成:層厚5n
m)であり、1.48μmの波長に対応するバンドギャ
ップ・エネルギー(0.84eV)を有している。Next, a method of manufacturing the above element will be described with reference to FIG.
To (c) are sequentially shown. First, the SiO 2 mask 8 is formed on the semiconductor substrate 10 in which the diffraction grating 12 is partially formed, and the selective growth portion (LD region: length 420 μm) 21b on the diffraction grating is 12 μm wide, and the other portion (modulator region: length) is formed. 150 μm)
21a to a width of 4 μm. The width of the opening is 1.5 μm
Is. After forming the mask, the optical waveguide layer 15 (1.2 μm composition InGaAsP, layer thickness: 0.1 μm), quantum well layer 5
0 (seven wells), optical waveguide layer 16 (1.2 μm composition I
nGaAsP, layer thickness: 0.1 μm, p-InP clad layer 60 (layer thickness: 0.05 μm, carrier concentration: 5 × 1)
0 17 cm −3 ) was sequentially laminated to form the structure shown in FIG. In this case, as described above, the composition and the layer thickness differ within the element depending on the mask width (all of the above show the layer thickness in the modulation portion). That is, in the modulator area, LD
The composition has a shorter wavelength than the region, and the layer thickness is thinner.
That is, in the quantum well 50b in the LD region, the well layer is strained InGaAsP (compressive strain + 0.8%, wavelength composition 1.72).
(μm: layer thickness 5.5 nm), the barrier layer is InGaAsP
(Strain-free 1.15 μm composition: layer thickness 7 nm), 1.5
It has a bandgap energy (0.8 eV) corresponding to a wavelength of 5 μm. On the other hand, in the quantum well 50a in the modulator region, the well layer is strained InGaAsP (compressive strain +
0.5%, wavelength composition 1.66 μm: layer thickness 3.8 nm),
The barrier layer is InGaAsP (1.1 μm composition: layer thickness 5 n
m) and has a bandgap energy (0.84 eV) corresponding to a wavelength of 1.48 μm.
【0010】次に選択成長に用いたマスクの開口部をス
トライプ状で幅約5μmに広げ、p−InP半導体層6
5(層厚は約1.3μm、キャリア濃度:5x1017c
m-3)、p+−InGaAsコンタクト層70(層厚は
約0.25μm、キャリア濃度:8x1018cm-3)に
より埋め込み成長後(図3(b))、素子間のInGa
Asコンタクト層を一部除去して素子分離を行い、Si
O2絶縁膜80、およびパッド状の電極91a,91b
を形成した(図3(c),図2)。図4は、LD部と変
調器部との選択成長部を隔てている部分の断面図であ
る。この素子において、LD特性として閾値電流10m
A、光出力20mW以上、また変調部は変調電圧3Vで
15dB以上の良好な消光比および5Gb/sの変調時
においても極めて良好な変調特性が得られた。さらに従
来、変調時35dB以下であった副モード抑圧比は45
dB以上に改善され、また相対雑音強度も従来の−14
0dB/Hz程度から−155dB/Hz以下に減少
し、発生したキャリアによる素子間のクロストークが大
幅に低減した。また前述のように選択成長を利用してい
るため、導波路としての内部損失も小さく高出力が得ら
れ、さらに製作工程が気相成長とパターニングによるた
め歩留まりも高い。Next, the opening of the mask used for the selective growth is widened in a stripe shape to a width of about 5 μm, and the p-InP semiconductor layer 6 is formed.
5 (Layer thickness is about 1.3 μm, carrier concentration: 5 × 10 17 c
m -3) , p + -InGaAs contact layer 70 (layer thickness of about 0.25 μm, carrier concentration: 8 × 10 18 cm -3 ) after buried growth (FIG. 3B), InGa between devices.
Part of the As contact layer is removed to perform element isolation.
O 2 insulating film 80 and pad-shaped electrodes 91a and 91b
Was formed (FIG. 3 (c), FIG. 2). FIG. 4 is a cross-sectional view of a portion separating the selective growth portion of the LD portion and the modulator portion. In this element, the LD characteristic has a threshold current of 10 m.
