[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0712954A - System and device for searching object buried underground - Google Patents

System and device for searching object buried underground

Info

Publication number
JPH0712954A
JPH0712954A JP15868493A JP15868493A JPH0712954A JP H0712954 A JPH0712954 A JP H0712954A JP 15868493 A JP15868493 A JP 15868493A JP 15868493 A JP15868493 A JP 15868493A JP H0712954 A JPH0712954 A JP H0712954A
Authority
JP
Japan
Prior art keywords
ground
ultrasonic
signal
reception level
buried object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15868493A
Other languages
Japanese (ja)
Other versions
JPH0812254B2 (en
Inventor
Kazuo Watabe
渡部一雄
Fujio Iitaka
不二男 飯高
Masashi Kobayashi
小林雅志
Koji Shibata
柴田耕志
Fumio Kosuge
小菅文雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meisei Electric Co Ltd
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Meisei Electric Co Ltd
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meisei Electric Co Ltd, Japan Steel Works Ltd, Technical Research and Development Institute of Japan Defence Agency filed Critical Meisei Electric Co Ltd
Priority to JP15868493A priority Critical patent/JPH0812254B2/en
Publication of JPH0712954A publication Critical patent/JPH0712954A/en
Publication of JPH0812254B2 publication Critical patent/JPH0812254B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To improve the searching accuracy of a device which searches object buried underground in a noncontact state by radiating radio waves against the objects by removing unnecessary reflected wave components from the ground surface. CONSTITUTION:An object buried underground is searched by radiating non-modulated radio waves toward the ground through an antenna 3 from a high-frequency transmitter 1 while a ground surface scanning machine 8 is moved in parallel with the ground surface and receiving reflected waves from the ground surface by means of a high-frequency receiver 2 through the antenna 3, and then, analyzing the receiving level of the reflected waves by means of a signal processing section 10. At the same time, the height signal of the machine 8 from the ground surface is obtained by radiating an ultrasonic pulse signal from an ultrasonic radiating device 6 and calculating the time until the reflected wave of the signal from the ground surface is sensed by an ultrasonic wave sensing device 7 at a height measuring section 9. At the time of analyzing obtained data, the variation of the receiving level caused by unnecessary reflected waves generated by the ruggedness of the ground surface is removed by referring to previously prepared calibration data indicting the correlation between receiving level signals and height signals and only the variation of the receiving level from the object buried undergroud is fetched.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、無変調電波を使用し
て、浅い地中に埋設されている物体を非接触で探知する
地中埋設物探知方式及びこの方式による地中埋設物探知
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an underground buried object detection system for detecting an object buried in a shallow ground in a non-contact manner by using an unmodulated radio wave, and an underground buried object detection apparatus using this system. Regarding

【0002】[0002]

【従来の技術】地面を水平方向に走査する走査手段から
無変調電波を地面に向けて放射し、地表面近傍の積分値
としての反射係数の変化を、上記無変調電波の地面での
反射波の受信レベルの変化として検出することにより、
地中に埋設された物体を検知する地中埋設物探知装置が
公知である。
2. Description of the Related Art Unmodulated radio waves are radiated toward the ground from a scanning means for scanning the ground in the horizontal direction, and a change in reflection coefficient as an integrated value near the ground surface is reflected by the reflected wave on the ground. By detecting as a change in the reception level of
An underground buried object detection device is known which detects an object buried in the ground.

【0003】[0003]

【発明が解決しようとする課題】地中に埋設された目標
物体の電波に対する反射係数が小さい場合には、当該目
標物体からの反射波のレベルと、地表面の凹凸又は走査
手段に設けた空中線の地表面からの高度の変動による不
要反射波のレベルとが接近し、上記目標物からの反射波
の識別が難しくなる。
When the target object buried in the ground has a small reflection coefficient for radio waves, the level of the reflected wave from the target object and the unevenness of the ground surface or the antenna provided on the scanning means. And the level of the unnecessary reflected wave due to the altitude change from the ground surface approaches, and it becomes difficult to identify the reflected wave from the target.

【0004】このため、従来は、例えば特公平2−13
756号に開示されているように、互に離隔して配置し
た複数の空中線で地表面からの反射波を受信し、これに
よって得られた複数の反射波受信レベルを減算処理して
地表面からの不要反射波を打消すようにして地中埋設物
からの反射波を検出するようにしているが、この方式で
は、地表面からの反射波の空中線への入射は当該空中線
の位置に無関係に均等レベルで生ずることを前提として
おり、地表面の状態によっては、上記不要反射波の打消
しが充分に行なわれず、また、減算処理によって地中埋
設物からの反射波の受信レベルも相対的に低下するた
め、特に反射係数の小さな目標物体に対してはS/N比
が極めて悪くなり、このような状況での埋設物の検出は
多くの条件を必要とする非常に複雑な処理を必要とす
る。
Therefore, conventionally, for example, Japanese Patent Publication No. 2-13
As disclosed in U.S. Pat. No. 756, the reflected waves from the ground surface are received by a plurality of antennas arranged apart from each other, and a plurality of reflected wave reception levels obtained by this are subtracted from the ground surface to obtain the reflected waves. The reflected waves from the underground buried object are detected by canceling the unnecessary reflected waves of the above.In this method, the incident of the reflected waves from the ground surface to the antenna is independent of the position of the antenna. It is assumed that they occur at a uniform level, and depending on the condition of the ground surface, the above-mentioned unnecessary reflected waves are not sufficiently canceled, and the subtraction process also causes the reception level of the reflected waves from the underground buried object to be relatively high. Since the S / N ratio is extremely low especially for a target object having a small reflection coefficient, the detection of the buried object in such a situation requires a very complicated process that requires many conditions. To do.

【0005】そこで、本発明は、前記不要反射波成分を
含む検出信号レベルから真正な反射波(目標物体である
埋設物からの反射波)による信号レベルを簡単かつ確実
な方法で合理的に識別できる地中埋設物探知装置を提供
することを第1の課題とする。
Therefore, according to the present invention, a signal level of a true reflected wave (a reflected wave from a buried object which is a target object) is rationally identified from the detected signal level including the unnecessary reflected wave component by a simple and reliable method. It is a first object to provide an underground buried object detection device that can be performed.

【0006】また、従来の地中埋設物探知装置は、一般
に地中埋設物の存在のみを検知するものであるため、探
知された地中埋設物が目標物体であるか否かは直ちに判
断することはできない。
Further, since the conventional underground buried object detecting apparatus generally detects only the existence of the underground buried object, it is immediately judged whether or not the detected underground buried object is the target object. It is not possible.

【0007】そこで、本発明は、探知データによって地
中埋設物の形状が判断でき、検出された地中埋設物が目
標物体であるか否かを識別できる地中埋設物探知装置を
提供することを第2の課題とする。
Therefore, the present invention provides an underground buried object detecting apparatus capable of determining the shape of an underground buried object from detection data and discriminating whether or not the detected underground buried object is a target object. Is the second subject.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、地面に向けて放射した無変調電波の地面
での反射波の受信レベルを測定するとともに、上記無変
調電波を放射し、及び上記反射波に受感する空中線を備
えた地面走査手段の地表面からの高度を、例えば超音波
のような、電波とは物理的性質を異にする測定媒体で測
定するようにし、地中埋設物の探知に際しては、予め探
知地域における埋設物のない領域で、反射波の受信レベ
ルと地面走査手段の高度との関係を測定して、相互間の
相関データを校正データとして保持するようにし、上記
探知地域での地面走査手段による地面走査によって得ら
れた上記反射波の受信レベルデータと上記地面走査手段
の高度データとを上記校正データに基づいて処理するこ
とにより、上記受信レベルデータから地表面での不要反
射波による受信レベル変化分を可及的に除去し、これに
よって地中埋設物の存在を検知するようにしたものであ
り、また、上記地面走査手段を、走査方向と直交する方
向に複数個並べて設けることにより、地面の複数地点に
ついて、前記受信レベルデータと高度データを測定する
とともに、上記地面走査手段の走査移動距離を測定し、
前記校正データに基づく処理で得られた上記複数地点の
それぞれの受信レベル変化データを上記走査移動距離測
定で得られた距離データを軸として並列表示することに
よって、地中埋設物の形状を表示できるようにしたもの
である。
In order to solve the above problems, the present invention measures the reception level of a reflected wave on the ground of an unmodulated radio wave radiated toward the ground and radiates the unmodulated radio wave. , And the altitude from the ground surface of the ground scanning means provided with an antenna that is sensitive to the reflected waves, is measured by a measurement medium having physical properties different from radio waves, such as ultrasonic waves. When detecting a medium buried object, measure the relationship between the reception level of the reflected wave and the altitude of the ground scanning means in advance in the area where there is no buried object in the detection area, and hold the correlation data between them as calibration data. The reception level data of the reflected wave obtained by the ground scanning by the ground scanning means in the detection area and the altitude data of the ground scanning means are processed based on the calibration data to obtain the reception. The bell data is used to detect as much as possible the change in the reception level due to unnecessary reflected waves on the ground surface, thereby detecting the presence of underground buried objects. By providing a plurality of side by side in a direction orthogonal to the direction, for a plurality of points on the ground, while measuring the reception level data and altitude data, to measure the scanning movement distance of the ground scanning means,
By displaying the reception level change data of each of the plurality of points obtained by the processing based on the calibration data in parallel with the distance data obtained by the scanning movement distance measurement as an axis, the shape of the underground buried object can be displayed. It was done like this.

