JPH0719839A - 表面状態解析システム - Google Patents
表面状態解析システムInfo
- Publication number
- JPH0719839A JPH0719839A JP5161872A JP16187293A JPH0719839A JP H0719839 A JPH0719839 A JP H0719839A JP 5161872 A JP5161872 A JP 5161872A JP 16187293 A JP16187293 A JP 16187293A JP H0719839 A JPH0719839 A JP H0719839A
- Authority
- JP
- Japan
- Prior art keywords
- image
- value
- pixels
- freckles
- brightness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
メラニン顆粒の存在する深さとその分布及び「しみ」
「そばかす」の色の濃さの分布等を決定することの可能
な表面状態解析システムを提供することを目的とする。 【構成】 トリスペクトラルカメラ70により近紫外画
像(400nm±10nm)、可視画像(550nm±10n
m)、及び近赤外画像(700nm±10nm)を同時に撮
影し、2値化し、それらを比較することによってしみ・
そばかすのもととなるメラニン顆粒の深さを推定する。
2値化に使用したスライスレベルに対応するL* 値を算
出し、最も濃い部分のL* 値との間で3等分することに
より、等分点に対応する輝度レベルを決定し、それを用
いてしみ・そばかす画像の濃さを分類する。
Description
像解析により解析する表面状態解析システム、特に、皮
膚表面の「しみ」「そばかす」を形成するメラニン顆粒
の存在する深さとその分布及び「しみ」「そばかす」の
色の濃さの分布等を決定することの可能な表面状態解析
システムに関する。
た化粧品の開発が進められているなかでしみ・そばかす
のあり様(かたち、大きさ、色の濃さ)を客観的に評価
できる方法の確立と計測装置の開発が必要とされる。従
来、この種の評価は、ビデオマイクロスコープに代表さ
れる画像拡大観測装置で得られるしみ・そばかす画像を
肉眼比較するか、再現性の悪さについては目をつぶり、
得られたR,G,Bの値を何らかの形に加工し評価に使
う、といった方法で行われてきたが、定性的所見が得ら
れるレベルにとどまる、といえる。
た色素沈着部位が強調されることからこの画像に着目し
た数値化の試みも行われている(新井清一、原由紀子、
三村邦雄、永澤久直、西島清、粧技誌、23,1,31
(1989))。これによれば、シェーディング補正
(顔の立体構造に起因する陰影の除去)が行なわれるの
で濃さの情報が失なわれる。また再現性は5%程度であ
るとされている。
メラニン顆粒の存在する場所が相対的にみて浅い所にあ
るのか、深いところにあるのかという情報が得られれ
ば、しみ・そばかすの発生を予防し抑制する美白化粧品
の有用性を評価するにあったて、さらには、しみ・そば
かすに悩む顧客を対象としたカウンセリングの場で、極
めて意味のある情報・データになると考えられる。
1の目的は、しみ・そばかすを形成するメラニン顆粒の
存在する深さとその分布を決定することの可能な表面状
態解析システムを提供することにある。本発明の第2の
目的は、精度の良い測定値が得られ、しみ・そばかすの
濃さの評価も可能な表面状態測定システムを提供するこ
とにある。
一の対象物について複数の波長帯域における画像をそれ
ぞれ出力する撮像装置と、該撮像装置が出力する複数の
波長帯域における画像を構成する画素の明るさの分布か
ら適切なスライスレベルをそれぞれ決定し、該スライス
レベルよりも明るい画素の集合である明領域と該スライ
スレベルよりも暗い画素の集合である暗領域をそれぞれ
決定して複数の2値画像を出力する2値化手段と、該複
数の2値画像のうち少なくとも2つの2値画像から該対
象物の表面付近に存在する色素の相対的深さと各相対的
深さにおけるその分布とを決定する深さ解析手段とを具
備することを特徴とする表面状態解析システムにおいて
達成される。
する撮像装置と、該撮像装置が出力する画像を構成する
画素の明るさの分布から適切なスライスレベルを決定
し、該スライスレベルよりも明るい画素の集合である明
領域と該スライスレベルよりも暗い画素の集合である暗
領域をそれぞれ決定して2値画像を出力する2値化手段
と、該スライスレベルに対応するL* 値と最も暗い画素
の明るさレベルに対応するL* 値との間を等分して少な
くとも1つのL* 値を決定しそれに対応する境界レベル
を決定し、該暗領域を該境界レベルにより複数の部分領
域に分割する領域分割手段とを具備することを特徴とす
る表面状態解析システムにおいて達成される。
た結果が、森川ら(F.Morikawa,Y.Nak
amura,T.Iikura,K.Nakajim
a,S.Ohta and M.Ishihara,
“Biology and Diseases of
Dermal Pigmentation”p.231
(1981)University of Tokyo
Press)によって報告されている。それによる
と、そばかすは、紫外領域で撮影した写真で極めて鮮明
に画像化されるが、可視、赤外の順でその存在は不鮮明
になり、特に、赤外線写真では、ほとんどその痕跡をみ
ない。蒙古斑の場合は逆に、赤外線写真で鮮明にとらえ
られ、紫外線写真では、その存在が明瞭でない。
メラニン顆粒、蒙古斑は、真皮中に主として存在するメ
ラニン顆粒に起因することが知られている。従って、紫
外、可視、赤外の写真を比較・参照することによって、
対象とするしみ・そばかすのもとであるメラニン顆粒の
存在場所を、皮膚表面からの相対的深さの違いとして認
識できると考えられる。そこで、紫外、可視、赤外の領
域のしみ・そばかす画像を同時に撮像できる装置を開発
し、得られた画像を後述する方法で解析することによ
り、しみ・そばかすのかたち、大きさ、色の濃さ、並び
にメラニン顆粒の存在場所の相対的深さに関するデータ
を得ることにした。
て撮影した時、どのような画像が得られるかを89人の
日本人女性を対象にテストした。即ち、紫外、可視、赤
外における10の波長域でのしみ・そばかす画像を、紫