A, a light output of 20 mW or more, and a good extinction ratio of 15 dB or more at a modulation voltage of 3 V and a very high modulation characteristic at the time of 5 Gb / s modulation. Further, the sub-mode suppression ratio, which was 35 dB or less at the time of modulation in the past, is 45
It is improved to more than dB, and the relative noise intensity is -14 of the conventional one.
From about 0 dB / Hz to -155 dB / Hz or less, the crosstalk between the elements due to the generated carriers was significantly reduced. Further, since the selective growth is used as described above, the internal loss as a waveguide is small and a high output can be obtained, and the production process is based on vapor phase growth and patterning, so that the yield is also high.
【0011】実施例2 本発明による第二の実施例について、図を参照して説明
する。図5は、本実施例による光変調器集積型DFB−
LDの斜視図および断面図である。第一の実施例と異な
る点は、活性層としてバルク半導体を用いていることで
ある。また素子構造はいわゆるバットジョイント(butt
-joint)構造である。作製法は、部分的に回折格子12
を形成した基板10上に光導波路層17(1.3μm組
成InGaAsP、層厚:0.1μm)、バルク活性層
58(1.55μm組成InGaAsP、層厚0.1μ
m)、光導波路層18(1.3μm組成InGaAs
P、層厚:0.04μm)を成長後、変調器部形成のた
め部分的に上記成長層18,58,17を順次エッチン
グにて取り除き、全面に光導波路層19(1.47μm
組成InGaAsP、層厚:0.16μm)を成長す
る。さらに、本発明では、LD部と変調器部との間を一
部除去後、p−InP半導体層65(層厚は約1.5μ
m、キャリア濃度:7x1017cm-3)を形成した後、
p+−InGaAsコンタクト層70(層厚は約0.2
5μm、キャリア濃度:8x1018cm-3)を成長し
た。その後、リッジ状に導波部を形成し、半絶縁性In
P(Feドープ)62により埋め込み成長後、SiO2
絶縁膜80、およびパッド状の電極91,92を形成し
た。Second Embodiment A second embodiment according to the present invention will be described with reference to the drawings. FIG. 5 shows an optical modulator integrated DFB- according to the present embodiment.
It is a perspective view and sectional view of LD. The difference from the first embodiment is that a bulk semiconductor is used as the active layer. The element structure is the so-called butt joint (butt
-joint) structure. The fabrication method is partially based on the diffraction grating 12
The optical waveguide layer 17 (1.3 μm composition InGaAsP, layer thickness: 0.1 μm), the bulk active layer 58 (1.55 μm composition InGaAsP, layer thickness 0.1 μm) on the substrate 10 on which
m), the optical waveguide layer 18 (1.3 μm composition InGaAs)
(P, layer thickness: 0.04 μm), the growth layers 18, 58 and 17 are partially removed by etching in order to form a modulator portion, and the optical waveguide layer 19 (1.47 μm) is formed on the entire surface.
Composition InGaAsP, layer thickness: 0.16 μm) is grown. Further, in the present invention, after the part between the LD part and the modulator part is removed, the p-InP semiconductor layer 65 (the layer thickness is about 1.5 μm) is formed.
m, carrier concentration: 7 × 10 17 cm −3 ),
p + -InGaAs contact layer 70 (layer thickness is about 0.2
5 μm, carrier concentration: 8 × 10 18 cm −3 ) were grown. After that, a waveguide is formed in a ridge shape, and semi-insulating In
After burying growth with P (Fe-doped) 62, SiO 2
The insulating film 80 and the pad-shaped electrodes 91 and 92 were formed.
【0012】本素子において、LD特性として閾値電流
15mA、光出力20mW以上、また変調部は変調電圧
3Vで15dB以上の良好な消光比が得られた。また半
絶縁性半導体埋め込みにより10Gb/sの変調時にお
いても極めて良好な変調特性が得られた。副モード抑圧
比、相対雑音強度も第一の実施例と同様に良好であり、
素子間のクロストークについても大幅に低減した。以上
の実施例はInP系半導体を例に説明したが、GaAs
系半導体においても有効である。In this device, as the LD characteristics, a good extinction ratio of 15 mA or more was obtained with a threshold current of 15 mA and an optical output of 20 mW or more, and the modulation section at a modulation voltage of 3 V. Further, by embedding the semi-insulating semiconductor, extremely good modulation characteristics were obtained even at the time of modulation of 10 Gb / s. The secondary mode suppression ratio and the relative noise intensity are also good as in the first embodiment,
Crosstalk between elements was also greatly reduced. In the above embodiment, the InP semiconductor is taken as an example.