【0009】[0009]

【作用】本発明では、地中埋設物以外からの反射波によ
る受信レベル変化分は、予め測定された地面走査手段の
高度と反射波受信レベルとの関係を示す校正データに基
いて除去されるので、地中埋設物からの反射波による受
信レベル変化分が補正処理によって大きく変動(低下)
することはなく、また、補正処理に用いる校正データは
地面走査手段の高度との相関を含んでいるため、走査時
に地面走査手段の地表面からの高度が変動しても、当該
変動による不要反射波成分が探知データに残ることはな
く、不要反射波による受信レベル変化分が効果的に除去
でき、地中埋設物の探知が確実に行なえる。
In the present invention, the received level change due to the reflected wave from other than the underground buried object is removed based on the calibration data indicating the relationship between the altitude of the ground scanning means and the received level of the reflected wave measured in advance. Therefore, the amount of change in the reception level due to the reflected wave from the underground buried object fluctuates significantly (decreases) due to the correction
In addition, since the calibration data used for the correction processing includes the correlation with the altitude of the ground scanning means, even if the altitude of the ground scanning means changes from the ground surface during scanning, unnecessary reflection due to the fluctuation is caused. The wave component does not remain in the detection data, the reception level change due to the unnecessary reflected wave can be effectively removed, and the underground buried object can be reliably detected.

【0010】[0010]

【実施例】図面はいずれも本発明の実施例を説明するも
ので、図1は第1実施例のブロック図、図2は第2実施
例のブロック図、図3は第1実施例及び第2実施例にお
ける高度測定部のブロック図、図4(A)は地面走査機
の要部構造を示す斜視図、図4(B)は図4(A)にお
けるA−A断面図、図5(A)〜(C)は校正データの
演算処理を説明する図、図6は第1実施例の埋設物探知
動作を説明する図、図7は第2実施例の埋設物探知動作
を説明する図である。
1 is a block diagram of a first embodiment, FIG. 2 is a block diagram of a second embodiment, FIG. 3 is a first embodiment and a first embodiment. 4A is a block diagram of an altitude measuring unit in the second embodiment, FIG. 4A is a perspective view showing a main structure of a ground scanner, FIG. 4B is a sectional view taken along line AA in FIG. 4A, and FIG. 6A to 6C are diagrams for explaining the calculation processing of the calibration data, FIG. 6 is a diagram for explaining the buried object detecting operation of the first embodiment, and FIG. 7 is a diagram for explaining the buried object detecting operation of the second embodiment. Is.

【0011】最初に第1実施例の機器構成を説明する。First, the device configuration of the first embodiment will be described.

【0012】第1実施例は図1に示すように、無変調の
高周波信号を生成して出力する高周波送信機1(第1の
送信機)と、地面(地表面及び地中)からの反射波(無
変調電波の反射波)を受信して、反射波の受信レベルに
比例する信号(受信レベル信号)を出力する高周波受信
機2(第1の受信機)と、上記高周波送信機1から高周
波信号が供給されて無変調電波を放射し、及び該無変調
電波の地面での反射波が入射して高周波信号を生起する
空中線3と、上記高周波送信機1の出力と上記高周波受
信機2の入力との間に介在し、上記空中線3を上記高周
波送信機1及び上記高周波受信機2に結合するサーキュ
レータ4と、超音波信号領域の周波数の交流パルス信号
(以下、パルス信号という。)を生成して出力するパル
ス信号送信機5(第2の送信機)と、該パルス信号送信
機5からパルス信号が供給されて超音波パルス信号を放
射する超音波放射器6と、該超音波放射器6からの超音
波パルス信号の地表面での反射波に受感して超音波パル
ス信号を生起する超音波受感器7と、上記空中線3、超
音波放射器6及び超音波受感器7を装着した地面走査機
8と、上記超音波受感器7からの超音波パルス信号を受
信し、上記パルス信号送信機5からのパルス信号の送出
時から当該超音波パルス信号の受信時までの時間差を演
算して上記地面走査機8の地表面からの高度に比例した
例えば電圧信号(高度信号)を出力する高度演算部9
と、上記高周波受信機2から出力される受信レベル信号
と上記高度測定部9から出力される高度信号を演算処理
して探知データを生成する信号処理部10と、該信号処
理部10におけるデータ処理に必要な各種データ(受信
レベル信号、高度信号及び後述の校正データ等)を記憶
するメモリ11と、該信号処理部10の演算処理の時間
基準となるクロック信号を生成するクロック発振器12
と、該信号処理部10が出力する探知データを表示する
データ表示部13と、該データ表示部13に表示する探
知データに地中埋設物の存在を示すデータが含まれると
きに警報音を発生し(可聴警報表示)、又は/及び警報
ランプを点灯(又は点滅)する(可視警報表示)警報表
示部14と、地中埋設物探知装置(図1に示す装置)の
操作モードを設定するモード設定部15で構成される。
In the first embodiment, as shown in FIG. 1, a high frequency transmitter 1 (first transmitter) for generating and outputting an unmodulated high frequency signal and reflection from the ground (ground surface and underground). From a high frequency receiver 2 (first receiver) that receives a wave (reflected wave of unmodulated radio wave) and outputs a signal (reception level signal) proportional to the reception level of the reflected wave, and from the high frequency transmitter 1. An antenna 3 which is supplied with a high-frequency signal to radiate an unmodulated radio wave, and a reflected wave of the unmodulated radio wave on the ground is incident to generate a high-frequency signal, the output of the high-frequency transmitter 1, and the high-frequency receiver 2 A circulator 4 which is interposed between the antenna 3 and the high-frequency transmitter 1 and the high-frequency receiver 2, and an AC pulse signal (hereinafter referred to as a pulse signal) having a frequency in the ultrasonic signal region. Generate and output pulse signal transmitter 5 ( 2 transmitter), an ultrasonic wave radiator 6 which is supplied with a pulse signal from the pulse signal transmitter 5 and emits an ultrasonic pulse signal, and a surface of the ultrasonic pulse signal from the ultrasonic wave radiator 6 Ultrasonic sensing device 7 that senses the reflected wave of the ultrasonic wave to generate an ultrasonic pulse signal, a ground scanner 8 equipped with the antenna 3, the ultrasonic radiator 6 and the ultrasonic sensing device 7; The ultrasonic pulse signal from the ultrasonic wave receiver 7 is received, and the time difference from the time when the pulse signal is transmitted from the pulse signal transmitter 5 to the time when the ultrasonic pulse signal is received is calculated to calculate the time of the ground scanner 8. An altitude calculator 9 that outputs, for example, a voltage signal (altitude signal) proportional to the altitude from the ground surface
A signal processing unit 10 for processing the reception level signal output from the high frequency receiver 2 and the altitude signal output from the altitude measuring unit 9 to generate detection data; and data processing in the signal processing unit 10. A memory 11 for storing various data (reception level signal, altitude signal, calibration data described later, etc.) necessary for the operation, and a clock oscillator 12 for generating a clock signal which serves as a time reference for arithmetic processing of the signal processing unit 10.
And a data display unit 13 for displaying detection data output by the signal processing unit 10, and an alarm sound is generated when the detection data displayed on the data display unit 13 includes data indicating the presence of an underground buried object. (Audible alarm display) or / and / or alarm lamp is turned on (or flashes) (visual alarm display) Alarm display unit 14 and mode for setting operation mode of underground buried object detection device (device shown in FIG. 1) It is configured by the setting unit 15.

【0013】高度測定部9は、図3に示すように、超音
波受感器7からの超音波パルス信号を受信してパルス信
号を出力する超音波受信機901(第2の受信機)と、
高度演算部を構成する各部、すなわち、パルス信号送信
機5からのパルス信号でセットされ、上記超音波受信機
901からのパルス信号でリセットされることにより、
地面走査機8の地表面から高度に比例した長さの矩形信
号を出力するS/Rフリップフロップ902と、該S/
Rフリップフロップ902からの矩形信号の長さ測定の
ための時間基準信号(クロックパルス)を出力するクロ
ック発振器903と、上記S/Rフリップフロップ90
2の出力と上記クロック発振器903の出力との論理積
によって上記矩形信号の長さに相当する数のクロックパ
ルスを出力するアンドゲート904と、該アンドゲート
904が出力するクロックパルスの数を計数するカウン
タ905と、該カウンタ905による計数出力(デジタ
ル値)を電圧(アナログ値)に変換して地面走査機8の
高度信号を出力するD/A変換器906で構成されてい
る。
As shown in FIG. 3, the altitude measuring section 9 includes an ultrasonic receiver 901 (second receiver) which receives the ultrasonic pulse signal from the ultrasonic receiver 7 and outputs the pulse signal. ,
By setting each part constituting the altitude calculation part, that is, the pulse signal from the pulse signal transmitter 5, and resetting by the pulse signal from the ultrasonic receiver 901,
An S / R flip-flop 902 that outputs a rectangular signal having a length proportional to the altitude from the ground surface of the ground scanner 8;
A clock oscillator 903 which outputs a time reference signal (clock pulse) for measuring the length of the rectangular signal from the R flip-flop 902, and the S / R flip-flop 90.
The AND gate 904 that outputs the number of clock pulses corresponding to the length of the rectangular signal and the number of clock pulses output by the AND gate 904 are counted by the logical product of the output of 2 and the output of the clock oscillator 903. It is composed of a counter 905 and a D / A converter 906 that converts the count output (digital value) by the counter 905 into a voltage (analog value) and outputs the altitude signal of the ground scanner 8.

【0014】以上の第1実施例の構成において、空中線
3は、高周波送信機1に直結される送信用空中線と、高
周波受信機2に直結される受信用空中線とで構成しても
よく、この場合には、サーキュレータ4は不必要とな
る。また、パルス信号送信機5と高度測定部9(超音波
受信機901)との間に切替器を介在させることによっ
て、超音波放射器6と超音波受感器7とを1つの超音波
振動器で兼用することも可能である。
In the structure of the first embodiment, the antenna 3 may be composed of a transmitting antenna directly connected to the high frequency transmitter 1 and a receiving antenna directly connected to the high frequency receiver 2. In some cases, the circulator 4 is unnecessary. Further, by interposing a switching device between the pulse signal transmitter 5 and the altitude measuring unit 9 (ultrasonic wave receiver 901), the ultrasonic wave radiator 6 and the ultrasonic wave receiver 7 are combined into one ultrasonic vibration. It can also be used as a container.

【0015】図4(A),(B)に地面走査機8の構造
を示す。地面走査機8を構成する無変調電波の空中線3
と超音波放射器6及び超音波受感器7は、地面走査時の
電波及び超音波の照射範囲を狭く限定するためにホーン
型で構成される。
The structure of the ground scanner 8 is shown in FIGS. Antenna 3 of unmodulated radio wave that constitutes the ground scanner 8
The ultrasonic radiator 6 and the ultrasonic receiver 7 are of a horn type in order to limit the irradiation range of radio waves and ultrasonic waves when scanning the ground.

【0016】すなわち、例えばアルミニウムのような金
属で下面を開口させて形成した矩形箱形の電磁ホーン8
01と、該電磁ホーン801の側面から当該電磁ホーン
801の内部空間略中央部分に水平方向に突設した電力
共振棒802(共振体)とで前記空中線3が構成され、
電磁ホーン801の上面で、上記電力共振棒802に対
して互に対称となる位置に設けた孔803,804を通
して、振動面805A,806Aを当該電磁ホーン80
1の内部に向けて配置した超音波振動子805,806
と、例えばマイラフィルムのような誘電率が非常に低い
(空気の誘電率に近い)部材で形成され、上記電磁ホー
ン801の内部空間内において、基部807A,808
Aを上記超音波振動子805,806の振動面805
A,806A側に固定し、開口部807B,808Bを
下側にして(開口方向を上記電磁ホーン801と同じ方
向として)取付けた超音波ホーン807,808で前記
超音波放射器6及び前記超音波受感器7が構成されてい
る。
That is, for example, a rectangular box-shaped electromagnetic horn 8 formed by opening the lower surface with a metal such as aluminum.
01 and a power resonance rod 802 (resonator) horizontally projecting from the side surface of the electromagnetic horn 801 to a substantially central portion of the internal space of the electromagnetic horn 801, the antenna 3 is configured,
The vibrating surfaces 805A and 806A are passed through holes 803 and 804, which are provided on the upper surface of the electromagnetic horn 801, symmetrically with respect to the power resonance rod 802.
1. Ultrasonic transducers 805, 806 arranged toward the inside of
And a base member 807A, 808 formed in a member having a very low dielectric constant (close to the dielectric constant of air), such as mylar film, in the internal space of the electromagnetic horn 801.
A is a vibrating surface 805 of the ultrasonic transducers 805 and 806.
The ultrasonic radiator 6 and the ultrasonic wave are fixed by the ultrasonic horns 807 and 808 which are fixed to the A and 806A sides and are attached with the openings 807B and 808B on the lower side (the opening direction is the same direction as the electromagnetic horn 801). The receiver 7 is configured.

【0017】電力共振棒802は、電磁ホーン801の
側面に設けられた接栓809に直接固定されており、ま
た、超音波振動子805,806はゴムによるクッショ
ン材810,811を介在させてカバー812,813
によって上記電磁ホーン801の上面に固定されてい
て、それらの端子805B,806Bは電磁ホーン80
1の適宜の個所(実施例では上面)に設けられた接栓8
14に接続されており、電力共振棒802と前記サーキ
ュレータ4との間の接続は接栓809を介して、及び超
音波振動子805,806と前記パルス信号送信機5及
び高度測定部9との間の接続は接栓814を介してそれ
ぞれ行なわれる。
The power resonance rod 802 is directly fixed to a contact plug 809 provided on the side surface of the electromagnetic horn 801, and the ultrasonic transducers 805 and 806 are covered with rubber cushion materials 810 and 811. 812, 813
Is fixed to the upper surface of the electromagnetic horn 801 by means of the terminals 805B and 806B.
1. A plug 8 provided at an appropriate location (top surface in the embodiment)
14, the power resonance rod 802 and the circulator 4 are connected via a plug 809, and the ultrasonic transducers 805, 806, the pulse signal transmitter 5, and the altitude measuring unit 9. The connection between them is made via a plug 814.

【0018】また、超音波振動子805,806の振動
面805A,806A前方への上記超音波ホーン80
7,808の取付けは、電磁ホーン801の上面に設け
られた孔803,804に、その基部807A,808
Aを接着固定して行なわれるが、この接着固定には、超
音波ホーン807,808の基部807A,808Aと
電磁ホーン801の孔803,804との間の隙間(孔
803,804の内径は基部807A,808Aの外径
より若干大きく設定されている。)に、例えばシリコン
系充填材のように、硬化後に弾力性を呈する充填剤81
5,816を充填することによって行なわれる。
Further, the ultrasonic horn 80 is located in front of the vibrating surfaces 805A and 806A of the ultrasonic transducers 805 and 806.
7, 808 are attached to holes 803, 804 provided on the upper surface of the electromagnetic horn 801, and base portions 807A, 808 thereof.
A is bonded and fixed, and this bonding and fixing is performed by a gap between the base portions 807A and 808A of the ultrasonic horns 807 and 808 and the holes 803 and 804 of the electromagnetic horn 801 (the inner diameters of the holes 803 and 804 are the base portions). 807A and 808A are set to have a diameter slightly larger than the outer diameters of 807A and 808A).
By filling 5,816.

【0019】以上のように構成された地面走査機8にお
いて、電磁ホーン801の内部空間には2つの超音波ホ
ーン807,808が存在するが、前記したように当該
超音波ホーン807,808は誘電率が非常に低い部材
を用いているため、電力共振棒802による無変調電波
の放射に支障が生ずることはなく、また、電磁ホーン8
01への超音波振動子805,806及び超音波ホーン
807,808の固定にはそれぞれクッション材81
0,811及び弾力性充填材815,816を介在させ
ているので、超音波振動が電磁ホーン801に伝わるこ
とはなく、従って、超音波信号の無変調電波への漏れ込
みが生ずることはない(無変調電波が超音波信号で変調
されることがない)ので、無変調電波の放射が擾乱され
ることはない。
In the ground scanner 8 constructed as described above, there are two ultrasonic horns 807, 808 in the internal space of the electromagnetic horn 801. As described above, the ultrasonic horns 807, 808 are dielectric. Since the member having a very low rate is used, the emission of unmodulated radio waves by the power resonance rod 802 is not hindered, and the electromagnetic horn 8 is used.
For fixing the ultrasonic transducers 805 and 806 and the ultrasonic horns 807 and 808 to 01, the cushion material 81 is provided.
Since 0, 811, and the elastic fillers 815, 816 are interposed, the ultrasonic vibration is not transmitted to the electromagnetic horn 801, and accordingly, the ultrasonic signal does not leak into the unmodulated radio wave ( Since the unmodulated radio wave is not modulated by the ultrasonic signal), the emission of the unmodulated radio wave is not disturbed.

【0020】また、超音波ホーン807,808の存在
により、送信側の超音波振動子(例えば805)からの
超音波パルス信号が電力共振棒802で反射して受信側
の超音波振動子(例えば806)に直接入力することは
なく、及び、超音波振動子805,806の電磁ホーン
801への取付部分に緩衝材(クッション材810,8
11、弾力性充填材815,816)が存在することに
より、超音波振動子805の振動が電磁ホーン801を
介して直接超音波振動子806に伝わることがないの
で、超音波パルス信号の出力側から入力側への漏れ込み
(地表面での反射を経ないで出力側から入力側に直接伝
わること)が生ずることもない。
Further, due to the presence of the ultrasonic horns 807 and 808, the ultrasonic pulse signal from the ultrasonic transducer (eg, 805) on the transmitting side is reflected by the power resonance rod 802 and the ultrasonic transducer (eg, on the receiving side) (eg, 806), and shock-absorbing materials (cushioning materials 810, 8) for attaching the ultrasonic transducers 805, 806 to the electromagnetic horn 801.
11, the presence of the elastic fillers 815, 816) prevents the vibration of the ultrasonic transducer 805 from being directly transmitted to the ultrasonic transducer 806 via the electromagnetic horn 801, so that the ultrasonic pulse signal output side There is no leakage from the output side to the input side (transmitting directly from the output side to the input side without passing through the reflection on the ground surface).

【0021】また、2つの超音波振動子805,806
は、電力共振棒802(電力給電点)に対して対称な位
置に設けられているので、地面走査機8の高度は、無変
調電波の放射方向真下において測定することができる。
Two ultrasonic transducers 805 and 806 are also provided.
Is provided at a position symmetrical with respect to the power resonance rod 802 (power feeding point), so that the altitude of the ground scanner 8 can be measured directly below the emission direction of the unmodulated radio wave.

【0022】次に第1実施例の動作を説明する。Next, the operation of the first embodiment will be described.

【0023】高周波送信機1は常時無変調の高周波信号
を出力しており、この高周波信号はサーキュレータ4を
介して地面走査機8の空中線3(電力共振棒802)に
供給され、これによって空中線3から地面に向けて無変
調電波が放射される。
The high frequency transmitter 1 always outputs an unmodulated high frequency signal, and this high frequency signal is supplied to the antenna 3 (power resonance rod 802) of the ground scanner 8 through the circulator 4, whereby the antenna 3 is supplied. Unmodulated radio waves are radiated from the ground to the ground.

【0024】空中線3から放射された無変調電波は、地
面に達すると地表面及び地中で反射し、これによって生
ずる反射波は空中線3に入射し、これによって空中線3
に高周波信号が誘起生成され、この高周波信号はサーキ
ュレータ4を介して高周波受信機2で受信され、当該高
周波受信機2は受信した高周波信号の受信レベルに比例
した受信レベル信号を出力する。
When the unmodulated radio wave radiated from the antenna 3 reaches the ground, it is reflected on the ground surface and in the ground, and the reflected wave generated thereby enters the antenna 3, whereby the antenna 3
A high frequency signal is induced and generated, and the high frequency signal is received by the high frequency receiver 2 via the circulator 4, and the high frequency receiver 2 outputs a reception level signal proportional to the reception level of the received high frequency signal.

【0025】また、パルス信号送信機5は一定周期でパ
ルス信号を出力しており、このパルス信号は地面走査機
8の超音波放射器6(超音波振動子805)に供給さ
れ、これによって超音波放射器6から地面に向けて超音
波パルス信号が放射される。
Further, the pulse signal transmitter 5 outputs a pulse signal at a constant cycle, and this pulse signal is supplied to the ultrasonic wave radiator 6 (ultrasonic wave transducer 805) of the ground scanner 8 and thereby the ultrasonic wave is transmitted. An ultrasonic pulse signal is emitted from the acoustic wave radiator 6 toward the ground.

【0026】超音波放射器6から放射された超音波パル
ス信号は、地面に達すると地表面で反射し(超音波パル
ス信号が地中に達して反射することはない。)これによ
って生ずる反射波は超音波受感器7(超音波振動子80
6)に入射し、これによって超音波受感器7に超音波パ
ルス信号が誘起生成されて高度測定部9に当該超音波パ
ルス信号が入力される。
When the ultrasonic pulse signal radiated from the ultrasonic radiator 6 reaches the ground, it is reflected on the ground surface (the ultrasonic pulse signal does not reach the ground and is not reflected.). Is an ultrasonic transducer 7 (ultrasonic transducer 80
6), so that an ultrasonic pulse signal is induced and generated in the ultrasonic receiver 7 and the ultrasonic pulse signal is input to the altitude measuring unit 9.

【0027】高度測定部9は次のようにして地面走査機
7の高度を測定して高度信号を出力する。すなわち、パ
ルス信号送信機5は超音波放射器6にパルス信号を送出
するのと同じタイミングで当該高度測定部9にもパルス
信号(又は上記超音波放射器6へのパルス信号送出のた
めのトリガ信号)を送出しており、このパルス信号がS
/Rフリップフロップ902のセット端子Sに入力され
てその出力端子Qのレベルがプラスに反転し、これによ
ってアンドゲート904が開いてクロック発振器903
からのクロックパルスが当該アンドゲート904を介し
てカウンタ905に供給され、カウンタ905は上記ク
ロックパルスの計数を開始する。
The altitude measuring unit 9 measures the altitude of the ground scanner 7 and outputs an altitude signal as follows. That is, the pulse signal transmitter 5 sends the pulse signal to the altitude measuring unit 9 (or triggers for sending the pulse signal to the ultrasonic wave emitter 6 at the same timing as sending the pulse signal to the ultrasonic wave emitter 6). Signal), and this pulse signal is S
/ R flip-flop 902 is input to the set terminal S and the level of the output terminal Q thereof is inverted to positive, whereby the AND gate 904 is opened and the clock oscillator 903 is opened.
Is supplied to the counter 905 through the AND gate 904, and the counter 905 starts counting the clock pulses.

【0028】次に超音波受感器7からの超音波パルス信
号が高度測定部9に入力されると、当該超音波パルス信
号は超音波受信機901で受信され、これによって当該
超音波受信機901はS/Rフリップフロップ902の
リセット端子Rにパルス信号を出力し、これによってS
/Rフリップフロップ902の出力端子Qのレベルが再
度反転してマイナスレベルとなり、アンドゲート904
が閉じてクロック発振器903からのクロックパルスの
カウンタ905への出力が停止し、当該カウンタ905
の計数動作が停止する。
Next, when the ultrasonic pulse signal from the ultrasonic sensor 7 is input to the altitude measuring unit 9, the ultrasonic pulse signal is received by the ultrasonic receiver 901, and the ultrasonic receiver 901 receives the ultrasonic pulse signal. 901 outputs a pulse signal to the reset terminal R of the S / R flip-flop 902, whereby S
The level of the output terminal Q of the / R flip-flop 902 is inverted again to a negative level, and the AND gate 904
Is closed and the output of the clock pulse from the clock oscillator 903 to the counter 905 is stopped.
Counting operation stops.

【0029】また、このとき、超音波受信機901から
出力されるパルス信号は、図示しない手段によって若干
遅延されたのちカウンタ905及びD/A変換器906
にも送出され、これによってD/A変換器906から
は、そのときのカウンタ905の計数値に対応する電圧
信号を出力し、また、カウンタ905はリセットされ
て、次の計数動作に備える。
At this time, the pulse signal output from the ultrasonic receiver 901 is slightly delayed by a unit (not shown), and then the counter 905 and the D / A converter 906.
Then, the D / A converter 906 outputs a voltage signal corresponding to the count value of the counter 905 at that time, and the counter 905 is reset to prepare for the next counting operation.

【0030】上記S/Rフリップフロップ902がセッ
トされてからリセットされるまで(出力端子Qのレベル
がプラスに反転してから再度マイナスに反転するまで)
の時間は超音波パルス信号が地面走査機8と地表面との
間を往復する時間に相当し、この時間は地面走査機8の
地表面からの高さに比例する。従って、上記時間をあら
わしているカウンタ905の計数値を電圧値に変換した
D/A変換器906からの電圧信号は、上記地面走査機
8の地表面からの高さに比例した信号となっており、こ
のようにして高度測定部9は地面走査機8の高度信号を
出力する。
From the time the S / R flip-flop 902 is set to the time it is reset (until the level of the output terminal Q inverts to plus and then to minus again)
Corresponds to the time required for the ultrasonic pulse signal to make a round trip between the ground scanner 8 and the ground surface, and this time is proportional to the height of the ground scanner 8 from the ground surface. Therefore, the voltage signal from the D / A converter 906 which has converted the count value of the counter 905 representing the above time into a voltage value becomes a signal proportional to the height of the above ground scanner 8 from the ground surface. In this way, the altitude measuring unit 9 outputs the altitude signal of the ground scanner 8.

【0031】以上のようにして高周波受信機2から出力
された無変調電波の反射波の受信レベル信号と、高度測
定部9から出力された地面走査機8の高度信号とは、信
号処理部10の処理によってメモリ11に記憶される。
この記憶処理において、当該信号処理部10に入力され
る上記受信レベル信号と高度信号はいずれもアナログ値
であるが、当該受信レベル信号と高度信号とは、信号処
理部10自体が有するアナログ、デジタル変換機能によ
って同一基準に基づいたデジタルデータに変換され、メ
モリ11に記憶される。
As described above, the reception level signal of the reflected wave of the unmodulated radio wave output from the high frequency receiver 2 and the altitude signal of the ground scanner 8 output from the altitude measuring unit 9 are the signal processing unit 10 It is stored in the memory 11 by the processing of.
In this storage processing, both the reception level signal and the altitude signal input to the signal processing unit 10 are analog values, but the reception level signal and the altitude signal are the analog and digital signals that the signal processing unit 10 itself has. It is converted into digital data based on the same standard by the conversion function and stored in the memory 11.

【0032】信号処理部10は、埋設物探知データを演
算する処理及び当該処理のための校正データを演算する
処理を行なう。
The signal processing unit 10 performs a process of calculating buried object detection data and a process of calculating calibration data for the process.

【0033】まず、校正データの演算処理について説明
する。
First, the calculation processing of the calibration data will be described.

【0034】校正データを求めるために、探知操作に先
立って次の校正操作を行なう。すなわち、モード設定部
15で校正モードに設定し、地中埋設物の探知地域内の
埋設物無埋設平坦地において、地面走査機8を、計測設
定高度に対して数センチメートル程度垂直上下方向に移
動させる。
In order to obtain the calibration data, the following calibration operation is performed prior to the detection operation. That is, the calibration mode is set by the mode setting unit 15, and the ground scanner 8 is moved vertically up and down by several centimeters with respect to the measurement setting altitude on a flat ground without buried objects in the underground buried object detection area. To move.

【0035】信号処理部10は、この校正操作中に前記
動作で高周波受信機2から得られた受信レベル信号と高
度測定部9から得られた高度信号とをメモリ11の各所
定エリアに記憶し、次に当該メモリ11に記憶した受信
レベル信号と高度信号により校正データを作成する。
The signal processing unit 10 stores the reception level signal obtained from the high frequency receiver 2 and the altitude signal obtained from the altitude measuring unit 9 in the above operation in each predetermined area during the calibration operation. Then, calibration data is created from the reception level signal and the altitude signal stored in the memory 11.

【0036】図5は、校正データの作成演算処理を説明
するためにデータの1例を示したものであり、同図
(A)は地面走査機8を移動させた時間と、移動中に得
られた高度信号(電圧値)との関係を示し、同図(B)
は地面走査機8を移動させた時間と、移動中に得られた
無変調電波反射波の受信レベル信号(電圧値)との関係
を示している。
FIG. 5 shows an example of the data for explaining the calculation processing of the calibration data. FIG. 5A shows the time when the ground scanner 8 is moved and the data obtained during the movement. The relationship between the altitude signal (voltage value)
Shows the relationship between the time when the ground scanner 8 is moved and the reception level signal (voltage value) of the unmodulated radio wave reflected wave obtained during the movement.

【0037】上記2つのデータは前記したように地面走
査機8の校正操作によってメモリ11に記憶されてお
り、校正データの作成指示によって信号処理部10は、
メモリ11から同一移動時間(t)における高度信号h
(t)と受信レベル信号v(t)を順次読み出し、これ
を例えば高度信号h(t)を横軸とし、受信レベル信号
v(t)を縦軸とする直交座標に移し替える。例えば、
移動時間t1において、図5(A)から高度信号はh
1、図5(B)から受信レベル信号はv1であり、これ
を図5(C)の座標上に移すとP点となる。この処理
を、校正データの全記録時間t0〜tnにわたり連続的
に行なうと、図5(C)に示す校正データが得られ、こ
の校正データはメモリ11の所定のエリアに記憶され
る。
The above two data are stored in the memory 11 by the calibration operation of the ground scanner 8 as described above, and the signal processing unit 10 is instructed by the instruction to create the calibration data.
The altitude signal h from the memory 11 at the same travel time (t)
(T) and the reception level signal v (t) are sequentially read out, and are transferred to Cartesian coordinates with the horizontal axis of the altitude signal h (t) and the vertical axis of the reception level signal v (t). For example,
At the travel time t1, the altitude signal is h from FIG. 5 (A).
1, the reception level signal is v1 from FIG. 5 (B), and when this is moved to the coordinates in FIG. 5 (C), it becomes the point P. When this process is continuously performed over the entire recording time t0 to tn of the calibration data, the calibration data shown in FIG. 5C is obtained, and the calibration data is stored in a predetermined area of the memory 11.

【0038】以上のようにして作成された校正データ
は、地面走査機8の地表面からの高度と、無変調電波の
地面(地表面及び地中)からの反射波の受信レベルの強
さとの関係において、探知地域特有の地質等による反射
係数が反映したデータとなっている。
The calibration data created as described above includes the altitude from the ground surface of the ground scanner 8 and the intensity of the reception level of the reflected wave from the ground (ground surface and underground) of the unmodulated radio wave. In the relationship, the data reflects the reflection coefficient due to the geology peculiar to the detection area.

【0039】次に地中埋設物の探知操作及びそのときの
データ処理について、図6を参照しながら説明する。
Next, the operation of detecting an underground buried object and the data processing at that time will be described with reference to FIG.

【0040】地表面Pの状態及び埋設物Qの埋設個所は
図6、Dのようになっているものとする。
The condition of the ground surface P and the buried portion of the buried object Q are as shown in FIGS.

【0041】地中埋設物の探知操作は、地面走査機8を
地表面Pに対して水平方向に移動させて行なう。このと
き、モード設定部15で操作モードを探知モードに設定
しておく。
The operation of detecting an underground buried object is performed by moving the ground scanner 8 in the horizontal direction with respect to the ground surface P. At this time, the mode setting unit 15 sets the operation mode to the detection mode.

【0042】地面走査機8の移動中、前記動作によっ
て、高周波受信機2はA点に図6、Aに示すような受信
レベル信号を出力し、高度測定部9はB点に図6、Bに
示すような高度信号を出力する。
While the ground scanner 8 is moving, the above operation causes the high frequency receiver 2 to output a reception level signal as shown in FIG. 6A at the point A, and the altitude measuring unit 9 at the point B as shown in FIG. The altitude signal as shown in is output.

【0043】上記受信レベル信号は、無変調電波の地表
面及び地中での全ての反射波成分を含むものであるた
め、図6、Aに示すように、地表面Pの凹凸及び埋設物
Qの双方の存在を区別なく表わしている波形となる。一
方、高度信号は超音波信号の地表面Pでの反射成分のみ
を含むものであるため(超音波信号は地中には達しな
い)、図6、Bに示すように、地表面Pの凹凸の存在の
みを示す波形となる。
Since the reception level signal includes all the reflected wave components of the unmodulated radio wave on the ground surface and in the ground, as shown in FIG. 6A, both the unevenness of the ground surface P and the buried object Q are present. It becomes a waveform that expresses the existence of the indiscriminately. On the other hand, since the altitude signal includes only the reflection component of the ultrasonic signal on the ground surface P (the ultrasonic signal does not reach the ground), as shown in FIGS. The waveform shows only that.

【0044】信号処理部10は、前記校正操作で既にメ
モリ11に記憶保持されている校正データを用いて、上
記受信レベル信号から地表面での反射波に基づく受信レ
ベル変化分を除去するデータ校正処理を行なう。
The signal processing unit 10 uses the calibration data already stored and held in the memory 11 in the calibration operation to perform data calibration for removing the variation in the reception level based on the reflected wave on the ground surface from the reception level signal. Perform processing.

【0045】すなわち、図6に示すように、例えばS1
地点において得られた受信レベル信号がv、高度信号が
h1であるものとすると、信号処理部10では、前記図
5(C)に示すデータの参照によって上記高度信号h1
に対する地面のみからの反射波受信レベル信号がv1で
あることを認識し、上記S1地点での受信レベル信号v
から上記校正データでの受信レベル信号v1を差し引い
て真正の受信レベル信号vk得て、これを探知データと
する。この処理を全走査区域にわたって行ない、図6、
Cに示す探知データが得られる。このデータ校正処理
は、地面走査機8で検知した無変調電波の全ての反射波
成分を含む受信レベル信号から、地面走査機8の高度の
関数で表わされる地面のみからの反射波成分を差し引く
処理であり、これによって埋設物Qからの反射波成分を
損うことなく、地面からの不要反射波を、当該地面の地
表面状況(凹凸状況)とは無関係に取り除くことができ
る。以上のようにして探知データが得られると、信号処
理部10は当該探知データをデータ表示部13に表示
し、当該探知データに埋設物Qの存在を示すデータが含
まれるときには、警報表示部14に可聴的又は/及び可
視的に警報表示を行なう。
That is, as shown in FIG. 6, for example, S1
When the reception level signal obtained at the point is v, the altitude signal is assumed to be h1, the signal processing unit 10, FIG. 5 the altitude signal h 1 by the reference to the data shown in (C)
Recognizing that the reflected wave reception level signal from only the ground to v is v1, the reception level signal v at the point S1 is recognized.
Is subtracted from the reception level signal v1 in the calibration data to obtain a true reception level signal vk, which is used as detection data. This process is performed over the entire scan area, and FIG.
The detection data shown in C is obtained. This data calibration process is a process of subtracting the reflected wave component from only the ground represented by a function of the altitude of the ground scanner 8 from the reception level signal including all the reflected wave components of the unmodulated radio wave detected by the ground scanner 8. Accordingly, the unnecessary reflected wave from the ground can be removed without damaging the reflected wave component from the buried object Q regardless of the ground surface condition (concavo-convex condition) of the ground. When the detection data is obtained as described above, the signal processing unit 10 displays the detection data on the data display unit 13, and when the detection data includes data indicating the presence of the buried object Q, the alarm display unit 14 is displayed. An audible and / or visual alarm is displayed.

【0046】次に第2実施例を説明する。Next, a second embodiment will be described.

【0047】第2実施例は、図2に示すように、地面走
査機8を複数個(N個)設けたものであり(記号81〜
8Nで示す。)、地面走査機81〜8Nそれぞれに空中
線31〜3N、超音波放射器61〜6N及び超音波受感
器71〜7Nが設けられている。また、この複数個の地
面走査機81〜8Nは、走査方向と直交する一直線上
に、通常は等間隔に配置される。
In the second embodiment, as shown in FIG. 2, a plurality of (N) ground scanners 8 are provided (symbols 81 to 81).
Shown as 8N. ), The ground scanners 81 to 8N are provided with antennas 31 to 3N, ultrasonic radiators 61 to 6N and ultrasonic receivers 71 to 7N, respectively. Further, the plurality of ground scanners 81 to 8N are normally arranged at equal intervals on a straight line orthogonal to the scanning direction.

【0048】地面走査機8が複数個であることに伴な
い、当該地面走査機81〜8N中の空中線31〜3N、
超音波放射器61〜6N及び超音波受感器71〜7Nを
順次それぞれサーキュレータ4、パルス信号送信機5及
び高度測定部9に切替接続制御する地面走査切替部16
が設けられ、また、後で述べる動作説明で作用が明らか
となる距離センサ17が設けられる。
Due to the plurality of ground scanners 8, the antennas 31 to 3N in the ground scanners 81 to 8N,
A ground scan switching unit 16 for sequentially switching and controlling the ultrasonic radiators 61 to 6N and the ultrasonic receivers 71 to 7N to the circulator 4, the pulse signal transmitter 5, and the altitude measuring unit 9, respectively.
Is also provided, and a distance sensor 17 whose operation is clarified in the explanation of the operation described later is provided.

【0049】以上の構成の他は、前記図1に示した第1
実施例と同じであり、また、高度測定部9の構成も前記
図3と同じであり、地面走査機81〜8Nの構造も、そ
れぞれが前記図4に示した構造と同じである。
Other than the above construction, the first structure shown in FIG.
The structure of the altitude measuring unit 9 is the same as that of the embodiment, and the structures of the ground scanners 81 to 8N are the same as those shown in FIG.

【0050】また、上記地面走査機81〜8Nは、走行
車両に取付けられ、取付方向は車両走行方向と直交する
方向で、一直線上等間隔に配置され、当該走行車両の車
軸に連係させて距離センサ17が取付けられる。距離セ
ンサ17としては、例えばロータリエンコーダが用いら
れる。
The ground scanners 81 to 8N are mounted on a traveling vehicle, and the mounting directions are orthogonal to the traveling direction of the vehicle, and are arranged at equal intervals on a straight line. The sensor 17 is attached. As the distance sensor 17, for example, a rotary encoder is used.

【0051】また、信号処理部10での各種処理と、地
面走査機81〜8Nのおのおのから入力させるデータ
(信号)とを対応ずけるために、当該信号処理部10の
作動時間基準と地面走査切替部16の作動時間基準とを
同一とし、このため、それぞれへは1つのクロック発振
器12から同じクロックパルスを供給するようにしてあ
る。
Further, in order to correspond various kinds of processing in the signal processing unit 10 and data (signal) input from each of the ground scanning machines 81 to 8N, the operation time reference of the signal processing unit 10 and the ground scanning. The operating time reference of the switching unit 16 is the same, and therefore, the same clock pulse is supplied to each of them from one clock oscillator 12.

【0052】校正データの演算処理及び埋設物探知の際
のデータ処理は、地面走査機81〜8N個々についてみ
れば、基本的には前記第1実施例と同様である。すなわ
ち、第2実施例では、走査地面上のN本の走査線(トラ
ック)に沿って同時に探知動作を行なうものであり、地
面走査切替部16における切替速度を走行車両の速度に
比べて速くすることにより、前記第1実施例の地中埋設
物探知装置をN台並べて使用するのと同じ結果が得られ
ることとなる。
The calculation process of the calibration data and the data process at the time of detecting the buried object are basically the same as those of the first embodiment when viewed from each of the ground scanners 81 to 8N. That is, in the second embodiment, the detection operation is simultaneously performed along the N scanning lines (tracks) on the scanning ground, and the switching speed in the ground scanning switching unit 16 is made higher than the speed of the traveling vehicle. As a result, the same result as when N underground buried object detection devices of the first embodiment are used side by side is obtained.

【0053】また、第2実施例では、各地面走査機81
〜8Nで得られた探知データを距離センサ17から得ら
れた移動距離信号を軸としてデータ表示部13に連続的
に表示することにより、埋設物の形状の概略を知ること
ができる。
Further, in the second embodiment, each ground scanner 81
By continuously displaying the detection data obtained at 8N on the data display unit 13 with the movement distance signal obtained from the distance sensor 17 as an axis, the outline of the shape of the buried object can be known.

【0054】すなわち、図7に示すように、埋設物Qの
形状が例えば円板形状である場合、各地面走査機81〜
8Nからのデータ(各トラックのデータ)を、距離セン
サ17が出力する距離信号と対応させて3次元表示すれ
ば、埋設物Qの周縁形状が概略表示されることとなり、
探知された埋設物が所期のものであるか否かの判断が可
能となる。
That is, as shown in FIG. 7, when the buried object Q has a disk shape, for example, each of the ground scanners 81-81.
If the data from 8N (data of each track) is three-dimensionally displayed in correspondence with the distance signal output from the distance sensor 17, the peripheral shape of the embedded object Q is roughly displayed.
It is possible to judge whether the detected buried object is the intended one.

【0055】[0055]

【発明の効果】以上に説明したように、本発明は、地面
を走査して得られた反射波の受信レベルを、予め測定し
てある地面走査手段の高度と受信レベルとの関係を示し
た校正データにより補正して探知データとするようにし
たものであり、補正処理により、地面からの不要反射波
による受信レベル変化分が効果的に除去でき、かつ地中
埋設物からの反射波の受信レベルが当該補正処理によっ
て低下することがないため、従来に比べてS/N比が飛
躍的に向上し、地中埋設物の探知が確実に行なえる。
As described above, according to the present invention, the reception level of the reflected wave obtained by scanning the ground is shown in advance, which shows the relationship between the altitude of the ground scanning means and the reception level. This is the detection data corrected by the calibration data. By the correction processing, the change in the reception level due to the unnecessary reflected wave from the ground can be effectively removed, and the reflected wave from the underground buried object can be received. Since the level is not lowered by the correction processing, the S / N ratio is dramatically improved as compared with the conventional case, and the underground buried object can be reliably detected.

【0056】また、校正データは、地面走査手段の地表
面からの高度と関連づけられたデータであるので、地表
面の凹凸状況による受信レベル変化分は、上記高度との
関係により1回の補正処理で除去できることとなり、デ
ータ処理が極めて容易となる。
Since the calibration data is data associated with the altitude of the ground scanning means from the ground surface, the amount of change in the reception level due to the unevenness of the ground surface is corrected once by the relationship with the altitude. The data processing becomes extremely easy.

【0057】また、地面走査手段を複数個用いて、同時
に複数のトラックに沿って地面走査を行ない、併せて当
該走査手段の移動距離を測定して、当該移動距離に対応
させて上記複数のトラック上の探知データを同時に表示
することにより、埋設物の概略形状を表示することがで
きるので、探知した埋設物が所期のものであるか否かも
容易に判断することができる。
Further, a plurality of ground scanning means are used to simultaneously scan the ground along a plurality of tracks, the moving distance of the scanning means is also measured, and the plurality of tracks corresponding to the moving distances are measured. Since the outline shape of the buried object can be displayed by simultaneously displaying the above-mentioned detected data, it can be easily determined whether or not the detected buried object is the intended one.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例のブロック図FIG. 1 is a block diagram of a first embodiment of the present invention.

【図2】本発明の第2実施例のブロック図FIG. 2 is a block diagram of a second embodiment of the present invention.

【図3】図1,図2における高度測定部9のブロック図FIG. 3 is a block diagram of an altitude measuring unit 9 in FIGS. 1 and 2.

【図4】(A)は本発明実施例に係る地面走査機8の斜
視図、(B)は、(A)におけるA−A断面図
4A is a perspective view of a ground scanner 8 according to an embodiment of the present invention, and FIG. 4B is a sectional view taken along line AA in FIG.

【図5】(A)〜(C)は校正データ演算処理を説明す
る図
5A to 5C are views for explaining a calibration data calculation process.

【図6】第1実施例の動作説明図FIG. 6 is an operation explanatory diagram of the first embodiment.

【図7】第2実施例の動作説明図FIG. 7 is an operation explanatory diagram of the second embodiment.

【符号の説明】[Explanation of symbols]

1…高周波送信機 2…高周波受信
機 3,31〜3N…空中線 5…パルス信号
送信機 6,61〜6N…超音波放射器 7,71〜7N
…超音波受感器 8,81〜8N…地面走査機 9…高度測定部 10…信号処理部 11…メモリ 13…データ表示部 14…警報表示
部 16…地面走査切替部 17…距離セン
サ 901…超音波受信機 902…S/R
フリップフロップ 905…カウンタ 906…D/A
変換器 801…電磁ホーン 802…電力共
振棒 805,806…超音波振動子 807,808
…超音波ホーン
DESCRIPTION OF SYMBOLS 1 ... High frequency transmitter 2 ... High frequency receiver 3,31-3N ... Antenna 5 ... Pulse signal transmitter 6,61-6N ... Ultrasonic wave radiator 7,71-7N
... Ultrasonic receivers 8,81 to 8N ... Ground scanner 9 ... Altitude measuring unit 10 ... Signal processing unit 11 ... Memory 13 ... Data display unit 14 ... Alarm display unit 16 ... Ground scan switching unit 17 ... Distance sensor 901 ... Ultrasonic receiver 902 ... S / R
Flip-flop 905 ... Counter 906 ... D / A
Converter 801 ... Electromagnetic horn 802 ... Power resonance rod 805, 806 ... Ultrasonic transducer 807, 808
… Ultrasonic horn

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柴田耕志 東京都文京区小石川2丁目5番7号 明星 電気株式会社内 (72)発明者 小菅文雄 東京都文京区小石川2丁目5番7号 明星 電気株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Koushi Shibata 2-5-7 Koishikawa, Bunkyo-ku, Tokyo Meisei Electric Co., Ltd. (72) Fumio Kosuge 2-5-7 Koishikawa, Bunkyo-ku, Tokyo Meisei Electric Within the corporation

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 地面走査手段で地面を水平方向に走査し
ながら該地面走査手段から地面に向けて無変調電波を放
射し、該無変調電波の地面での反射波を受信して該反射
波の受信レベルの分析により地中埋設物を探知するよう
にした地中埋設物探知方式において、 上記反射波の受信レベルの測定とともに、上記地面走査
手段の地表面からの高度の測定を行なうようにし、 地中埋設物の探知地域における埋設物無埋設領域で上記
地面走査手段を垂直方向に変位させ、そのときの上記反
射波の受信レベル変化と当該地面走査手段の高度変化を
予め測定し、その相関を演算してこれを校正データとし
て保持し、 上記探知地域での上記地面走査手段による水平方向への
地面走査で得られた上記反射波の受信レベル信号と上記
地面走査手段の高度信号とを上記校正データに基づいて
処理することにより、上記受信レベル信号から上記無変
調電波の地表面からの不要反射波による受信レベル変化
分を可及的に除去した受信レベル補正データを得て、当
該受信レベル補正データから地中埋設物の存在を検知す
るようにした地中埋設物探知方式。
1. An unmodulated radio wave is radiated from the ground scanning means toward the ground while the ground scanning means scans the ground in the horizontal direction, a reflected wave of the unmodulated radio wave on the ground is received, and the reflected wave is received. In the underground buried object detection method in which the underground buried object is detected by analyzing the reception level of, the reception level of the reflected wave is measured and the altitude of the ground scanning means from the ground surface is measured. , The ground scanning means is vertically displaced in the buried object non-buried area in the underground buried object detection area, the reception level change of the reflected wave at that time and the altitude change of the ground scanning means are measured in advance, and The correlation is calculated and stored as calibration data, and the reception level signal of the reflected wave obtained by the ground scanning in the horizontal direction by the ground scanning means in the detection area and the altitude signal of the ground scanning means are By processing on the basis of the calibration data, the reception level correction data is obtained by removing as much as possible the reception level variation due to the unwanted reflection wave from the ground surface of the unmodulated radio wave from the reception level signal, and the reception level Underground object detection method that detects the presence of underground objects from level correction data.
【請求項2】 請求項1に記載の地中埋設物探知方式に
おいて、反射波の受信レベルの測定と地面走査手段の高
度の測定を、地面走査方向と直交する方向に並べて設定
した複数点の水平方向への同時走査で行なうとともに、
上記地面走査手段の走査移動距離の測定を行なうように
し、上記複数点のそれぞれの走査について得られた受信
レベル補正データと上記走査移動距離の測定で得られた
移動距離データから地中埋設物の存在及び当該地中埋設
物の形状を検知するようにした地中埋設物探知方式。
2. The underground buried object detection system according to claim 1, wherein the measurement of the reception level of the reflected wave and the measurement of the altitude of the ground scanning means are set at a plurality of points arranged side by side in a direction orthogonal to the ground scanning direction. Simultaneous scanning in the horizontal direction,
The scanning movement distance of the ground scanning means is measured, and the underground level of the buried object is determined from the reception level correction data obtained for each of the plurality of scanning points and the movement distance data obtained by the scanning movement distance measurement. Underground object detection method that detects the presence and shape of the object.
【請求項3】 地面走査手段の高度信号を、当該地面走
査手段から放射した超音波パルス信号の放射時から、当
該超音波パルス信号の地表面での反射波の受信時までの
時間差に基づいて得るようにした請求項1又は請求項2
に記載の地中埋設物探知方式。
3. The altitude signal of the ground scanning means is based on the time difference from the time of emitting the ultrasonic pulse signal emitted from the ground scanning means to the time of receiving the reflected wave of the ultrasonic pulse signal on the ground surface. Claim 1 or Claim 2 adapted to obtain
Underground object detection method described in.
【請求項4】 無変調高周波信号を出力する第1の送信
機と、該第1の送信機から無変調高周波信号が供給され
ることにより地面に向けて無変調電波を放射する送信用
空中線と、該送信用空中線から放射された無変調電波の
地表面及び地中からの反射波が入射して無変調高周波信
号を生起する受信用空中線と、該受信用空中線からの無
変調高周波信号を受信してその受信レベル信号を出力す
る第1の受信機と、送信パルス信号を出力する第2の送
信機と、該第2の送信機から送信パルス信号が供給され
ることにより地面に向けて超音波パルス信号を放射する
超音波放射器と、該超音波放射器から放射された超音波
パルス信号の地表面での反射波に受感して超音波パルス
信号を生起する超音波受感器と、該超音波受感器からの
超音波パルス信号を受信して受信パルス信号を出力する
第2の受信機と、上記送信用空中線、上記受信用空中
線、上記超音波放射器及び上記超音波受感器を取付けた
地面走査機と、上記第2の送信機から出力された送信パ
ルス信号と上記第2の受信機から出力された受信パルス
信号との出力時間差を演算して上記地面走査機の地表面
からの高度信号を得る高度演算部と、上記第1の受信機
が出力する無変調電波の反射波の受信レベル信号を記憶
する第1のメモリと、上記高度演算部が出力する地面走
査機の高度信号を記憶する第2のメモリと、 探知地域の埋設物無埋設地点で上記地面走査機を上下さ
せて行った測定により上記第1のメモリに記憶された受
信レベル信号と上記第2のメモリに記憶された高度信号
を処理して当該探知地域における上記受信レベル信号の
校正データを求める校正データ演算部と、該校正データ
演算部が出力する校正データを記憶する第3のメモリ
と、上記探知地域において、上記地面走査機を地表面に
沿って走査することにより、上記第1のメモリに記憶さ
れた受信レベル信号と上記第2のメモリに記憶された高
度信号とを、上記第3のメモリに記憶された校正データ
に基いて処理することにより、上記無変調電波の地表面
からの不要反射波による受信レベル変化分を可及的に除
去し、当該無変調電波の地中埋設物の存在による受信レ
ベル変化分を取り出すデータ処理部と、該データ処理部
が出力する受信レベル変化データを探知データとして表
示する表示部でなる地中埋設物探知装置。
4. A first transmitter that outputs an unmodulated high-frequency signal, and a transmitting antenna that emits an unmodulated radio wave toward the ground when the unmodulated high-frequency signal is supplied from the first transmitter. , A receiving antenna in which reflected waves from the ground surface and underground of the unmodulated radio wave radiated from the transmitting antenna are incident to generate an unmodulated high frequency signal, and an unmodulated high frequency signal from the receiving antenna Then, the first receiver that outputs the reception level signal, the second transmitter that outputs the transmission pulse signal, and the transmission pulse signal supplied from the second transmitter, are transmitted toward the ground. An ultrasonic wave radiator that emits an ultrasonic pulse signal, and an ultrasonic wave receiver that generates an ultrasonic pulse signal by receiving a reflected wave on the ground surface of the ultrasonic pulse signal emitted from the ultrasonic wave radiator. , The ultrasonic pulse signal from the ultrasonic receiver A second receiver for receiving and outputting a reception pulse signal; a ground scanner equipped with the transmitting antenna, the receiving antenna, the ultrasonic radiator and the ultrasonic receiver; and the second scanner. An altitude calculator for calculating an output time difference between a transmission pulse signal output from a transmitter and a reception pulse signal output from the second receiver to obtain an altitude signal from the ground surface of the ground scanner; A first memory for storing a reception level signal of a reflected wave of the unmodulated radio wave output by the first receiver, and a second memory for storing an altitude signal of the ground scanner output by the altitude calculating section, The detection is performed by processing the reception level signal stored in the first memory and the altitude signal stored in the second memory by the measurement performed by moving the ground scanner up and down at a buried object-free location in the area. The above reception level signal in the area A calibration data calculation unit for obtaining the calibration data of the number, a third memory for storing the calibration data output by the calibration data calculation unit, and a scanning of the ground scanner along the ground surface in the detection area. Processing the reception level signal stored in the first memory and the altitude signal stored in the second memory based on the calibration data stored in the third memory, A data processing unit that removes as much as possible the reception level change due to unnecessary reflected waves from the ground surface of the radio wave, and extracts the reception level change due to the presence of an underground buried object of the unmodulated radio wave, and the data processing unit An underground buried object detection device comprising a display unit that displays output reception level change data as detection data.
【請求項5】 請求項4に記載の地中埋設物探知装置に
おいて、地面走査機を走査方向と直交する水平方向に複
数個並べて設け、それぞれの地面走査機に設けた送信用
空中線、受信用空中線、超音波放射器及び超音波受感器
をそれぞれ第1の送信機、第1の受信機、第2の送信機
及び第2の受信機に順次切替接続する切替制御部と、上
記地面走査機の水平方向への走査移動距離を測定する距
離センサを更に有し、 データ処理部では、上記複数個の地面走査機について、
それぞれに受信レベル変化データを演算し、当該受信レ
ベル変化データを上記距離センサが出力した移動距離デ
ータを軸として表示部に並列表示することにより、埋設
物の形状を表示するようにした地中埋設物探知装置。
5. The underground buried object detecting apparatus according to claim 4, wherein a plurality of ground scanners are arranged side by side in a horizontal direction orthogonal to the scanning direction, and each antenna is provided with a transmitting antenna and a receiving antenna. A switching control unit for sequentially switching and connecting an antenna, an ultrasonic radiator and an ultrasonic receiver to a first transmitter, a first receiver, a second transmitter and a second receiver, respectively, and the above ground scanning The data processing unit further includes a distance sensor for measuring a horizontal scanning movement distance of the machine, and in the data processing unit,
Receiving level change data is calculated for each, and the receiving level change data is displayed in parallel on the display unit with the moving distance data output by the distance sensor as an axis to display the shape of the buried object. Object detection device.
【請求項6】 第1の送信機の出力と第1の受信機の入
力との間にサーキュレータを介在させ、送信用空中線と
受信用空中線とを1個の空中線で兼用するようにした請
求項4又は請求項5に記載の地中埋設物探知装置。
6. A circulator is interposed between the output of the first transmitter and the input of the first receiver so that one antenna serves as both the transmitting antenna and the receiving antenna. The underground buried object detection device according to claim 4 or claim 5.
【請求項7】 第2の送信機の出力と第2の受信機の入
力との間に切替手段を介在させ、超音波放射器と超音波
受感器とを1個の超音波振動器で兼用するようにした請
求項4又は請求項5に記載の地中埋設物探知装置。
7. An ultrasonic oscillating device and an ultrasonic sensitizing device are combined into one ultrasonic oscillating device by interposing a switching means between the output of the second transmitter and the input of the second receiver. The underground buried object detection device according to claim 4 or 5, which is also used.
【請求項8】 請求項6に記載の空中線の構成と、請求
項7に記載の超音波振動器の構成を併有する請求項4又
は請求項5に記載の地中埋設物探知装置。
8. The underground buried object detection device according to claim 4 or 5, which has both the configuration of the antenna according to claim 6 and the configuration of the ultrasonic vibrator according to claim 7.
【請求項9】 データ処理部が出力する受信レベル変化
データに埋設物の存在を示すレベル変化が含まれると
き、警報を発生する可聴的又は/及び可視的表示手段を
表示部に代え、又は表示部とともに有する請求項4又は
請求項5に記載の地中埋設物探知装置。
9. When the reception level change data output from the data processing section includes a level change indicating the presence of an embedded object, an audible and / or visual display means for issuing an alarm is replaced with the display section, or displayed. The underground buried object detection device according to claim 4 or 5, which is provided with the section.
【請求項10】 走行車両に複数個の地面走査機を、当
該走行車両の走行方向と直交する水平方向直線上に並べ
て設け、かつ当該走行車両の車軸に連係させて距離セン
サを設けた請求項5に記載の埋設物探知装置。
10. The traveling vehicle is provided with a plurality of ground scanners arranged side by side on a horizontal straight line orthogonal to the traveling direction of the traveling vehicle, and a distance sensor is provided in association with the axle of the traveling vehicle. The buried object detection device according to item 5.
【請求項11】 請求項4乃至請求項10のいずれかに
記載の地中埋設物探知装置に使用する地面走査機であっ
て、 第1の送信機からの無変調高周波信号又は/及び地面か
らの反射波で共振する共振体と、該共振体を内包する電
磁ホーンで構成した送信用空中線及び受信用空中線又は
送信受信兼用の空中線と、 誘電率が可及的に低い部材で形成され、開口方向を上記
電磁ホーンの開口方向と一致させて上記電磁ホーンの内
部に取付けた超音波ホーンと、該超音波ホーンの基部に
取付けた超音波振動子で構成した超音波放射器及び超音
波受感器又は超音波放射受感兼用の超音波振動器を有す
る地面走査機。
11. A ground scanner for use in the underground buried object detection apparatus according to claim 4, wherein the unmodulated high-frequency signal from the first transmitter or / and the ground is used. A resonator that resonates with the reflected wave of, and an antenna for transmission and an antenna for reception or an antenna for both transmission and reception that are composed of an electromagnetic horn that contains the resonator, and a member with a dielectric constant as low as possible. An ultrasonic radiator and an ultrasonic sensing device which are composed of an ultrasonic horn mounted inside the electromagnetic horn with its direction aligned with the opening direction of the electromagnetic horn, and an ultrasonic transducer mounted at the base of the ultrasonic horn. Scanner having an ultrasonic vibrator that also serves as a detector or ultrasonic radiation.
JP15868493A 1993-06-29 1993-06-29 Underground object detection method and device Expired - Lifetime JPH0812254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15868493A JPH0812254B2 (en) 1993-06-29 1993-06-29 Underground object detection method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15868493A JPH0812254B2 (en) 1993-06-29 1993-06-29 Underground object detection method and device

Publications (2)

Publication Number Publication Date
JPH0712954A true JPH0712954A (en) 1995-01-17
JPH0812254B2 JPH0812254B2 (en) 1996-02-07

Family

ID=15677105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15868493A Expired - Lifetime JPH0812254B2 (en) 1993-06-29 1993-06-29 Underground object detection method and device

Country Status (1)

Country Link
JP (1) JPH0812254B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001083256A (en) * 1999-09-09 2001-03-30 Toshiba Corp Method and apparatus for detection of buried object
JP2005088656A (en) * 2003-09-12 2005-04-07 Mitsubishi Fuso Truck & Bus Corp Vehicle with inclination sensor
JP2006313149A (en) * 2005-04-06 2006-11-16 Honda Motor Co Ltd Device and method for determining detection axis direction for moving body
JP2017215185A (en) * 2016-05-31 2017-12-07 株式会社東芝 Buried object survey device and buried object survey method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001083256A (en) * 1999-09-09 2001-03-30 Toshiba Corp Method and apparatus for detection of buried object
JP2005088656A (en) * 2003-09-12 2005-04-07 Mitsubishi Fuso Truck & Bus Corp Vehicle with inclination sensor
JP2006313149A (en) * 2005-04-06 2006-11-16 Honda Motor Co Ltd Device and method for determining detection axis direction for moving body
JP2017215185A (en) * 2016-05-31 2017-12-07 株式会社東芝 Buried object survey device and buried object survey method

Also Published As

Publication number Publication date
JPH0812254B2 (en) 1996-02-07

Similar Documents

Publication Publication Date Title
CN208818300U (en) Level and surface temperature gauge table
US6573706B2 (en) Method and apparatus for distance based detection of wear and the like in joints
CA2300332A1 (en) Position sensing based on ultrasound emission
US6198470B1 (en) Computer input device
US9579045B2 (en) Length measuring device
US4922467A (en) Acoustic detection apparatus
CA2414916A1 (en) Implantable and insertable passive tags
US6813948B1 (en) Device for investigating materials
US4083255A (en) Hydro-optic vibration detector
JPH0712954A (en) System and device for searching object buried underground
EP0462149B1 (en) Acoustic detection apparatus
JPH0758178B2 (en) Ultrasonic seam detector
JP2001133549A (en) Obstacle determining method
JP3117372B2 (en) Ultrasonic distance measuring device
CN221571618U (en) Ultrasonic level sensor with correction structure
US11437014B1 (en) Waveguide for ultrasonic and light-based range and proximity sensing
JPH0714936Y2 (en) Ultrasonic transducer
JPH0227287A (en) Underground radar apparatus
JPH1090407A (en) Distance measuring instrument
JPH0474990A (en) Distance meter
JPS60233579A (en) Position measuring method and its device
SE8500681D0 (en) REFLECTION TYPE OBJECT DETECTING DEVICE
JPS63256880A (en) Distance detecting and displaying device
JPH06317662A (en) Ultrasonic device
JPH05100011A (en) Ultrasonic sensor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110207

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120207

Year of fee payment: 16

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120207

Year of fee payment: 16

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130207

Year of fee payment: 17

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130207

Year of fee payment: 17

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140207

Year of fee payment: 18

EXPY Cancellation because of completion of term