外線透過フィルター(U−36、ケンコー)、バンドパ
スフィルター(BP−40,BP−45,BP−50,
BP−55,BP−60,BP−65,BP−70,B
P−75,BP−80、ケンコー)に副透過帯をカット
する補助フィルターを組み合わせて撮影した。上記した
フィルターは、半値幅が狭く(±10nm前後)、透過率
が低い(40%前後)ので3600Wのバルカー大型ス
トロボをたいて撮影した。
ック・TMAX100、BP−55〜BP−65の波長
域では、フジカラーSUPER HR100、BP−7
0〜BP−80の波長域では、コダックHIEをそれぞ
れ撮影用フィルムとして使用した。結果として、森川ら
による報告と同様な画像が得られ、より短い波長域で撮
影したほうが、そばかすは強調されることがわかった。
一方、肉眼で青黒くみえるほくろは、より長波長側の画
像に現れること、更に、蒙古斑の場合は、長波長側での
み画像化されることが確認された。しかしながら、10
の波長域の画像を個別に撮影するには、撮影波長領域に
対応した所要機材の用意と組み替えを初めとしたたいへ
んな時間と労力が必要でとても実用的である、とはいえ
ない。そこで、1回の撮像で紫外、可視、赤外の画像が
得られる装置を開発することにした。
の画像をうるには、照明光の分光分布とその強度、受光
素子の分光感度、帯域フィルターのバンド幅とその透過
率がそれぞれしかるべき条件を満たす必要がある。しか
しながら現状の周辺技術の水準は、これを満たすことが
できず新たな要素技術の開発を必要としていた。装置の構成 撮像画像からしみ・そばかすの部分を抽出するには、画
像の2値化が必要とされる。この場合撮像時に生じるシ
ェーデングを極力防止しないと、ソフト処理で苦労す
る。そこで、シェーデングの発生が少なくなるように、
閃光放電管、ミラーの大きさとその形、さらにその空間
配置のありようを、試作とテストを繰り返しながら決定
した。結果として、ほぼシェーディングが生じない、か
つまた、紫外領域の照明光を確保する防爆型石英ガラス
製リング状閃光放電管(発光量の粗調整は、色温度変化
が小さいコンデンサー容量の変化で、微調整は、電圧変
化で、任意に調整できるように設計されている)を内蔵
するエレクトロニックフラッシュを新たに製作するとと
もに、3板式CCDカメラ(東芝製・IK−T30Cを
母体に仕様変更したもの)と1体化した撮像用トリスペ
クトラルカメラを新規に開発した。カメラ本体の光学系
を図1に示す。
なしている。その背後にはリフレクタ12が配置され
る。リフレクタ12も同様に全体としてリング状をなし
ており、その鏡面は閃光放電管10からの光を面14に
むらなく投光するように設計されている。閃光放電管1
0の前方にはやはりリング状のデフューザ16が配置さ
れる。デフューザ16は波長350〜750nmの光を拡
散透過させる。デフューザ16は波長350〜750nm
の光を透過させる2枚のリング状クリアフィルタ18で
挟まれて固定される。クリアフィルタ18は放電管10
が破損したときにガラス片が飛散しないためのプロテク
タの役も果たす。フード20が設けられ、リフレクタ1
2とともに光源10からの光が直接後方へ入射しないよ
うにしている。デフューザ16とクリアフィルタ18は
フード20に固定される。デフューザ16の前方の導光
空間22は徐々に断面が狭くなっており、その導光空間
22を定める内壁24には面14にむらなくフラッシュ
光を当てるために硫酸バリウム塗装されている。内壁2
4は凹面をなしている。リング状放電管10の後方のリ
ングの中心軸上には魚眼レンズ26が配置され、その後
方にCCDカメラ28が配置される。
電させると、その光及びリフレクタ12の反射光はデフ
ューザ16で拡散され、皮膚の表面をむらなく照明す
る。照明された皮膚表面の像を魚眼レンズ26によりC
CDカメラ28内のCCD素子上に結像させることによ
り、シェーディングのない皮膚表面の画像の信号が得ら
れる。
正時にはそれに設けられたピン32と装置の筐体に設け
られた穴34とのはめ合いにより、装置に固定される。
キャリブレーション用キャップ30の内壁には標準灰色
サンプルとしてのタイル36がはめ込まれており、キャ
ップ30を装置に装着したときタイル36の面が面14
に一致する。
ョン用キャップ30を装着した状態で得られるタイル3
6の像の輝度値を用いて校正することにより、しみ、そ
ばかす等の色の濃さの数値による評価が可能になる。図
2は図1のCCDカメラ28の詳細な構成を表わす断面
図である。魚眼レンズ26からの光はIRカットフィル
タ40及びローパスフィルタ42を経てプリズム44へ
入射される。プリズム44の一面にはダイクロイックミ
ラー46が施されており、この面で波長400nm近傍の
光成分が反射されて分離されるように角度が設定されて
いる。ダイクロイックミラー46で反射されなかった光
成分はさらにプリズム48に入射する。プリズム48の
一面にもダイクロイックミラー50が施されており、こ
の面で波長700nm近傍の光成分が反射されて分離され
るように角度が設定されている。ダイクロイックミラー
50で反射されなかった光成分はプリズム52を経て主
波長550nm、半値幅±10nmのバンドパスフィルタ5
4を通過してCCD素子56上に結像する。ダイクロイ
ックミラー46で反射された光成分はプリズム44の他
の面でさらに反射され、主波長400nm、半値幅±10
nmのバンドパスフィルタ58を通過してCCD素子60
上に結像する。ダイクロイックミラー50で反射された
光はプリズム48の他の面でさらに反射され、主波長7
00nm、半値値±10nmのバンドパスフィルタ62を通
過してCCD素子64上に結像する。
を放電させると、CCD素子56,60,64上にそれ
ぞれ550nm(可視領域の中央)、400nm(紫外領域
の近傍)、及び700nm(赤外領域の近傍)における画
像に対応する電気信号がシェーディングを生じることな
く得られる。図3は各バンドパスフィルタ54,58,
62の通過特性を表わす。図3から明らかなように、本
発明において使用されるトリスペクトラルカメラには、
通常の3板式カメラと異なり、400nm,550nm,7
00nmを主波長とし、半値幅±10nmのバンドパスフィ
ルタが使用されており、帯域の狭い3つの波長帯域にお
ける画像(以下、それぞれ近紫外画像、可視画像、及び
近赤外画像と呼ぶこととする)が同時に得られる。