It is also effective for semiconductors.
【0013】[0013]
【発明の効果】以上述べてきたように、本発明によれ
ば、光ガイド層あるいは光能動層を含む半導体層からな
る素子を複数集積してなる半導体光集積素子において、
前記素子のうち少なくとも2つの素子を光ガイド層より
もバンドギャップの大きな半導体によって隔てる構造と
することにより、パルス変調あるいは周波数(FM)変
調した場合に、レーザ部との間で生じるキャリアの移動
・拡散によるクロストークを抑制できる。As described above, according to the present invention, in a semiconductor optical integrated device formed by integrating a plurality of devices each including a semiconductor layer including an optical guide layer or a photoactive layer,
By arranging at least two of the elements by a semiconductor having a bandgap larger than that of the optical guide layer, carrier movement between the laser section and the laser section occurs when pulse modulation or frequency (FM) modulation is performed. Crosstalk due to diffusion can be suppressed.
【図1】本発明による半導体光集積素子の一実施例の説
明図である。FIG. 1 is an explanatory diagram of an embodiment of a semiconductor optical integrated device according to the present invention.
【図2】本発明による半導体光集積素子の一実施例の斜
視図である。FIG. 2 is a perspective view of an embodiment of a semiconductor optical integrated device according to the present invention.
【図3】本発明による半導体光集積素子の一実施例の作
製方法を説明するための工程断面図である。FIG. 3 is a process sectional view for explaining the manufacturing method of the embodiment of the semiconductor optical integrated device according to the present invention.
【図4】本発明による半導体光集積素子のLD部と変調
器部との選択成長部を隔てている部分の断面図である。FIG. 4 is a cross-sectional view of a portion of the semiconductor optical integrated device according to the present invention which separates an LD growth portion and a modulator growth portion.
【図5】本発明による半導体光集積素子の別の一実施例
の斜視図および断面図である。FIG. 5 is a perspective view and a sectional view of another embodiment of the semiconductor optical integrated device according to the present invention.
【図6】従来例による半導体光集積素子の説明図であ
る。FIG. 6 is an explanatory diagram of a semiconductor optical integrated device according to a conventional example.
8,9 SiO2マスク 10 半導体基板 12 回折格子 15,16,17,18,19 光導波路層 21a 選択成長部(変調器領域) 21b 選択成長部(LD領域) 50a 量子井戸層(変調器部) 50b 量子井戸層(LD部) 58 バルク活性層 60 p−InPクラッド層 62 半絶縁性InP(Feドープ)層 65 p−InP層 70 p+−InGaAsP層 80 絶縁膜 91a,91b 電極8, 9 SiO 2 mask 10 Semiconductor substrate 12 Diffraction grating 15, 16, 17, 18, 19 Optical waveguide layer 21a Selective growth part (modulator region) 21b Selective growth part (LD region) 50a Quantum well layer (modulator part) 50b Quantum well layer (LD part) 58 Bulk active layer 60 p-InP clad layer 62 Semi-insulating InP (Fe dope) layer 65 p-InP layer 70 p + -InGaAsP layer 80 Insulating film 91a, 91b Electrode
Claims (4)
体層からなる素子を複数集積してなる半導体光集積素子
において、素子のうち少なくとも2つの素子が光ガイド
層よりもバンドギャップの大きな半導体によって隔てら
れていることを特徴とする半導体光集積素子。1. A semiconductor optical integrated device in which a plurality of devices each composed of a semiconductor layer including an optical guide layer or a photoactive layer are integrated, and at least two of the devices are semiconductors having a band gap larger than that of the optical guide layer. A semiconductor optical integrated device characterized by being separated.
構造からなるものである請求項1記載の半導体光集積素
子。2. The semiconductor optical integrated device according to claim 1, wherein the optically active layer or the optical guide layer has a quantum well structure.
および光ガイド層がInXGa1-XAsYP1-Y(0≦X≦
1,0≦Y≦1)からなるものである請求項1記載の半
導体光集積素子。3. The semiconductor substrate is made of InP, and the photoactive layer and the light guide layer are made of In X Ga 1-X As Y P 1-Y (0 ≦ X ≦
2. The semiconductor optical integrated device according to claim 1, which is composed of 1,0 ≦ Y ≦ 1).
構造を構成する井戸層および障壁層がInXGa1-XAs
YP1-Y(0≦X≦1,0≦Y≦1)からなるものである
請求項2記載の半導体光集積素子。4. The semiconductor substrate is made of InP, and the well layer and the barrier layer forming the quantum well structure are In X Ga 1 -X As.
The semiconductor optical integrated device according to claim 2, which is composed of Y P 1-Y (0 ≦ X ≦ 1, 0 ≦ Y ≦ 1).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34700293A JP3146821B2 (en) | 1993-12-27 | 1993-12-27 | Manufacturing method of semiconductor optical integrated device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34700293A JP3146821B2 (en) | 1993-12-27 | 1993-12-27 | Manufacturing method of semiconductor optical integrated device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07193210A true JPH07193210A (en) | 1995-07-28 |
JP3146821B2 JP3146821B2 (en) | 2001-03-19 |
Family
ID=18387263
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34700293A Expired - Fee Related JP3146821B2 (en) | 1993-12-27 | 1993-12-27 | Manufacturing method of semiconductor optical integrated device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3146821B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5978402A (en) * | 1996-12-11 | 1999-11-02 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor laser device |
US6134368A (en) * | 1996-08-30 | 2000-10-17 | Nec Corporation | Optical semiconductor device with a current blocking structure and method for making the same |
KR20150083783A (en) * | 2014-01-10 | 2015-07-20 | 미쓰비시덴키 가부시키가이샤 | Method for manufacturing semiconductor device, semiconductor device and system for manufacturing semiconductor device |
-
1993
- 1993-12-27 JP JP34700293A patent/JP3146821B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6134368A (en) * | 1996-08-30 | 2000-10-17 | Nec Corporation | Optical semiconductor device with a current blocking structure and method for making the same |
US5978402A (en) * | 1996-12-11 | 1999-11-02 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor laser device |
KR20150083783A (en) * | 2014-01-10 | 2015-07-20 | 미쓰비시덴키 가부시키가이샤 | Method for manufacturing semiconductor device, semiconductor device and system for manufacturing semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JP3146821B2 (en) | 2001-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5680411A (en) | Integrated monolithic laser-modulator component with multiple quantum well structure | |
JP2809124B2 (en) | Optical semiconductor integrated device and method of manufacturing the same | |
US6281030B1 (en) | Fabrication of semiconductor Mach-Zehnder modulator | |
JP2842292B2 (en) | Semiconductor optical integrated device and manufacturing method | |
EP0378098B1 (en) | Semiconductor optical device | |
JPH09318918A (en) | Semiconductor optical modulator | |
JP2937751B2 (en) | Method for manufacturing optical semiconductor device | |
JP2536714B2 (en) | Optical modulator integrated multiple quantum well semiconductor laser device | |
US5757985A (en) | Semiconductor mach-zehnder-type optical modulator | |
JP4690515B2 (en) | Optical modulator, semiconductor optical device, and manufacturing method thereof | |
JPH0650366B2 (en) | Light modulator | |
JPH08274404A (en) | Multi-quantum well laser diode | |
JP3146821B2 (en) | Manufacturing method of semiconductor optical integrated device | |
JP2669335B2 (en) | Semiconductor light source and manufacturing method thereof | |
JPH05251812A (en) | Distributed-feedback semiconductor laser with quantum well structured optical modulator and manufacture thereof | |
JPH08234148A (en) | Optical semiconductor device and its production | |
JPH0358490A (en) | Quantum well laser | |
JPH09171162A (en) | Semiconductor optical modulator | |
JPS623221A (en) | Optical modulator | |
JP2770848B2 (en) | Integrated light source of semiconductor laser and optical modulator and method of manufacturing the same | |
JPH07202338A (en) | Optical semiconductor device | |
JP3159914B2 (en) | Selectively grown waveguide type optical control element and method of manufacturing the same | |
JPH03291617A (en) | Integrated type optical modulator | |
JP2022015037A (en) | Semiconductor optical element | |
JP3273494B2 (en) | Waveguide multiple quantum well optical modulator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |