JPH07178565A - Resistance welding method for dissimilar metals - Google Patents
Resistance welding method for dissimilar metalsInfo
- Publication number
- JPH07178565A JPH07178565A JP6201505A JP20150594A JPH07178565A JP H07178565 A JPH07178565 A JP H07178565A JP 6201505 A JP6201505 A JP 6201505A JP 20150594 A JP20150594 A JP 20150594A JP H07178565 A JPH07178565 A JP H07178565A
- Authority
- JP
- Japan
- Prior art keywords
- melting point
- intermediate layer
- metal
- metals
- welding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Pressure Welding/Diffusion-Bonding (AREA)
- Resistance Welding (AREA)
Abstract
(57)【要約】
【目的】 異種金属を抵抗溶接により簡単に接合する。
【構成】 接合する金属A,B(金属Aの融点TA <金
属Bの融点TB )の融点差が300K以下の場合は、融
点が(TA −300)K以上TB 以下の中間層Xを金属
A,B間に介在させる。融点が(TA −300)K以上
TA 以下の中間層Xと、融点がTA 以上TB 以下の中間
層Yとを用いることにより、前記融点差が300Kを超
える場合も、高い継手強度を得ることができる。
(57) [Summary] [Purpose] Dissimilar metals are easily joined by resistance welding. [Configuration] bonding metal A, if B melting point difference is less 300K (mp T B melting point T A <metal B of the metal A), melting point (T A -300) K or T B following intermediate layer X is interposed between the metals A and B. Melting point and (T A -300) K or T A following intermediate layer X, by the melting point using a following intermediate layer Y T A or T B, even if the melting point difference is more than 300K, high joint strength Can be obtained.
Description
【0001】[0001]
【産業上の利用分野】本発明は、アルミニウムと鋼、鋼
とチタニウムのように、溶接を行った場合に接合界面に
脆弱な金属間化合物が形成され、高い継手強度を得るこ
とが難しい異種金属の抵抗溶接方法に関する。BACKGROUND OF THE INVENTION The present invention relates to dissimilar metals such as aluminum and steel, steel and titanium, in which a brittle intermetallic compound is formed at the joint interface when welding is performed and it is difficult to obtain high joint strength. Method of resistance welding.
【0002】[0002]
【従来の技術】アルミニウムと鋼、アルミニウムとチタ
ニウム、チタニウムと鋼のような異種金属の溶接では、
その接合界面に脆弱な金属間化合物が形成され、高い継
手強度が得られないことが知られている。なお、本明細
書で単にアルミニウムと称するときは、純アルミニウム
およびアルミニウム合金を意味し、同様にチタニウム等
はその純金属および合金を意味する。In the welding of dissimilar metals such as aluminum and steel, aluminum and titanium, titanium and steel,
It is known that a brittle intermetallic compound is formed at the joint interface and high joint strength cannot be obtained. In the present specification, when simply referred to as aluminum, it means pure aluminum and aluminum alloy, and similarly, titanium and the like mean the pure metal and alloy.
【0003】従来このような異種金属の接合法として
は、ネジ、ボルト、嵌め合わせなどの機械的な接合方法
や、爆着、熱間圧延、摩擦圧延などの固相接合法、更に
は接着による方法が検討されている。しかし、機械的な
接合や接着による接合では、信頼性、気密性、作業性等
に問題がある。また、固相接合法では、接合材の形状の
制約が大きいことや、作業性の低いことが問題である。Conventionally, such dissimilar metals have been joined by mechanical joining methods such as screws, bolts, fitting, solid-state joining methods such as explosion welding, hot rolling and friction rolling, and further by bonding. Methods are being considered. However, mechanical joining and joining by adhesion have problems in reliability, airtightness, workability, and the like. Further, the solid phase bonding method has problems that the shape of the bonding material is largely restricted and the workability is low.
【0004】このようなことから、より簡便で作業性の
高い異種金属の接合法の開発が期待されている。特に、
アルミニウムと鋼の接合は、自動車の軽量化に不可欠の
技術であることから、簡便で効率的な抵抗溶接を用いた
接合法の確立が待望されている。From the above, it is expected to develop a simpler and easier work method for joining dissimilar metals. In particular,
Since the joining of aluminum and steel is an indispensable technology for weight reduction of automobiles, establishment of a joining method using simple and efficient resistance welding is desired.
【0005】以下、車体の軽量化という観点から注目さ
れているアルミニウムと鋼のスポット溶接を取り上げ
て、異種金属の抵抗溶接の現状および問題点を説明す
る。The present state and problems of resistance welding of dissimilar metals will be described below by taking spot welding of aluminum and steel, which is attracting attention from the viewpoint of weight reduction of a vehicle body.
【0006】アルミニウムと鋼のスポット溶接では、そ
れぞれの融点、電気抵抗、熱伝導度等の物性値が大きく
異なることが問題となる。例えば、アルミニウムと鋼の
薄板を重ね合わせて単純にスポット溶接した場合には、
アルミニウムの融点が鋼の融点の1/2以下であり、し
かもアルミニウムの方が熱伝導度が大きいことから、抵
抗溶接による発熱が鋼側からアルミニウム側に伝導し、
アルミニウムの一方的な溶融が生じるため、アルミニウ
ム側の板表面の溶接による損傷が大きい。また、この過
程で接合界面に金属間化合物が形成され、ナゲットも偏
って形成される。そのため、高い継手強度が得られな
い。[0006] In spot welding of aluminum and steel, there is a problem in that physical properties such as melting point, electric resistance and thermal conductivity are greatly different. For example, if aluminum and steel sheets are stacked and simply spot welded,
Since the melting point of aluminum is 1/2 or less of the melting point of steel, and since aluminum has a higher thermal conductivity, heat generated by resistance welding is conducted from the steel side to the aluminum side,
Since the aluminum is unilaterally melted, the aluminum-side plate surface is largely damaged by welding. Further, in this process, an intermetallic compound is formed at the bonding interface, and the nugget is also formed unevenly. Therefore, high joint strength cannot be obtained.
【0007】この対策の一つとして、アルミニウムと鋼
の間に中間層を介在させることが考えられており、例え
ば特開平4−143083号公報には中間層としてMg
箔を介在させる技術が開示されている。また、特開平4
−251676号や特開平6−39558号公報にはア
ルミニウムと接する鋼表面にめっき層を設ける技術が開
示されている。As one of the countermeasures, it is considered to interpose an intermediate layer between aluminum and steel. For example, in Japanese Patent Laid-Open No. 4-143083, Mg is used as the intermediate layer.
A technique for interposing a foil is disclosed. In addition, JP-A-4
No. 251676 and Japanese Patent Application Laid-Open No. 6-39558 disclose a technique of forming a plating layer on the surface of steel in contact with aluminum.
【0008】[0008]
【発明が解決しようとする課題】しかし、これらの従来
の技術は、高い継手強度を安定し得ることができない。
なぜなら、従来技術は、中間層をアルミニウムと鋼の間
に介在する単なるインサート材としており、中間層の設
計にあたってアルミニウムと鋼の物性値の大きな違いを
十分に考慮していないからである。However, these conventional techniques cannot stabilize high joint strength.