テムには、前述のトリスペクトラルカメラ70からの画
像信号のレベルを波長別に変換する波長別レベルコント
ローラ71(後に詳述)と、その出力をアナログ/デジ
タル変換してメモリに一担格納する画像メモリ72と、
画像メモリ72に格納されたデータを適宜読み出して各
種の解析処理を行なうコンピュータ74が具備されてい
る。コンピュータ74にはオペレータからの指示を入力
するためのキーボード76と、解析結果の出力のための
モニタ78とそのハードコピーを出力するためのビデオ
プリンタ80と、画像データ及び解析結果等を格納する
ための光磁気ディスク82が接続されている。
画像とも各8ビットでデジタル化され、メモリーに記録
される。本システムを使って同一対象の画像を長期にわ
たって継時撮像する場合に発生する、管理し得ない変動
による画像入力データのバラツキを補正し、継時比較に
たえうる定量的な画像データが常に得られるようにする
という目的と、波長によってきまる肌色の分光反射率の
存在範囲内に8ビットを割り振り、検出力をあげること
を狙いとして、以下のような操作を行う。
本人女性826人(16才〜59才)を対象にした肌色
(頬)測定結果から得られた400nm,550nm,70
0nmにおける分光反射率の平均値と標準偏差は、次に示
す通りである。 波長 反射率の平均値 標準偏差(σ) 400nm 16.0% 2.9 550nm 29.9% 3.5 700nm 59.4% 2.4 従って、400nmでは、25%(平均値+3σ)以上の
反射率を持つ測定対象はほとんどないので、0%〜25
%に対して8ビットを割り当てることとした。この場
合、反射率と出力される輝度とに線形関係があるすると
1輝度は、反射率に直すと0.10%に相当し、きわめ
て高い分解能が得られることになる。
方でビットを割り当てることとした。この割り当てのた
めの装置として、400nm,550nm,700nmにおけ
る撮像対象の反射率に対応する入力電圧を、上記したビ
ット割りに対応した出力電圧に変換する波長別レベルコ
ントローラを新規に設計・製作した。濃いしみ・そばか
すといっても反射率が0%ということはないわけで、下
限の切り上げが考えられるが、ここでは特に配慮しな
い。上記した波長別レベルコントローラ71(図4)を
介在させることによって得られた入出力条件における撮
像対象の反射率と本システムにおける出力輝度との関係
を、無光沢の灰色塗装紙(村上色彩技術研究所に作製を
依頼)を対象にして測定した。無光沢灰色塗装紙の反射
率は、日立カラーアナライザー607で測定した。図
5、図6、図7に得られた結果を示す。
係は、右上りの関係を示しているが、完全な直線関係で
はない。また、反射率が小さいところでは、線形性がよ
りわるくなる。前記したように、濃いしみ・そばかすと
いっても反射率が0%ということはないこと、低反射率
領域でのCCDカメラの感度がわるいこと、さらには、
多数の校正用灰色サンプルを用意して非線形の輝度校正
を行うのは、実用的でないことから、なるべく少数の校
正用灰色サンプルを用い、線形関係を仮定して校正をお
こなうとことした。この校正方法は画像入力データの定
量的継時比較のための校正という目的に対して必要十分
な操作であると考えられる。
ルは、劣化の必要がなく、汚れてもふき取り可能なもの
ということで、“EVER−COLORS”(米田硝子
工芸製、測光・測色用常用反射標準板)に#3000の
金剛砂をかけ、無光沢面としたものを作製し、使用する
ことにした。最終的に選定した“EVER−COLOR
S”は、GRAY No.1000,GRAY No.300
0,GRAY No.6000である。近紫外画像と可視画
像の校正値を求めるために、GRAY No.1000とG
RAY No.3000を用い、近赤外画像の校正値を求め
るためには、GRAY No.1000とGRAY No.60
00を用いた。
的条件の再現の確保を狙いとして、図8にしめしたよう
な校正用標準板セット(上記した校正用“EVER−C
OLORS”を3組、各2枚づつ、計6枚セットしたも
の)を製作した。2枚1組とし、図8のように配置した
のは、“EVER−COLORS”の工作・加工上の制
限で、広い面積の切り出しが不可能であること、従っ
て、なるべく広い面積を対象にして、撮像領域内に存在
するかもしれない照度むらに対応しようとすると2枚と
せざるをえないことによる。
にピン32をガイドにして装着し、シャッターを1度押
すだけで自動的に校正がおこなえるようにした。校正
は、図8に実線で示した各ウインドウ(50×100画
素、または、100×50画素)内の平均輝度を計算す
ることで得られた値を、その時点のシステムの状態を示
す値とすることで実行される。
反射率(日立カラーアナライザー607)と前述した波
長別レベルコントロラーをかいして設定した輝度値を表
1に示す。
して以下に示す。表1に示したようにGRAY No.10
00の近紫外画像における輝度が、38、分光光度計で
求めた400nmの分光反射率が、7.4%であり、GR
AY No.3000の輝度が、240、分光反射率が2
7.0%であるときを基準状態とすると、基準状態にお
ける分光反射率Xと輝度Yとの関係は
o.1000の輝度が40であり、GRAY No.3000
の輝度が250であったとする。この場合、分光反射率
Xと輝度の測定値Y1 との関係は
Xを消去すればYとY1 の関係が得られ、これによっ
て、校正前の輝度値Y1 から基準状態における輝度の校
正値Yが計算される。以上の手続きで、校正対象画素の
輝度0〜255について、対応する校正値を求めてお
き、これを校正用テーブルとして参照することで、すべ
ての画素について、校正を行う。可視画像、近赤外画像
についても、同じ方法で校正している。
化できるか否か知るために92年6月に143人から採
取した(n=143)原画像中の可視画像から切り出し
た192×192画素内の最低輝度、自動2値化の輝度
と最高輝度の頻度分布を求めてみた。
れ、同一のしきい値を採用できないことがわかった。そ
こで、個々の画像ごとに2値化することにした。2値化
の方法については、いくつかの提案があるが、与えられ
た濃度の分布の中で最も良い分離度で2分する値をスラ
イスレベルとする大津が提案している方法(大津展之、
電子通信学会誌、63,4,349(1980))で、
処理したところ、すべての採取画像において、やや高め
の輝度で2値化されることがわかった。即ち、しみ・そ
ばかすの面積が大きく抽出された。
よって求めた2値化のためのしきい値から、どのくらい
しきい値を下げたところで2値化すれば、肉眼で認識で
きるしみ・そばかすと形態上よく似た2値画像がえられ
るかをしらべ、しきい値をきめた。後述するように、し
み・そばかすの濃度は、可視画像が持つ輝度データを用
いて数値化している。可視画像における最適2値化レベ
ルは、以下のようにして決定した。
3)を、次の8ツの条件で2値化した。 (i)自動2値化 (ii)(自動2値化値−3)で2値化 (iii)(自動2値化値−6)で2値化 (iv)(自動2値化値−8)で2値化 (v)(自動2値化値−9)で2値化 (vi)(自動2値化値−10)で2値化 (vii)(自動2値化値−11)で2値化 (viii)(自動2値化値−12)で2値化 次いで、それぞれの2値画像のハードコピーをビデオプ
リンターをつかって、出力し、どの条件で処理した画像
が、肉眼で色素沈着していると感じる領域を最も忠実に
抽出しているか、評定者(3名)に評価させた。
%)については、(iii) の条件で処理した画像が、最適
であると評価された。また、14例は、減数が−6より
小さい条件、12例は、大きい条件で処理した画像が2
値画像として最適と評価された。この結果から可視画像
については、(自動2値化のためのしきい値−6)を2
値化のためのスライスレベルとした。
化のためのしきい値−6)を、近赤外画像では、(自動
2値化のためのしきい値−20)を2値化のためのスラ
イスレベルとした。このように処理した2値画像には、
当然雑音がのっている。これについても処理条件をかえ
て雑音を除去し、肉眼で除去の様子を評価するという作
業の繰り返しを行い、除去条件(面積が50画素以下
で、円形度0.5以上のもの)を決定した。
深さの同定 前述したように、本システムで撮像された近紫外画像、
可視画像、近赤外画像中にそれぞれ固定されたしみ・そ
ばかす(メラニン顆粒像)のありようは、それぞれのメ
ラニン顆粒の存在場所の皮膚表面からの相対的深さの違
いを反映していると考えられる。
ば、近紫外画像で捕らえられているしみ・そばかすのも
とであるメラニンは、相対的に浅いところにあるメラニ
ンであり、近赤外画像で捕らえられている色素沈着のも
とであるメラニンは、相対的に深いところにあるメラニ
ンであるとされる(T.B.Fitzpatrick、
皮膚と化粧品科学、p.278,(1982)南山
堂)。従って、近紫外画像、可視画像、近赤外画像の情
報をうまく組み合わせることによって、個々のしみ・そ
ばかすのもとであるメラニン顆粒の存在場所の、皮膚表
面からの相対的深さを見定めることができる。
せとして、以下の8ツの場合が考えられる。 近紫外画像 可視 画像 近赤外画像 場合1 × × × 場合2 ○ × × 場合3 ○ ○ × 場合4 ○ ○ ○ 場合5 × ○ ○ 場合6 × × ○ 場合7 × ○ × 場合8 ○ × ○ ここで、○印は、しみ・そばかすが当該画像中に写って
いるケース、×印は、写っていないケースをしめす。従
って、場合1は、しみ・そばかすがない肌である。
粒の相対的深さ方向の存在場所を、皮膚表面からみて浅
い所(浅層)、深い所(深層)、さらに浅い所と深い所
の中間(中間層)という呼び方で以下区別する。そうす
ると、場合2は、皮膚の浅層にメラニン顆粒が存在する
状態であり、場合3は、浅層並びに中間層に、場合4で
は、浅層、中間層、深層のいずれにもメラニン顆粒があ
る状態といえる。場合5は、中間層と深層に、場合6
は、深層のみに、場合7は、中間層のみにメラニン顆粒
があるケースに相当する。また、場合8は、浅層と深層
にメラニン顆粒が存在すると考えられる。
ラニン顆粒の存在場所(相対的深さ)を推定することが
できるが、ここでは、メラニン顆粒の相対的深さの同定
・分類をより明確にするために近紫外画像と近赤外画
像、並びにその組み合わせに着目する。即ち、本システ
ムでは、対象としているしみ・そばかすをもたらすメラ
ニン顆粒が相対的にみて浅い所(浅層)にあるのか、深
い所(深層)にあるのか、あるいは、浅い所にも深い所
にも共にあるのか、そのどれに該当するかを判別する。
画像に、しみ・そばかすが写っている、写っていない
か、を手がかりに判別する。写っている場合は、○印、
写っていない場合は、×印とすると、上記したように以
下のケースが考えられる。 近紫外画像 近赤外 備考 ケース1 ○ × 浅い所にある ケース2 × ○ 深い所にある ケース3 ○ ○ 浅い所にも深い所にもある ここで問題となるのは、写っている、写っていないとい
うことをどういう基準のもとに判断するかということで
ある。ここでは、前述した方法で2値化した時、黒画素
としてしみ・そばかすが抽出された場合、写っていると
判断する。
美白化粧品の効果を数値として捕らえることにある。ま
た、しみ・そばかすの色の濃さのデータは、メーキャッ
プでしみ・そばかすを隠す場合、どの位のカバー力があ
る商品を使った時、その目的が果たせるかを見極めるた
めのデータとすることができる。
dlove(I.H.Godlove,Am.Dyes
tuff Rept.,43 685(1954))や
Rabe−Koch(P.Rabe and O.Ko
ch,Melliand Textilbericht
e,38 173(1957))による提案、その他が
ある。これらの方法は、どちらかというと『絶対的な色
の濃さ』を数値化する方法といえるが、本システムで得
られたデータの利用は難しい。しかしながら、美白化粧
品の有用性評価には、絶対値としての色の濃さの計量結
果がどうしても必要である。
の濃さとして、同じ絶対値の大きさを取るしみ・そばか
すがあった場合、当然色白の人の方が目立つ。この場合
は、地肌の色としみ・そばかすの色の相対的な差の大き
さから、しみ・そばかすが目立つ、目立たない(色が濃
く感じる、薄く感じる)を定義した方が、美容情報とし
て適切といえる。以下、前者をしみ・そばかすの色の濃
さの絶対値化、後者を相対値化と分けて考える。
色変化は、メラニンの多寡とその存在場所(皮膚表層内
の深さ)の違いによって生じるほぼ同一色相の明度変化
であり、分光反射特性をみても、可視域全域に渡る相対
的な反射率の大小の違いに対応する。従って、可視域の
任意の波長の反射率の大きさの違いは、そのまま色の濃
さの違いとなる。
0人)について得られた額と頬の550nmにおける分光
反射率(日立カラーアナライザー607型で測定)と3
刺激値のY値の関係をプロットしてみると図9の如くと
なる。即ち、肌色、並びに、濃いしみ・そばかす〜薄い
しみ・そばかすに対応すると考えられる黒人、黄色人、
白人の肌の550nmの分光反射率は、3刺激値のY値と
極めて相関(r=0.99)が高いことがわかる。従っ
て、しみ・そばかすに関しては、550nmの分光反射率
がわかれば、Y値を求めることができる。
るしみ・そばかすの画素ごとの輝度値を以下の如く加工
して、当該画素の色の濃さの値とした。なお、可視画像
の輝度を対象にすることの利点は、他の2ツの画像と比
較して、肉眼でみた色の濃さに一番近いことがあげられ
る。 1)しみ・そばかすの色の濃さの絶対値化 まず、前述した校正方法にしたがって、可視画像(55
0nm)の輝度をすべての画素について校正する。次い
で、表2の550nmに関する数値を用いて輝度を反射率
に変換する。更に、図9から得られる反射率とY値との
関係式を用いて、反射率をY値に変換する。最後に、Y
値を等歩度色空間(CIE 1976L*a* b* )の
L* 値に変換した。
輝度をAとすると、このAを(3)式に代入して反射率
Rに変換する。
Y値に変換する。
そばかすの個々の画素に対応する色の濃さを表す絶対値
とした。 2)しみ・そばかすの色の濃さの相対値化 ここでは、地肌の色の濃さと、その人が持つしみ・そば
かすの最も色の濃いとこを、色の濃さの両端とし、その
間を3等分することで相対値化をはかる。即ち、その人
のしみ・そばかすの部分を、濃いと感じられる部分、や
や濃いと感じられる部分、薄いと感じられる部分に分け
て表示する。
肌の色の濃さは、一人ひとり、かつ同一人でも部位によ
って異なる。そこで、前述した方法で得られる2値化の
ためのしきい値(自動2値化値−6)、即ち、メラニン
顆粒による色素沈着が生じるか否かの境目を、地肌の色
の濃さ(輝度)とした。一方、しみ・そばかすの最も色
の濃い部分の輝度も、一人ひとり異なる。そこで、一人
ひとりについて抽出したしみ・そばかす部分の画素の輝
度のありようをパラメータ化する、例えば、輝度分布の
低輝度側の裾の形を加工して、低輝度の代表値を算出す
る、あるいは単なる最低輝度値を求める、といったこと
を行い、最も色の濃い部分の輝度値を代表させることを
試行してみたが、結果として、前述のn=143の可視
画像の、個々の輝度分布の最低値の算術平均値を、しみ
・そばかすの最も色の濃い部分の輝度値として、どの対
象に対しても用いていくことにした。
あった。この値を採用した理由は、n=143における
最低輝度値を採用した場合と比較して、濃度分割対象区
間が狭くなり、濃度分類がより精緻になることによる。
以下、相対値の求め方を記す。 (i)対象可視画像の2値化のためのしきい値(自動2
値化値−6)を求め、これをAとする。
を求める。 (iii)反射率Rを、(4)式に代入して、3刺激値Yに
変換する。 (iv)3刺激値Yを(5)式に代入し、明度LH * に変
換する。 (v)一方、しみ・そばかすの最も色の濃い部分の輝度
として定義した輝度=98も、同様にしてLL * に変換
する。
1 * ,L2 * を求める。 (vii)L1 * ,L2 * を(6)式のL* に代入して、そ
れぞれ対応する3刺激値Y1 ,Y2 を求める。
して、それぞれ対応する反射率R1,R2 を求める。
て、それぞれ対応する輝度A1 ,A 2 を求める。
1 ,A2 、並びに98で区切られる輝度区間にそれぞれ
相当する画素に、以下の『色』を割り振り、しみ・そば
かすの色の濃さの表示を行う。 濃いしみ・そばかす ⇒ こげ茶≦A2 やや濃いしみ・そばかす ⇒ A2 <茶≦A1 薄いしみ・そばかす ⇒ A1 <薄茶≦A 地肌 ⇒ A<白 上記した処理を45例について行ったところ結果とし
て、肉眼で感じるしみ・そばかすの色の濃さと対応の良
い分類・表示ができていた。
の数値化 前項で求めた濃度別しみ、・そばかす部位の、該当する
総画素数をもとめ、こげ茶、茶、薄茶に分類されたそれ
ぞれの画素数をn1 ,n2 ,n3 した時、それらを色素
沈着部位の総画素数で割った値の百分率を求め、色の濃
さ別色素沈着面積とした。
法 以下の手続きで表示を行う。 ・撮像した400nmの画像と700nmの画像をそれぞれ
校正、2値化する。
素と、対応する700nmの画像中の画素が、表2中の該
当する条件を満たす時、当該画素を表2に記した所定の
色で表示する。
像については、大津の方法による自動2値化値−6、の
条件で行い、700nmの画像については、大津の方法に
自動2値化値−20、の条件でおこなう。 2)色の濃さ別色素沈着面積の表示方法 前述したように、しみ・そばかすの色の濃さを3分類す
る。濃いしみ・そばかすに該当する画素を『こげ茶』
で、やや濃いしみ・そばかすに該当する画素を『茶』
で、薄いしみ・そばかすに該当する画素を『薄茶』で、
それぞれ表示する。
たそれぞれの画素数をn1 ,n2 ,n3 とした時、それ
らを色素沈着部位の総画素数で割った値の百分率を求
め、しみ・そばかすの色の濃さ別色素沈着面積の表示に
用いた。 3)波長別原画像の表示方法 400nm,550nm,700nmの校正後の原画像を、3
枚ならべて表示ししみ・そばかすが、それぞれの波長で
撮像した時、どのように写っているのかを、表示する。
更に、3波長の画像を重ねた疑似フルカラー画像も表示
し、肉眼で捕らえられているしみ・そばかすの様子も提
示する。
ると、図4を参照して説明した波長別レベルコントロラ
71で輝度調整している画像とはいえ、まだ個々の画像
の明るさが異なって感じられる。そこで、ここでは目で
見た時、ほぼ同じ明るさに見えるような条件さがしを行
い、結果として以下の条件で、原画像表示を行うことに
した。
輝度画像で表示。 550nm : 原画像の輝度で表示。 700nm : (原画像の輝度−60)の輝度画像で表
示。
しみ・そばかすのもととなるメラニン顆粒の分布とその
深さの表示、しみ・そばかすの濃さの絶対的及び相対的
な評価が可能となる。
メラの断面図である。
の詳細な断面図である。
る。
すブロック図である。
輝度の関係を表わす図である。
輝度の関係を表わす図である。
輝度の関係を表わす図である。
人)について得られた額と頬の550nmにおける分光反
射率とY値の関係をプロットした図である。
Claims (6)
- 【請求項1】 同一の対象物について複数の波長帯域に
おける画像をそれぞれ出力する撮像装置と、 該撮像装置が出力する複数の波長帯域における画像を構
成する画素の明るさの分布から適切なスライスレベルを
それぞれ決定し、該スライスレベルよりも明るい画素の
集合である明領域と該スライスレベルよりも暗い画素の
集合である暗領域をそれぞれ決定して複数の2値画像を
出力する2値化手段と、 該複数の2値画像のうち少なくとも2つの2値画像から
該対象物の表面付近に存在する色素の相対的深さと各相
対的深さにおけるその分布とを決定する深さ解析手段と
を具備することを特徴とする表面状態解析システム。 - 【請求項2】 前記撮像装置は前記複数の波長帯域にお
ける画像を同時に生成するように構成される請求項1記
載のシステム。 - 【請求項3】 前記複数の波長帯域は赤外領域に近い第
1の波長帯域及び紫外領域に近い第2の波長帯域を含
み、 前記深さ解析手段は、該第1及び第2の波長帯域につい
てそれぞれ得られる2つの2値画像内の暗領域のデータ
から前記相対的深さ及び分布を決定する請求項1または
2記載のシステム。 - 【請求項4】 前記複数の波長帯域は、前記第1の波長
帯域及び前記第2の波長帯域の間にある第3の波長帯域
を含み、 前記2値化手段が該第3の波長帯域における画像につい
て決定したスライスレベルに対応するL* 値と最も暗い
画素の明るさレベルに対応するL* 値との間を等分して
少なくとも1つのL* 値を決定しそれに対応する境界レ
ベルを決定し、該第3の波長帯域における画像について
得られた暗領域を該境界レベルにより複数の部分領域に
分割する領域分割手段と、 該複数の部分領域及び明領域を区別して表示する表示出
力手段とをさらに具備する請求項1,2または3記載の
システム。 - 【請求項5】 前記部分領域の面積百分率を算出する手
段をさらに具備する請求項4記載のシステム。 - 【請求項6】 対象物の画像を出力する撮像装置と、 該撮像装置が出力する画像を構成する画素の明るさの分
布から適切なスライスレベルを決定し、該スライスレベ
ルよりも明るい画素の集合である明領域と該スライスレ
ベルよりも暗い画素の集合である暗領域をそれぞれ決定
して2値画像を出力する2値化手段と、 該スライスレベルに対応するL* 値と最も暗い画素の明
るさレベルに対応するL* 値との間を等分して少なくと
も1つのL* 値を決定しそれに対応する境界レベルを決
定し、該暗領域を該境界レベルにより複数の部分領域に
分割する領域分割手段とを具備することを特徴とする表
面状態解析システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16187293A JP3219551B2 (ja) | 1993-06-30 | 1993-06-30 | 表面状態解析システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16187293A JP3219551B2 (ja) | 1993-06-30 | 1993-06-30 | 表面状態解析システム |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0719839A true JPH0719839A (ja) | 1995-01-20 |
JP3219551B2 JP3219551B2 (ja) | 2001-10-15 |
Family
ID=15743582
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16187293A Expired - Lifetime JP3219551B2 (ja) | 1993-06-30 | 1993-06-30 | 表面状態解析システム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3219551B2 (ja) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0938045A (ja) * | 1995-05-23 | 1997-02-10 | Pola Chem Ind Inc | 肌の評価方法 |
JP2000009442A (ja) * | 1998-06-22 | 2000-01-14 | Fuji Xerox Co Ltd | 3次元画像撮影装置 |
JP2000135207A (ja) * | 1998-10-30 | 2000-05-16 | Pola Chem Ind Inc | 皮膚の鑑別法 |
KR20020022265A (ko) * | 2000-09-19 | 2002-03-27 | 김영훈 | 피부측정 시스템 |
US6469973B1 (en) | 1999-04-30 | 2002-10-22 | Fujitsu Limited | Optical storage device including a stable cartridge holding mechanism |
JP2002345760A (ja) * | 2001-03-21 | 2002-12-03 | Shiseido Co Ltd | 分光反射率測定装置 |
JP2003339648A (ja) * | 2002-05-24 | 2003-12-02 | Communication Research Laboratory | 画像生体診断装置 |
JP2004105748A (ja) * | 2002-07-09 | 2004-04-08 | Ric:Kk | デジタルズーム肌診断装置 |
JP2007075637A (ja) * | 2001-07-09 | 2007-03-29 | L'oreal Sa | 皮膚及び体毛の観察装置 |
JP2007172635A (ja) * | 2001-08-29 | 2007-07-05 | L'oreal Sa | 人体の一部分のイメージを取得する方法及び装置 |
JP2008245666A (ja) * | 2007-03-29 | 2008-10-16 | Tokiwa Yakuhin Kogyo Kk | 皮膚の色素沈着評価方法およびその提示方法 |
JP2011240086A (ja) * | 2010-05-21 | 2011-12-01 | Shiseido Co Ltd | 肌の色ムラ解析装置、肌の色ムラ解析方法、及び肌の色ムラ解析プログラム |
US8351041B2 (en) | 2004-11-26 | 2013-01-08 | L'oreal | Method of observing biological tissue, in particular human skin |
JP2013090752A (ja) * | 2011-10-25 | 2013-05-16 | Fujifilm Corp | シミ分類方法、シミ分類装置およびシミ分類プログラム |
WO2013132636A1 (ja) * | 2012-03-08 | 2013-09-12 | 株式会社洛洛.Com | 指標体、及び、接写レンズユニット |
JP2014104132A (ja) * | 2012-11-27 | 2014-06-09 | Kao Corp | 肌画像分析装置及び肌画像分析方法 |
JP2016112270A (ja) * | 2014-12-17 | 2016-06-23 | カシオ計算機株式会社 | 診断装置並びに当該診断装置における画像処理方法及びそのプログラム |
JP2019200404A (ja) * | 2018-05-15 | 2019-11-21 | 株式会社三井光機製作所 | 光学モジュール及び光学装置 |
JP2020513966A (ja) * | 2017-10-26 | 2020-05-21 | パク、チャンシクPARK, Chang Sik | 多重光源を用いた皮膚状態測定装置 |
JP2021126475A (ja) * | 2020-02-10 | 2021-09-02 | 株式会社三井光機製作所 | 打撲傷及び皮膚疾患等観察用光学機器 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6597848B2 (ja) * | 2018-07-26 | 2019-10-30 | カシオ計算機株式会社 | 肌処理装置、肌処理方法及びプログラム |
-
1993
- 1993-06-30 JP JP16187293A patent/JP3219551B2/ja not_active Expired - Lifetime
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0938045A (ja) * | 1995-05-23 | 1997-02-10 | Pola Chem Ind Inc | 肌の評価方法 |
JP2000009442A (ja) * | 1998-06-22 | 2000-01-14 | Fuji Xerox Co Ltd | 3次元画像撮影装置 |
JP2000135207A (ja) * | 1998-10-30 | 2000-05-16 | Pola Chem Ind Inc | 皮膚の鑑別法 |
US6469973B1 (en) | 1999-04-30 | 2002-10-22 | Fujitsu Limited | Optical storage device including a stable cartridge holding mechanism |
KR20020022265A (ko) * | 2000-09-19 | 2002-03-27 | 김영훈 | 피부측정 시스템 |
JP2002345760A (ja) * | 2001-03-21 | 2002-12-03 | Shiseido Co Ltd | 分光反射率測定装置 |
JP2007075637A (ja) * | 2001-07-09 | 2007-03-29 | L'oreal Sa | 皮膚及び体毛の観察装置 |
US7986987B2 (en) | 2001-07-09 | 2011-07-26 | L' Oréal | Device, system and method for observing a typological characteristic of the body |
JP2007172635A (ja) * | 2001-08-29 | 2007-07-05 | L'oreal Sa | 人体の一部分のイメージを取得する方法及び装置 |
JP2003339648A (ja) * | 2002-05-24 | 2003-12-02 | Communication Research Laboratory | 画像生体診断装置 |
JP2004105748A (ja) * | 2002-07-09 | 2004-04-08 | Ric:Kk | デジタルズーム肌診断装置 |
US8351041B2 (en) | 2004-11-26 | 2013-01-08 | L'oreal | Method of observing biological tissue, in particular human skin |
JP2008245666A (ja) * | 2007-03-29 | 2008-10-16 | Tokiwa Yakuhin Kogyo Kk | 皮膚の色素沈着評価方法およびその提示方法 |
JP2011240086A (ja) * | 2010-05-21 | 2011-12-01 | Shiseido Co Ltd | 肌の色ムラ解析装置、肌の色ムラ解析方法、及び肌の色ムラ解析プログラム |
JP2013090752A (ja) * | 2011-10-25 | 2013-05-16 | Fujifilm Corp | シミ分類方法、シミ分類装置およびシミ分類プログラム |
WO2013132636A1 (ja) * | 2012-03-08 | 2013-09-12 | 株式会社洛洛.Com | 指標体、及び、接写レンズユニット |
JP2014104132A (ja) * | 2012-11-27 | 2014-06-09 | Kao Corp | 肌画像分析装置及び肌画像分析方法 |
JP2016112270A (ja) * | 2014-12-17 | 2016-06-23 | カシオ計算機株式会社 | 診断装置並びに当該診断装置における画像処理方法及びそのプログラム |
JP2020513966A (ja) * | 2017-10-26 | 2020-05-21 | パク、チャンシクPARK, Chang Sik | 多重光源を用いた皮膚状態測定装置 |
JP2019200404A (ja) * | 2018-05-15 | 2019-11-21 | 株式会社三井光機製作所 | 光学モジュール及び光学装置 |
JP2021126475A (ja) * | 2020-02-10 | 2021-09-02 | 株式会社三井光機製作所 | 打撲傷及び皮膚疾患等観察用光学機器 |
Also Published As
Publication number | Publication date |
---|---|
JP3219551B2 (ja) | 2001-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3219551B2 (ja) | 表面状態解析システム | |
US8155413B2 (en) | Method and system for analyzing skin conditions using digital images | |
US20080080766A1 (en) | Apparatus and Method for Analyzing Skin Using L*a*b* Colorspace | |
US8131029B2 (en) | Systems and methods for automatic skin-based identification of people using digital images | |
US6208749B1 (en) | Systems and methods for the multispectral imaging and characterization of skin tissue | |
US12136240B2 (en) | Methods for identifying pore color | |
JP4599520B2 (ja) | マルチスペクトル画像処理方法 | |
US20070140553A1 (en) | Dental colorimetry apparatus | |
US7840064B2 (en) | Method and system for automatic identification using digital images | |
JPH07231883A (ja) | 皮膚表面解析システム及び皮膚表面解析方法 | |
WO2016152900A1 (ja) | 画像処理装置及び撮像装置 | |
JP3219550B2 (ja) | 肌の表面状態の解析システム | |
CN106952313A (zh) | 基于HSI和Lab混合颜色模型的皮肤肤色评价方法 | |
US20110304820A1 (en) | Method and device for imaging a target | |
KR100926769B1 (ko) | 혀 영상을 이용한 후태 박태 판별 방법 | |
WO2007035829A2 (en) | Systems and methods for analyzing skin conditions of people using digital images | |
JP4378810B2 (ja) | 測色変換係数算出方法と測色的撮像方法、および測色変換係数算出装置と測色的撮像装置、並びに測色変換プログラムを記録したコンピュータ読み取り可能な情報記録媒体 | |
KR20230064693A (ko) | 초분광 피부 화상 심도 분석 장치 및 방법 | |
KR100459014B1 (ko) | 표면 색채를 분석하는 방법 및 색채 분석 장치 | |
KR100809553B1 (ko) | 컬러 이미지 센서 평가 장치 및 방법 | |
KR100778370B1 (ko) | 표면 색채 분석 시스템 및 그 방법 | |
Komiya et al. | Natural color reproduction system for telemedicine and its application to digital camera | |
He | Accurate colour reproduction of human face using 3D printing technology | |
Suehara et al. | Color calibration for the pressure ulcer image acquired under different illumination: a key step for simple, rapid and quantitative color evaluation of the human skin diseases using a digital camera | |
Ohya et al. | Natural color reproduction system for telemedicine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20010703 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080810 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080810 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090810 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100810 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100810 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110810 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120810 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130810 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term |