This is because the conventional technique uses the intermediate layer as a mere insert material interposed between aluminum and steel, and does not sufficiently consider the large difference in the physical property values of aluminum and steel when designing the intermediate layer.
【0009】すなわち、アルミニウムと鋼の融点差は3
00Kをはるかに超える。本発明者らの調査よると、こ
のように融点差が大きい異種金属の場合、1つの中間層
では安定な継手強度を得ることはできない。逆に、鋼と
チタニウムのように融点差が300K以下の場合は、1
つの中間層でも安定な継手強度を得ることができる。That is, the melting point difference between aluminum and steel is 3
Much more than 00K. According to the investigation by the present inventors, in the case of dissimilar metals having such a large difference in melting point, one intermediate layer cannot obtain stable joint strength. Conversely, if the melting point difference is 300K or less, such as steel and titanium, 1
Stable joint strength can be obtained even with two intermediate layers.
【0010】換言すれば、前述した従来技術は、鋼とチ
タニウムの接合には有効であるが、本来の接合対象であ
るアルミニウムと鋼の接合に用いた場合には、十分な効
果を発揮できないのである。In other words, the above-mentioned conventional technique is effective for joining steel and titanium, but when it is used for joining aluminum and steel, which is the original object of joining, it cannot exhibit a sufficient effect. is there.
【0011】本発明の目的は、接合材の種類にかかわら
ず、高い継手強度を安定して得ることができる異種金属
の抵抗溶接方法を提供することにある。An object of the present invention is to provide a resistance welding method for dissimilar metals which can stably obtain high joint strength regardless of the kind of the joining material.
【0012】[0012]
【課題を解決するための手段】異種金属の抵抗溶接に中
間層は不可欠と考えられる。中間層の挙動を調査する過
程で、その理想的な働きが明らかになった。本発明者ら
が見出した中間層の理想的な働きを図1(A)を用いて
説明する。An intermediate layer is considered to be essential for resistance welding of dissimilar metals. In the process of investigating the behavior of the intermediate layer, its ideal function became clear. The ideal function of the intermediate layer found by the present inventors will be described with reference to FIG.
【0013】A,Bは接合すべき異種の金属であり、金
属Aの融点TA は金属Bの融点TBより低い。すなわ
ち、TA <TB である。Xは中間層であり、金属A,B
間に介在している。金属A,B間に中間層Xを挟み、そ
の金属A,Bを電極間に挟んで加圧通電を行うことによ
り、金属A,Bは抵抗溶接(ここではスポット溶接)さ
れる。A and B are different metals to be joined, and the melting point T A of the metal A is lower than the melting point T B of the metal B. That is, T A <T B. X is an intermediate layer, and the metal A, B
Intervenes in between. The intermediate layer X is sandwiched between the metals A and B, and the metals A and B are sandwiched between the electrodes to carry out pressurization and energization, whereby the metals A and B are resistance welded (here, spot welding).
【0014】このとき、中間層Xの働きにより、金属
A,Bの過剰な融点を抑え、溶接初期において金属A,
Bの直接接触を妨げ、接合界面での金属間化合物の形成
を防止する。金属A,Bの接合面が必要な温度に加熱さ
れた後、中間層Xを完全に溶融させ、加圧力により接合
界面から排出する。これらにより適正な温度に加熱され
た金属A,Bの接合面を瞬間的に重ね合わせて直接接合
することができる。At this time, the action of the intermediate layer X suppresses the excessive melting points of the metals A and B, so that the metal A
It prevents the direct contact of B and prevents the formation of intermetallic compounds at the joint interface. After the joint surfaces of the metals A and B are heated to a required temperature, the intermediate layer X is completely melted and discharged from the joint interface by a pressing force. By these, the joining surfaces of the metals A and B heated to an appropriate temperature can be instantly overlapped and directly joined.
【0015】これが中間層Xの理想的な働きである。つ
まり、中間層Xを単なるインサート材として用いるので
はなく、金属A,Bの加熱溶融のタイミングを制御する
媒体として機能させる。更に詳しく説明すれば、中間層
Xの働きにより、金属A,Bの接合面の加熱、溶融のタ
イミングを合わせ、各接合面が接合に最も適した状態に
なったときに、接合面間から中間層を排出して、金属
A,Bを直接接合するのである。This is the ideal function of the intermediate layer X. That is, the intermediate layer X is not used as a mere insert material, but is made to function as a medium for controlling the timing of heating and melting the metals A and B. More specifically, due to the function of the intermediate layer X, the heating and melting timings of the joining surfaces of the metals A and B are adjusted, and when the joining surfaces are in the most suitable state for joining, the intermediate portions from the joining surfaces are brought into contact with each other. The layers are discharged and the metals A and B are directly joined.
【0016】そして、このような理想的な働きを中間層
Xにさせるためには、金属A,Bの物性値の違いを中間
層Xの設計に反映させる必要があり、本発明者らによる
調査の結果、金属A,Bの物性値に基づく一定の条件を
中間層Xに与えることにより、これが可能になることが
判明した。In order to make such an ideal function in the intermediate layer X, it is necessary to reflect the difference in the physical property values of the metals A and B in the design of the intermediate layer X, which is investigated by the present inventors. As a result, it was found that this can be achieved by giving the intermediate layer X a certain condition based on the physical properties of the metals A and B.
【0017】また、アルミニウムと鋼のように、金属
A,Bの融点が大きく異なる場合に、中間層Xだけ用い
ると、金属A,Bが反応し、脆弱な金属間化合物を形成
するため、高い接合強度が得られないことが判った。こ
れは、金属A,Bの融点が大きく異なる場合には、融点
の高い金属Bが適正な温度に加熱される前に、中間層X
が溶融・排出されてしまい、その結果、溶融した金属
A,Bが接合完了までの間接触し続け、脆弱な金属間化
合物を形成するからである。換言すれば、中間層Xのみ
を用いる方法は、金属A,Bの融点差が小さい場合にの
み有効である。Further, when the melting points of the metals A and B are greatly different from each other, such as aluminum and steel, if only the intermediate layer X is used, the metals A and B react with each other to form a brittle intermetallic compound, which is high. It was found that the bonding strength could not be obtained. This is because when the melting points of the metals A and B are largely different, the intermediate layer X is heated before the metal B having a high melting point is heated to an appropriate temperature.
Is melted and discharged, and as a result, the molten metals A and B are kept in contact with each other until the joining is completed, and a brittle intermetallic compound is formed. In other words, the method using only the intermediate layer X is effective only when the melting point difference between the metals A and B is small.
【0018】そこで、種々の中間層の組み合わせについ
て調査した結果、金属A,Bの融点が大きく異なる場合
には、図1(B)に示すように、物性が異なる別の中間
層Yを用いる必要のあることが判明した。Therefore, as a result of investigating combinations of various intermediate layers, when the melting points of the metals A and B are significantly different, it is necessary to use another intermediate layer Y having different physical properties as shown in FIG. 1 (B). It turned out that there is.
【0019】本発明は以上の知見に基づきなされたもの
で、次の2つの異種金属の抵抗溶接方法を要旨とする。The present invention has been made on the basis of the above findings, and has as its gist the following two resistance welding methods for dissimilar metals.
【0020】1) 融点差が300K以下である異種金
属A,B(金属Aの融点TA <金属Bの融点T B )の抵
抗溶接において、融点が(TA −300)K以上TB 以
下である中間層Xを金属A,B間に介在させることによ
り、抵抗溶接の際に抵抗加熱により中間層Xを瞬時に溶
融させると共に、その溶融した中間層Xを加圧力により
接合界面から排出して、金属A,Bを直接接合する。[0020] 1) dissimilar metals A melting point difference is 300K or less, B (in the resistance welding of the melting point T B) of the melting point T A <metal B of the metal A, melting point (T A -300) K or T B below By interposing the intermediate layer X between the metals A and B, the intermediate layer X is instantaneously melted by resistance heating during resistance welding, and the molten intermediate layer X is discharged from the joint interface by a pressing force. Then, the metals A and B are directly joined.
【0021】2) 融点が異なる異種金属A,B(金属
Aの融点TA <金属Bの融点TB )の抵抗溶接におい
て、融点が(TA −300)K以上TA 以下である中間
層Xと、融点がTA 以上TB 以下である中間層Yとを、
中間層Xが金属A側に位置し中間層Yが金属B側に位置
するように金属A,B間に介在させることにより、抵抗
溶接の際に抵抗加熱により中間層X,Yを瞬時に溶融さ
せる共に、その溶融した中間層X,Yを加圧力により接
合界面から排出して、金属A,Bを直接接合する。[0021] 2) different melting points dissimilar metals A, in the resistance welding of B (melting point T B melting point T A <metal B of the metal A), the intermediate layer is not more than the melting point (T A -300) K or T A X and an intermediate layer Y having a melting point of T A or more and T B or less,
By interposing between the metals A and B so that the intermediate layer X is located on the metal A side and the intermediate layer Y is located on the metal B side, the intermediate layers X and Y are instantaneously melted by resistance heating during resistance welding. At the same time, the melted intermediate layers X and Y are discharged from the bonding interface by a pressing force, and the metals A and B are directly bonded.
【0022】中間層の厚さは、 0<RX ×dX 1/4 <RX ×0.51/4 …(1) ZAB×3500<RY ×dY 1/4 <RY ×0.51/4 …(2) ZAB=(RA /KA )×(KB /RB )×(1/TB ) 0<dA ,dB ≦3 di :厚さ(mm) Ri :比抵抗(μΩ・mm) Ki :熱伝導率(cal/cm2 /cm/s/℃) であることが望ましい。ただし、中間層Yを用いない第
1法では、(2) の条件は不用である。The thickness of the intermediate layer is 0 <R X × d X 1/4 <R X × 0.5 1/4 (1) Z AB × 3500 <R Y × d Y 1/4 <R Y × 0.5 1/4 (2) Z AB = (R A / K A ) × (K B / R B ) × (1 / T B ) 0 <d A , d B ≦ 3 d i : Thickness (Mm) R i : specific resistance (μΩ · mm) K i : thermal conductivity (cal / cm 2 / cm / s / ° C.) is desirable. However, in the first method that does not use the intermediate layer Y, the condition (2) is unnecessary.
【0023】溶接電流および溶接時間は、 IO =α×(ZAB×TB )×(1/t1/2 )+9 …(3) ZAB=(RA /KA )×(KB /RB )×(1/TB ) 350<α<550 0<tO <100 IO :溶接電流(kA) tO :溶接時間(ms) Ri :比抵抗(μΩ・mm) Ki :熱伝導率(cal/cm2 /cm/s/℃) α :定数 であることが望ましい。The welding current and welding time, I O = α × (Z AB × T B) × (1 / t 1/2) +9 ... (3) Z AB = (R A / K A) × (K B / R B ) × (1 / T B ) 350 <α <550 0 <t O <100 I O : Welding current (kA) t O : Welding time (ms) R i : Specific resistance (μΩ · mm) K i : Thermal conductivity (cal / cm 2 / cm / s / ° C.) α: It is desirable that it is a constant.
【0024】[0024]
【作用】第1法は、金属A,Bの融点差が300K以下
の場合にのみ有効であるので、この場合にのみ適用す
る。具体的には例えば金属Aが鋼、金属Bがチタニウム
の場合である。金属Aが鋼、金属Bがチタニウムの場
合、中間層Xとしては、例えばNi−Zn,Zn,Ti
−Mn,Alおよびその合金、Mgおよびその合金等を
用いることができる。The first method is effective only when the melting point difference between the metals A and B is 300 K or less, and is therefore applied only in this case. Specifically, for example, the metal A is steel and the metal B is titanium. When the metal A is steel and the metal B is titanium, examples of the intermediate layer X include Ni-Zn, Zn, Ti.
-Mn, Al and alloys thereof, Mg and alloys thereof and the like can be used.
【0025】第2法は、金属A,Bの融点差が300K
を超える場合に有効であるが、融点差が300K以下の
場合(例えば鋼とチタニウムの接合)にも当然用いるこ
とができる。融点差が300Kを超える金属A,Bの組
み合わせとしては、例えば金属Aがアルミニウム、金属
Bが鋼の場合がある。この場合、中間層XとしてはAl
−Si、Zn等を、また中間層YとしてはAl−Mn、
Ni−Zn,Cu,Ni等を用いることができる。In the second method, the melting point difference between the metals A and B is 300K.
It is effective in the case where the melting point exceeds, but can be naturally used in the case where the melting point difference is 300 K or less (for example, joining of steel and titanium). As a combination of the metals A and B having a melting point difference exceeding 300 K, for example, the metal A may be aluminum and the metal B may be steel. In this case, the intermediate layer X is Al
-Si, Zn, etc., and Al-Mn as the intermediate layer Y,
Ni-Zn, Cu, Ni or the like can be used.
【0026】図2は第1法(スポット溶接)において中
間層Xの材質および厚さを変えたときの接合部の引張試
験結果を、厚さをパラメータとして融点と比抵抗×(厚
さ)1/4 との関係により整理したものである。金属Aは
鋼(厚さ1.0mm)、金属Bはチタニウム(厚さ1.0m
m)である。溶接条件は1ms−32kA−1960N
とした。白抜きマークは母材破断、黒マークは界面剥離
である。FIG. 2 shows the results of a tensile test of the joint portion when the material and thickness of the intermediate layer X were changed in the first method (spot welding), using the thickness as a parameter, the melting point and the specific resistance × (thickness) 1 It is organized according to the relationship with / 4 . Metal A is steel (thickness 1.0 mm), metal B is titanium (thickness 1.0 m)
m). Welding conditions are 1ms-32kA-1960N
And The white mark is the base material fracture, and the black mark is the interface peeling.
【0027】図から分かるように、金属A,Bの融点差
が300K以下の場合は、中間層Xとして、その融点が
(金属Aの融点TA −300)K以上、金属Bの融点T
B 以下のものを用いる必要がある。適正な中間層Xは、
ここではNi−Zn,Zn,Ti−Mnの3種類であ
る。As can be seen from the figure, when the melting point difference between the metals A and B is 300 K or less, the melting point T of the metal B is not less than the melting point T A -300 K of the metal A as the intermediate layer X.
B or less must be used. A proper intermediate layer X is
Here, there are three types of Ni-Zn, Zn, and Ti-Mn.
【0028】中間層Xの融点が金属Bの融点TA を超え
ると、接合中に金属Aの接合面が異常加熱される共に、
中間層Xよりもむしろ金属Bが溶融し、接合後に中間層
Xが接合界面が残る。そのため、高い継手強度が得られ
ない。また、中間層Xの融点が(金属Aの融点TA −3
00)K未満になると、接合初期に中間層Xが溶融して
接合面間から排出され、金属Bの接合面を十分に加熱す
ることができなくなると共に、金属A,Bが接触し、接
合界面に金属間化合物を形成するため、やはり高い継手
強度が得られない。When the melting point of the intermediate layer X exceeds the melting point T A of the metal B, the bonding surface of the metal A is abnormally heated during bonding, and
The metal B is melted rather than the intermediate layer X, and the bonding interface of the intermediate layer X remains after bonding. Therefore, high joint strength cannot be obtained. Further, the melting point of the intermediate layer X is (the melting point of the metal A T A −3
When it is less than 00) K, the intermediate layer X is melted and discharged from between the bonding surfaces at the initial stage of bonding, the bonding surface of the metal B cannot be sufficiently heated, and the metals A and B come into contact with each other to form a bonding interface. Since an intermetallic compound is formed in the joint, high joint strength cannot be obtained.
【0029】中間層Xの特に望ましい融点は、TA 以上
TB 以下である。The particularly desirable melting point of the intermediate layer X is T A or more and T B or less.
【0030】図3は第2法(スポット溶接)において中
間層X,Yの材質および厚さを変えたときの接合部の引
張試験結果を、厚さをパラメータとして融点と比抵抗×
(厚さ)1/4 との関係により整理したものである。金属
Aはアルミニウム(厚さ1.0mm)、金属Bは鋼(厚さ
1.0mm)である。溶接条件は1ms−50kA−19
60Nとした。白抜きマークは母材破断、黒マークは界
面剥離である。FIG. 3 shows the tensile test results of the joints when the materials and thicknesses of the intermediate layers X and Y were changed in the second method (spot welding), the melting point and the specific resistance x with the thickness as a parameter.
(Thickness) It is arranged in relation to 1/4 . Metal A is aluminum (thickness 1.0 mm), metal B is steel (thickness)
1.0 mm). Welding conditions are 1ms-50kA-19
It was set to 60N. The white mark is the base material fracture, and the black mark is the interface peeling.
【0031】図から分かるように、金属A側の中間層X
として融点が(金属Aの融点TA −300)K以上、金
属Aの融点TA 以下のもの、金属B側の中間層Yとして
融点が金属Aの融点TA 以上、金属Bの融点TB 以下の
ものを用いることにより、金属A,Bの融点差が300
Kを超える場合も、高い継手強度を得ることができる。
適正な中間層は、ここではXがZn,Al−Siの2種
類、YがAl−Mn,Cu,Ni−Zn,Niの4種類
である。As can be seen from the figure, the intermediate layer X on the metal A side
Having a melting point of (metal A's melting point T A −300) K or more and metal A's melting point T A or less, and a metal B-side intermediate layer Y having a melting point T A or more of metal A and a metal B melting point T B. By using the following, the melting point difference between the metals A and B is 300
Even if it exceeds K, high joint strength can be obtained.
Suitable intermediate layers here are two types of X, Zn and Al-Si, and four types of Y, Al-Mn, Cu, Ni-Zn and Ni.
【0032】第2法においては、融点が最も低い中間層
Xが低融点側の金属Aと接し、溶接初期にこの中間層X
の溶融が生じる。中間層Xが溶融した後、次に融点が高
い金属Aの表面が溶融し、その表面の酸化層が破壊さ
れ、金属Aの活性面が現れる。続いて、次に融点が高い
中間層Yが溶融し、金属Bの活性な面が現れる。そして
最後に、溶融した中間層X,Yと金属Aの表面に存在し
ていた酸化膜が溶接用の加圧力により接合界面から押し
出され、活性な金属Aと金属Bの面が固相状態で重ね合
わされて、高い強度を有した金属A,Bの接合がなされ
る。In the second method, the intermediate layer X having the lowest melting point is in contact with the metal A on the low melting point side, and this intermediate layer X is formed at the initial stage of welding.
Melting occurs. After the intermediate layer X is melted, the surface of the metal A having the next highest melting point is melted, the oxide layer on the surface is destroyed, and the active surface of the metal A appears. Subsequently, the intermediate layer Y having the next highest melting point is melted, and the active surface of the metal B appears. Then, finally, the oxide films existing on the surfaces of the melted intermediate layers X and Y and the metal A are extruded from the joint interface by the welding pressure, and the surfaces of the active metal A and the metal B are in a solid state. When superposed, the metals A and B having high strength are joined together.
【0033】このように、中間層X,Yは抵抗溶接にお
ける発熱・溶融現象をコントロールすることにより、母
材の溶融抑制、アルミニウム表面の酸化膜の破壊、溶融
層および酸化膜の排出、活性面の接合というプロセスの
形成に寄与して、接合界面に高い強度を与える。As described above, the intermediate layers X and Y control the heat generation and melting phenomenon in resistance welding to suppress the melting of the base material, the destruction of the oxide film on the aluminum surface, the discharge of the molten layer and the oxide film, and the active surface. It contributes to the formation of the process of joining and gives high strength to the joining interface.
【0034】中間層X,Yの融点がいずれも金属Aの融
点より高い場合には、溶融初期に金属Aの表面が溶融
し、その後も、中間層X,Yより金属Aの方が厚さが大
きいため、溶接熱量が金属Aの溶融に主に消費され、そ
の結果、金属Aの側に偏ったナゲットが形成される。し
かも、金属Aよりも中間層X,Yの融点が高いために、
中間層X,Yの溶融が不十分となり、接合界面からの中
間層X,Yの排出も不完全となる。従って、接合を行っ
ても高い強度が得られない。When the melting points of the intermediate layers X and Y are both higher than the melting point of the metal A, the surface of the metal A is melted at the initial stage of melting, and thereafter, the metal A is thicker than the intermediate layers X and Y. Is large, the amount of welding heat is mainly consumed for melting the metal A, and as a result, a nugget biased toward the metal A is formed. Moreover, since the melting points of the intermediate layers X and Y are higher than that of the metal A,
The intermediate layers X and Y are insufficiently melted, and the intermediate layers X and Y are not completely discharged from the bonding interface. Therefore, high strength cannot be obtained even if joining is performed.
【0035】中間層X,Yの融点がいずれも金属Aの融
点より低い場合は、特開平4−251676号公報に開
示されている方法の場合と同様に、溶接初期にその中間
層X,Yが溶融して排出され、中間層の効果が充分に与
えられないまま接合が完了するため、高い接合強度は得
られない。When the melting points of the intermediate layers X and Y are lower than the melting point of the metal A, the intermediate layers X and Y are formed at the initial stage of welding in the same manner as in the method disclosed in JP-A-4-251676. Is melted and discharged, and the joining is completed without sufficiently exerting the effect of the intermediate layer, so that high joining strength cannot be obtained.
【0036】また、高融点金属B側の中間層Yの融点が
金属Aの融点より低く、低融点金属側の中間層Xの融点
が金属Aの融点より高い場合は、溶接初期に中間層Yが
溶融し、その溶融により中間層Xも接合界面から排出さ
れるため、皮膜の効果が得られない。When the melting point of the intermediate layer Y on the high melting point metal B side is lower than the melting point of the metal A and the melting point of the intermediate layer X on the low melting point metal side is higher than the melting point of the metal A, the intermediate layer Y at the initial stage of welding. Melts and the intermediate layer X is also discharged from the bonding interface due to the melting, so that the effect of the film cannot be obtained.
【0037】すなわち、第2法は、低融点金属Aの側に
位置する低融点の中間層Xにより、接合界面への発熱を
集中させ、その中間層Xが溶融した後、金属Aの溶融に
より、金属Aの接合面を活性化し、更に高融点金属Bの
側に位置する高融点の中間層Yが溶融することにより、
これらの溶融層の排出を効率的に行い、活性な金属A,
Bの接合面を重ね合わせて直接接合するものである。従
って、金属A,Bおよび中間層X,Yの溶融のタイミン
グが重要となり、前記の融点関係を有することが必要と
なる。中間層が1層の場合にこのような効果が得られな
いことは言うまでもない。That is, in the second method, the heat generation at the bonding interface is concentrated by the low melting point intermediate layer X located on the low melting point metal A side, and after the intermediate layer X is melted, the metal A is melted. , By activating the bonding surface of the metal A and melting the high melting point intermediate layer Y located on the high melting point metal B side,
Efficient discharge of these molten layers, active metal A,
The joining surface of B is superposed and directly joined. Therefore, the timing of melting the metals A and B and the intermediate layers X and Y is important, and it is necessary to have the above melting point relationship. It goes without saying that such an effect cannot be obtained when the number of intermediate layers is one.
【0038】金属A,Bの接合で最も懸念される接合界
面に形成される脆弱な金属間化合物については、前述し
たように、溶融層が接合界面から完全に排出され、活性
面が直接重ね合わされるために、その金属間化合物が形
成されることはない。As for the brittle intermetallic compound formed at the joining interface, which is most concerned with joining the metals A and B, as described above, the molten layer is completely discharged from the joining interface and the active surface is directly superposed. Therefore, the intermetallic compound is not formed.
【0039】本発明では、低融点側金属Aの表面の活性
化をより進める観点から、金属Aの接合面に低融点の中
間層Zを設けることが有効である。この中間層Zとして
は、これまで述べてきた理由によりその融点が金属Aよ
り低いことが必要となり、前述した低融点中間層Xと同
じ成分であっても充分な効果が得られる。In the present invention, from the viewpoint of further activating the surface of the metal A having a low melting point, it is effective to provide the intermediate layer Z having a low melting point on the bonding surface of the metal A. The melting point of the intermediate layer Z needs to be lower than that of the metal A for the reasons described above, and a sufficient effect can be obtained even with the same components as those of the low melting point intermediate layer X described above.
【0040】中間層Yの特に望ましい融点は、(TB −
100)K以下、(TA +50)K以上である。中間層
Yの融点が金属Bの融点TB に接近すると、金属Bの溶
融が大きくなり、金属Aの融点TA に接近すると、金属
Aの溶融が大きくなるために、いずれの場合も高い接合
強度が得られないおそれがある。A particularly desirable melting point of the intermediate layer Y is (T B −
It is 100) K or less and (T A +50) K or more. When the melting point of the intermediate layer Y approaches the melting point T B of the metal B, the melting of the metal B increases, and when the melting point of the intermediate layer Y approaches the melting point T A of the metal A, the melting of the metal A increases. The strength may not be obtained.
【0041】中間層Xの望ましい融点は、(TA −5
0)K以下、(TA −300)K以上である。中間層X
の融点が金属Aの融点TA に接近すると、金属Aの溶融
が大きくなり、また金属Aの融点TA から離れすぎると
溶接初期に中間層Xが溶融し排出されるために、いずれ
の場合も十分な効果が得られないおそれがある。The desirable melting point of the intermediate layer X is (T A -5
0) K or less, and (T A -300) K or more. Middle layer X
When the melting point of the metal A approaches the melting point T A of the metal A, the melting of the metal A becomes large, and when the melting point of the metal A is too far from the melting point T A of the metal A, the intermediate layer X is melted and discharged in the initial stage of welding. May not be effective enough.
【0042】本発明の溶接方法が適用可能な金属A,B
の組み合わせ例および各組み合わせにおける適正な中間
層の代表的なものを表1に列記する。Metals A and B to which the welding method of the present invention can be applied
Table 1 lists representative examples of suitable intermediate layers in each combination and each combination.
【0043】[0043]
【表1】 [Table 1]
【0044】本発明では、抵抗溶接であるために、金属
A,Bおよび中間層の溶融には、融点と共に比抵抗およ
び厚さが関係する。In the present invention, because of resistance welding, the melting of the metals A, B and the intermediate layer is related to the melting point as well as the specific resistance and thickness.
【0045】例えば中間層の融点が前記条件を満たして
いたとしても、その融点が金属Aの融点TA より高い場
合は、中間層での発熱が金属Aに伝わり、中間層の溶融
が不十分となる。For example, even if the melting point of the intermediate layer satisfies the above conditions, if the melting point is higher than the melting point T A of the metal A, the heat generated in the intermediate layer is transmitted to the metal A and the melting of the intermediate layer is insufficient. Becomes
【0046】具体的に説明すると、例えば第2法〔図1
(B)〕において金属B側の中間層YとしてCuを用い
た場合、その熱伝導率が大きく比抵抗が小さいために、
層厚が小さいと界面での発熱が小さくなり、中間層Yが
溶融しないために、金属Bの接合面の加熱が不足し、ま
た、その中間層Yが接合界面に残って、継手強度が低下
する(図3)。More specifically, for example, the second method [FIG.
When Cu is used as the intermediate layer Y on the metal B side in (B)], its thermal conductivity is large and its specific resistance is small.
When the layer thickness is small, the heat generated at the interface is small, and the intermediate layer Y does not melt, so the heating of the joint surface of the metal B is insufficient, and the intermediate layer Y remains at the joint interface, reducing the joint strength. (Fig. 3).
【0047】また、中間層の比抵抗や厚さが大きいと、
中間層が十分に溶融せず、その機能を果たせない。If the resistivity and thickness of the intermediate layer are large,
The intermediate layer does not melt sufficiently and cannot fulfill its function.
【0048】これらの観点から実験結果を整理した結
果、(1)(2)の条件が得られた。この条件から得られる適
正な中間層の厚さを表2に具体的に示す。As a result of organizing the experimental results from these viewpoints, the conditions (1) and (2) were obtained. The proper thickness of the intermediate layer obtained from these conditions is shown in Table 2 in detail.
【0049】なお、Ni−Zn,Ti−Mn,Al−S
i,Al−Mn等の合金は、その成分比を変えることに
より、融点を広範囲に調整することができる。Incidentally, Ni-Zn, Ti-Mn, Al-S
The melting points of alloys such as i and Al-Mn can be adjusted in a wide range by changing the component ratio.
【0050】[0050]
【表2】 [Table 2]
【0051】第1法において中間層Xの比抵抗・厚さが
過大になると、その溶融が不十分となり、接合界面から
の排出が困難になる。その下限については、中間層Xは
金属A,Bの接触防止用バリヤとして機能すればよいの
で、特に限定しない。第2法においても中間層Xの比抵
抗・厚さは同じ理由から上限のみが必要となる。中間層
Yについては、その比抵抗・厚さが過大になると、溶融
が不十分になって接合界面からの排出が困難になり、過
小の場合は高融点側の金属Bの接合面が十分に加熱され
ないために、高い継手強度が得られない。If the resistivity and thickness of the intermediate layer X are too large in the first method, the melting will be insufficient and it will be difficult to discharge from the bonding interface. The lower limit of the intermediate layer X is not particularly limited because it may function as a barrier for preventing contact between the metals A and B. Also in the second method, only the upper limit is required for the resistivity and thickness of the intermediate layer X for the same reason. When the resistivity and thickness of the intermediate layer Y are excessively large, the melting is insufficient and discharge from the bonding interface becomes difficult. When the intermediate layer Y is excessively small, the bonding surface of the metal B on the high melting point side is insufficient. Since it is not heated, high joint strength cannot be obtained.
【0052】中間層X,Yは、粉末、箔、メッキ等のい
ずれでも十分な効果を挙げることができ、各中間層を異
種または同様の複層構造とすることもできる。As the intermediate layers X and Y, any of powder, foil, plating and the like can provide sufficient effect, and each intermediate layer may have a different or similar multi-layer structure.
【0053】金属A,Bのいずれかの接合面に中間層
X,Yをまとめて形成した場合は、他方の金属の接合面
に中間層が不要となり、また接合では中間層X,Yの取
り扱いが不要になる。例えば鋼板の表面に中間層X,Y
をメッキ等により形成した表面処理鋼板がそれである。When the intermediate layers X and Y are collectively formed on one of the joining surfaces of the metals A and B, the intermediate layer is not required on the joining surface of the other metal, and the handling of the intermediate layers X and Y is required for joining. Becomes unnecessary. For example, the intermediate layers X and Y on the surface of the steel plate
It is a surface-treated steel sheet formed by plating or the like.
【0054】金属A,Bの厚さdA ,dB を0.3mm以
下としたのは、溶接入熱の小さい抵抗溶接を行うためで
ある。The thicknesses d A and d B of the metals A and B are set to 0.3 mm or less in order to perform resistance welding with a small welding heat input.
【0055】溶接方法としては、スポット溶接はもちろ
んのことシーム溶接、DCバット溶接、プロジェクショ
ン溶接などの抵抗溶接も適用可能である。As the welding method, not only spot welding but also resistance welding such as seam welding, DC butt welding and projection welding can be applied.
【0056】本発明では又、溶接条件も重要である。適
正な中間層を用いても、溶接電流が多すぎる場合には、
金属A,Bの反応により金属間化合物が形成されるため
に、高い継手強度が得られず、少なすぎる場合には、中
間層の溶融が不十分となり、かつ、高融点側の金属Bの
接合面が十分に加熱されないために、やはり高い継手強
度が得られない。Welding conditions are also important in the present invention. If the welding current is too high even with the proper intermediate layer,
Since the intermetallic compound is formed by the reaction of the metals A and B, high joint strength cannot be obtained, and when the amount is too small, the intermediate layer is insufficiently melted and the metal B on the high melting point side is joined. Again, high joint strength cannot be obtained because the surfaces are not heated sufficiently.
【0057】図4は第1法(スポット溶接)において金
属Aが鋼(厚さ1.0mm)、金属Bがチタニウム(厚さ
1.0mm)である場合に、適正な中間層X(Ni,厚さ
0.1mm)を用い、このときの適正溶接条件を調べたも
のである。FIG. 4 shows that in the first method (spot welding), metal A is steel (thickness 1.0 mm) and metal B is titanium (thickness).
When the thickness is 1.0 mm, the appropriate intermediate layer X (Ni, thickness
0.1 mm) and the proper welding conditions at this time were investigated.
【0058】また、図5は第2法(スポット溶接)にお
いて金属Aがアルミニウム(厚さ1mm)、金属Bが鋼
(厚さ1mm)である場合に、適正な中間層X(Zn,
厚さ0.1mm)および中間層Y(Al−Mn,0.01m
m)を用い、このときの適正溶接条件を調べたものであ
る。FIG. 5 shows that in the second method (spot welding), when the metal A is aluminum (thickness 1 mm) and the metal B is steel (thickness 1 mm), the appropriate intermediate layer X (Zn,
Thickness 0.1 mm) and intermediate layer Y (Al-Mn, 0.01 m)
m) is used to examine appropriate welding conditions at this time.
【0059】これらの実験結果を整理した結果、(3) の
条件が得られた。この条件から得られる適正な溶接電流
IO (溶接時間が1msのときの適正溶接電流)を表3
に示す。As a result of arranging these experimental results, the condition (3) was obtained. Table 3 shows the proper welding current I O (the proper welding current when the welding time is 1 ms) obtained from these conditions.
Shown in.
【0060】[0060]
【表3】 [Table 3]
【0061】溶接時間tO を100ms以下としたの
は、短時間の接合を行うことにより、接合界面での金属
間化合物の形成を抑えるためである。The welding time t O is set to 100 ms or less in order to suppress the formation of the intermetallic compound at the bonding interface by performing the bonding for a short time.
【0062】[0062]
【実施例】以下に本発明の実施例を示し、比較例と対比
することより、本発明の効果を明らかにする。EXAMPLES Examples of the present invention will be shown below, and the effects of the present invention will be clarified by comparison with Comparative Examples.
【0063】金属A,Bの融点差が300K以下の場合 金属Aである厚さ1mmの鋼板(SPCD)と金属Bで
ある厚さ1mmのチタニウム板(TP25)をスポット
溶接するにあたり、厚さ0.005〜0.5mmのPb,Z
n,Al−Mn,Cu,Ni−Zn,Ni,Zr,Mo
からなる中間層を用いた。中間層の内訳を表4および表
5に示す。When the melting point difference between the metals A and B is 300 K or less , a thickness of 0 mm is required when spot-welding the metal A, which is a 1 mm thick steel plate (SPCD), and the metal B, which is a 1 mm thick titanium plate (TP25). 0.005-0.5 mm Pb, Z
n, Al-Mn, Cu, Ni-Zn, Ni, Zr, Mo
Was used. The breakdown of the middle layer is shown in Tables 4 and 5.
【0064】溶接時間1〜400ms,溶接電流5〜8
0kA,加圧力1960Nの条件でスポット溶接を行
い、十字引張試験での破断位置から継手強度を評価し
た。結果を表6〜表9に示す。これらの結果のなかから
中間層の種類および厚さが継手強度に及ぼす影響を示す
ものを取り上げたのが図2、溶接電流の影響を示すもの
を取り上げたのが図4である。Welding time 1 to 400 ms, welding current 5 to 8
Spot welding was performed under the conditions of 0 kA and a pressing force of 1960 N, and the joint strength was evaluated from the fracture position in the cross tension test. The results are shown in Tables 6-9. Among these results, FIG. 2 shows the effect of the type and thickness of the intermediate layer on the joint strength, and FIG. 4 shows the effect of welding current.
【0065】表6〜表9から分かるように、金属A,B
の融点差が300K以下の場合、第1法が有効であり、
第2法も無論有効である。As can be seen from Tables 6 to 9, metals A and B
If the melting point difference of is less than 300K, the first method is effective,
The second method is, of course, also effective.
【0066】金属A,Bの融点差が300Kを超える場
合 金属Aである厚さ1mmのアルミニウム板(A505
2)と金属Bである厚さ1mmの鋼板(SPCD)をス
ポット溶接するにあたり、厚さ0.005〜0.5mmのP
b,Zn,Al−Mn,Cu,Ni−Zn,Ni,Z
r,Moからなる中間層(表4および表5)を用いた。When the melting point difference between metals A and B exceeds 300K
Aluminum plate with a thickness of 1 mm, which is a compound metal A (A505
2) and 1 mm thick steel plate (SPCD), which is metal B, are spot welded with P of 0.005 to 0.5 mm thickness.
b, Zn, Al-Mn, Cu, Ni-Zn, Ni, Z
An intermediate layer (Tables 4 and 5) composed of r and Mo was used.
【0067】溶接時間1〜400ms,溶接溶接電流5
〜80kA,加圧力1960Nの条件でスポット溶接を
行い、十字引張試験での破断位置から継手強度を評価し
た。結果を表10〜表16に示す。これらの結果のなか
から中間層の種類および厚さが継手強度に及ぼす影響を
示すものを取り上げたのが図3、溶接電流の影響を示す
ものを取り上げたのが図5である。Welding time 1 to 400 ms, welding welding current 5
Spot welding was performed under the conditions of -80 kA and pressure 1960 N, and the joint strength was evaluated from the fracture position in the cross tension test. The results are shown in Tables 10 to 16. Of these results, FIG. 3 shows the effect of the type and thickness of the intermediate layer on the joint strength, and FIG. 5 shows the effect of welding current.
【0068】表10〜表16から分かるように、金属
A,Bの融点差が300K以下の場合、第2法は有効で
あるが、第1法は有効でない。As can be seen from Tables 10 to 16, when the melting point difference between the metals A and B is 300 K or less, the second method is effective, but the first method is not effective.
【0069】[0069]
【表4】 [Table 4]
【0070】[0070]
【表5】 [Table 5]
【0071】[0071]
【表6】 [Table 6]
【0072】[0072]
【表7】 [Table 7]
【0073】[0073]
【表8】 [Table 8]
【0074】[0074]
【表9】 [Table 9]
【0075】[0075]
【表10】 [Table 10]
【0076】[0076]
【表11】 [Table 11]
【0077】[0077]
【表12】 [Table 12]
【0078】[0078]
【表13】 [Table 13]
【0079】[0079]
【表14】 [Table 14]
【0080】[0080]
【表15】 [Table 15]
【0081】[0081]
【表16】 [Table 16]
【0082】[0082]
【発明の効果】以上に説明した通り、本発明の異種金属
の抵抗溶接方法は、通常の溶接では接合することが難し
い異種金属についても、抵抗溶接による簡便で効率的な
溶接を可能にし、自動車や鉄道車両等の軽量化が要求さ
れる生産分野に工業上多大のメリットをもたらす。As described above, the resistance welding method for dissimilar metals according to the present invention enables simple and efficient welding by resistance welding even for dissimilar metals which are difficult to join by ordinary welding. It will bring a great industrial advantage to the production fields where the weight reduction of railway cars and railway cars is required.
【図1】本発明の溶接方法を模式的に示す図である。FIG. 1 is a diagram schematically showing a welding method of the present invention.
【図2】第1法の有効性を示す図である。FIG. 2 is a diagram showing the effectiveness of the first method.
【図3】第1法における適正溶接条件を示す図である。FIG. 3 is a diagram showing proper welding conditions in the first method.
【図4】第2法の有効性を示す図である。FIG. 4 is a diagram showing effectiveness of the second method.
【図5】第2法における適正溶接条件を示す図である。FIG. 5 is a diagram showing appropriate welding conditions in the second method.
A,B 接合する金属(Aは低融点側、Bは高融点側) X,Y 中間層 A, B Metal to be joined (A is low melting point side, B is high melting point side) X, Y Intermediate layer
───────────────────────────────────────────────────── フロントページの続き (72)発明者 内田 淳一 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Junichi Uchida 4-53-3 Kitahama, Chuo-ku, Osaka City, Osaka Prefecture Sumitomo Metal Industries, Ltd.
Claims (5)
A,B(金属Aの融点TA <金属Bの融点TB )の抵抗
溶接において、融点が(TA −300)K以上TB 以下
である中間層Xを金属A,B間に介在させて、溶接を行
うことを特徴とする異種金属の抵抗溶接方法。1. A dissimilar metal A melting point difference is 300K or less, in the resistance welding of B (melting point T B melting point T A <metal B of the metal A), melting point (T A -300) K or T B below 2. A resistance welding method for dissimilar metals, characterized in that the intermediate layer X, which is, is interposed between the metals A and B to perform welding.
融点TA <金属Bの融点TB )の抵抗溶接において、融
点が(TA −300)K以上TA 以下である中間層X
と、融点がTA 以上TB 以下である中間層Yとを、中間
層Xが金属A側に位置し中間層Yが金属B側に位置する
ように金属A,B間に介在させて、溶接を行うことを特
徴とする異種金属の抵抗溶接方法。Wherein the melting point is different from dissimilar metals A, in the resistance welding of B (melting point T B melting point T A <metal B of the metal A), melting point (T A -300) intermediate layer is less than K or more T A X
And an intermediate layer Y having a melting point of T A or more and T B or less between the metals A and B such that the intermediate layer X is located on the metal A side and the intermediate layer Y is located on the metal B side, A resistance welding method for dissimilar metals, characterized by performing welding.
を瞬時に溶融させる共に、その溶融した中間層を加圧力
により接合界面から排出して、金属A,Bを直接接合す
ることを特徴とする請求項1または2に記載の異種金属
の抵抗溶接方法。3. In resistance welding, the intermediate layer is instantly melted by resistance heating, and the molten intermediate layer is discharged from the joining interface by a pressing force to directly join the metals A and B. The resistance welding method for dissimilar metals according to claim 1 or 2.
異種金属の抵抗溶接方法。4. The thickness of the intermediate layers X and Y is 0 <R X × d X 1/4 <R X × 0.5 1/4 (1) Z AB × 3500 <R Y × d Y 1 / 4 <R Y × 0.5 1/4 ... (2) Z AB = (R A / K A) × (K B / R B) × (1 / T B) 0 <d A, d B ≦ 3 d i : thickness (mm) R i : specific resistance (μΩ · mm) K i : thermal conductivity (cal / cm 2 / cm / s / ° C.), claim 1, 2, or 3. A resistance welding method for dissimilar metals as described.
載の異種金属の抵抗溶接方法。5. The welding current is I O = α × (Z AB × T B ) × (1 / t 1/2 ) +9 (3) Z AB = (R A / K A ) × (K B / R B ) × (1 / T B ) 350 <α <550 0 <t O <100 I O : Welding current (kA) t O : Welding time (ms) R i : Specific resistance (μΩ · mm) K i : The resistance welding method for dissimilar metals according to claim 1, 2, 3 or 4, wherein thermal conductivity (cal / cm 2 / cm / s / ° C) α is a constant.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5-307565 | 1993-11-11 | ||
JP30756593 | 1993-11-11 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07178565A true JPH07178565A (en) | 1995-07-18 |
JP2861819B2 JP2861819B2 (en) | 1999-02-24 |
Family
ID=17970612
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6201505A Expired - Lifetime JP2861819B2 (en) | 1993-11-11 | 1994-08-02 | Resistance welding method for dissimilar metals |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2861819B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006231343A (en) * | 2005-02-22 | 2006-09-07 | Nissan Motor Co Ltd | Method and structure of joining oxide film forming material |
JP2006326612A (en) * | 2005-05-24 | 2006-12-07 | Nissan Motor Co Ltd | Dissimilar metal joining method by resistance seam welding |
JP2006326613A (en) * | 2005-05-24 | 2006-12-07 | Nissan Motor Co Ltd | Resistance seam welding method and welded structure of dissimilar metals |
JP2007326146A (en) * | 2006-05-12 | 2007-12-20 | Nissan Motor Co Ltd | Method and structure for joining dissimilar metals by resistance spot welding |
CN100389925C (en) * | 2003-08-29 | 2008-05-28 | 丰田铁工株式会社 | Spot welding method and spot welded steel plate member |
US8487206B2 (en) | 2006-02-23 | 2013-07-16 | Kobe Steel, Ltd. | Joint product between steel product and aluminum material, spot welding method for the joint product, and electrode chip for use in the joint product |
CN118162733A (en) * | 2024-05-13 | 2024-06-11 | 长春师范大学 | Resistance spot welding process for nickel powder fused dissimilar steel |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6981275B2 (en) | 2018-01-24 | 2021-12-15 | トヨタ自動車株式会社 | How to join dissimilar metal plates |
JP6984469B2 (en) | 2018-02-09 | 2021-12-22 | トヨタ自動車株式会社 | How to join dissimilar metal plates |
-
1994
- 1994-08-02 JP JP6201505A patent/JP2861819B2/en not_active Expired - Lifetime
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100389925C (en) * | 2003-08-29 | 2008-05-28 | 丰田铁工株式会社 | Spot welding method and spot welded steel plate member |
JP2006231343A (en) * | 2005-02-22 | 2006-09-07 | Nissan Motor Co Ltd | Method and structure of joining oxide film forming material |
JP2006326612A (en) * | 2005-05-24 | 2006-12-07 | Nissan Motor Co Ltd | Dissimilar metal joining method by resistance seam welding |
JP2006326613A (en) * | 2005-05-24 | 2006-12-07 | Nissan Motor Co Ltd | Resistance seam welding method and welded structure of dissimilar metals |
US8487206B2 (en) | 2006-02-23 | 2013-07-16 | Kobe Steel, Ltd. | Joint product between steel product and aluminum material, spot welding method for the joint product, and electrode chip for use in the joint product |
JP2007326146A (en) * | 2006-05-12 | 2007-12-20 | Nissan Motor Co Ltd | Method and structure for joining dissimilar metals by resistance spot welding |
CN118162733A (en) * | 2024-05-13 | 2024-06-11 | 长春师范大学 | Resistance spot welding process for nickel powder fused dissimilar steel |
Also Published As
Publication number | Publication date |
---|---|
JP2861819B2 (en) | 1999-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7984840B2 (en) | Dissimilar metal joining method | |
Kah et al. | Trends in joining dissimilar metals by welding | |
EP0654320B1 (en) | Aluminum weldment and method of welding aluminum workpieces | |
JP4601052B2 (en) | Dissimilar metal joining method | |
WO2010026892A1 (en) | Dissimilar metal joining method for magnesium alloy and steel | |
JP2012152789A (en) | Method for joining dissimilar metal plates by overlapping and electric resistance brazing, and brazing joint formed by the same | |
WO1998028130A1 (en) | Aluminium sheet product and method of welding structural components | |
JP2861819B2 (en) | Resistance welding method for dissimilar metals | |
TW201938390A (en) | Multistage joining process with thermal sprayed layers | |
EP0659517B1 (en) | Method of resistance-welding workpieces of metal and resistance-welded weldment of metal | |
JP7255652B2 (en) | Weld bond joint manufacturing method | |
JP3941001B2 (en) | Bonding method of dissimilar metal materials | |
CN114535766B (en) | Capacitive discharge welding of dissimilar metals | |
US20190363328A1 (en) | Robust Reaction Metallurgical Joining | |
JPH0811302B2 (en) | Dissimilar metal joining method | |
JPH0724581A (en) | Resistance welding method for aluminum and steel | |
JPH11284111A (en) | Heat sink member, manufacture thereof and semiconductor package using the hear sink member | |
JPS63278679A (en) | Resistance welding method for al materials | |
JP2531052B2 (en) | Resistance welding method for dissimilar metals | |
JP2006224147A (en) | Method for joining different materials and filler metal therefor | |
JP3118823B2 (en) | Resistance welding method for resin composite type metal plate | |
JPH04253578A (en) | Method for joining different metals | |
JP2006224145A (en) | Method for joining different materials and filler metal therefor | |
JP3504727B2 (en) | Resistance spot welding method for aluminum material | |
WO2007108079A1 (en) | Filler metal for bonding different materials and method of bonding different materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071211 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081211 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091211 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101211 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101211 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111211 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111211 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121211 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131211 Year of fee payment: 15 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131211 Year of fee payment: 15 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |