[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH07110403A - Composite optical component - Google Patents

Composite optical component

Info

Publication number
JPH07110403A
JPH07110403A JP5352195A JP35219593A JPH07110403A JP H07110403 A JPH07110403 A JP H07110403A JP 5352195 A JP5352195 A JP 5352195A JP 35219593 A JP35219593 A JP 35219593A JP H07110403 A JPH07110403 A JP H07110403A
Authority
JP
Japan
Prior art keywords
optical film
resin layer
glass
optical
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5352195A
Other languages
Japanese (ja)
Inventor
Nobuaki Mitamura
宣明 三田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP5352195A priority Critical patent/JPH07110403A/en
Publication of JPH07110403A publication Critical patent/JPH07110403A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE:To obtain strong adhesion of joined faces of glass and resin by successively joining a glass substrate, optical film and energy-setting resin layer in such a manner that interface of the optical film in contact with the energy- setting resin layer consists of AlF3, MgF2 or mixture of these. CONSTITUTION:The lens 1 consists of glass having 1.74 refractive index and <=5% SiO2 content. An optical film 2 is formed on one surface of the lens 1 where no resin layer 4 is to be formed. The optical film 2 is formed by electron beam heating vapor deposition of MgF2 and has a function as an antireflection film of the glass surface. The other surface of the lens where a resin layer 4 is to be formed is coated with an optical film 3. The optical film 3 is formed by electron beam heating vapor deposition of AlF3, on which a UV-curing urethane acrylate resin layer 4 having an aspherical surface is formed. Further, an optical film 5 is formed on the resin layer 4. The optical film 5 consists of SiO2 and cerium oxide (CeO2) formed by electron beam heating vapor deposition and has a function as an antireflection film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はガラスと樹脂とが接合さ
れる複合型光学部品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite type optical component in which glass and resin are bonded together.

【0002】近年、カメラ等の光学機器においては、複
数のレンズからなる複合レンズと同等の作用を有する非
球面レンズを使用することにより、光学機器のレンズ枚
数の削減、小型・軽量化、低コスト化が図られている。
このような非球面を有した光学部品としては、例えば特
開昭59−12412号公報に開示されるように、ガラ
スの面上に樹脂層を形成した複合型光学部品が知られて
いる。
In recent years, in an optical device such as a camera, by using an aspherical lens having the same action as a compound lens composed of a plurality of lenses, the number of lenses of the optical device is reduced, the size and weight are reduced, and the cost is reduced. Is being promoted.
As an optical component having such an aspherical surface, for example, as disclosed in JP-A-59-12412, a composite optical component in which a resin layer is formed on the surface of glass is known.

【0003】ところでこのような複合型光学部品は、樹
脂の硬化収縮やガラスと樹脂の線膨張係数の違いによる
応力が発生するため、ガラスと樹脂の接合面に充分な接
着強度が必要となっている。このため接合面の接着強度
を確保する従来方法として、特開昭54−6006号公
報に開示されるように、ガラスの表面をシランカップリ
ング剤により処理した後、樹脂層を形成することが知ら
れている。
By the way, in such a composite type optical component, a stress is generated due to the curing shrinkage of the resin and the difference in the coefficient of linear expansion between the glass and the resin, so that sufficient adhesive strength is required at the bonding surface between the glass and the resin. There is. Therefore, as a conventional method for ensuring the adhesive strength of the bonding surface, it is known to form a resin layer after treating the surface of glass with a silane coupling agent, as disclosed in JP-A-54-6006. Has been.

【0004】[0004]

【発明が解決しようとする課題】一般にシランカップリ
ング剤は、全ての無機物に対し表面処理効果を有するも
のではなく、SiO2 のようなシリコン酸化物等に対し
て表面処理効果を有している。一方、ガラスの中にはS
iO2 の含有率が低いものも少なくない。従ってこうし
たガラスにおいては、従来技術のようにシランカップリ
ング剤の表面処理を行ってもガラスと樹脂との接合面に
充分な接着強度が得られないという重大な問題点が存在
する。
Generally, silane coupling agents do not have a surface treatment effect on all inorganic substances, but have a surface treatment effect on silicon oxides such as SiO 2 . . On the other hand, S in the glass
There are many cases where the content of iO 2 is low. Therefore, in such a glass, there is a serious problem that sufficient bonding strength cannot be obtained at the bonding surface between the glass and the resin even if the surface treatment of the silane coupling agent is performed as in the prior art.

【0005】本発明はかかる従来の問題点に鑑みてなさ
れたもので、SiO2 の含有率が低いガラスであって
も、ガラスと樹脂の接合面に充分な接着強度を有する複
合型光学部品を提供することを目的とする。
The present invention has been made in view of the above conventional problems, and provides a composite optical component having a sufficient adhesive strength on a bonding surface between a glass and a resin, even if the glass has a low SiO 2 content. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段および作用】上記目的を達
成するため本発明者は、接合面の接着強度を増大させる
目的で、SiO2 の含有率が低いガラス基板の表面に種
々の光学膜材料を成膜し、シランカップリング剤の表面
処理効果を検討した。その結果、光学膜材料の中でもA
lF3 ,MgF2 ,CeF3 ,NdF3 などのフッ化物
およびこれらを含む混合物に対してシランカップリング
剤の表面処理効果が高いことを見い出した。
In order to achieve the above object, the present inventors have developed various optical film materials on the surface of a glass substrate having a low SiO 2 content for the purpose of increasing the adhesive strength of the bonding surface. Was formed into a film, and the surface treatment effect of the silane coupling agent was examined. As a result, among the optical film materials, A
lF 3, MgF 2, CeF 3 , the surface treatment effect of the silane coupling agent to the fluoride and mixtures containing these such as NdF 3 was found high.

【0007】すなわち本発明の複合型光学部品は、ガラ
ス基板と、少なくとも1層からなる光学膜と、エネルギ
ー硬化性樹脂層とが順に接合されており、前記光学膜に
おけるエネルギー硬化性樹脂層と接する面がAlF3
MgF2 ,CeF3 ,NdF3 あるいはこれらを含む混
合物となっていることを特徴とする。
That is, in the composite type optical component of the present invention, the glass substrate, the optical film consisting of at least one layer, and the energy curable resin layer are bonded in this order, and contacted with the energy curable resin layer in the optical film. The surface is AlF 3 ,
It is characterized by being MgF 2 , CeF 3 , NdF 3 or a mixture containing them.

【0008】ここで、光学膜を構成する各層は、真空蒸
着、イオンプレーティング、スパッタリング等の手段で
形成することができる。本発明で用いるAlF3 ,Mg
2,CeF3 ,NdF3 などの光学膜材料は、各々単
独で用いることはもちろん、それらを互いに混ぜ合わせ
た混合物あるいは他の材料を少量混ぜ合わせた混合物等
を用いても良い。また本発明の複合型光学部品は、Si
2 の含有率の大小にかかわりなく、同様の効果が得ら
れるものであり、ガラス基板の種類に特に限定されるも
のではない。
Here, each layer constituting the optical film can be formed by means such as vacuum deposition, ion plating, and sputtering. AlF 3 , Mg used in the present invention
The optical film materials such as F 2 , CeF 3 and NdF 3 may be used alone, or may be a mixture of these materials mixed with each other or a mixture of a small amount of other materials. The composite optical component of the present invention is made of Si
The same effect can be obtained regardless of the content of O 2 , and the type of glass substrate is not particularly limited.

【0009】上記構成では、ガラス基板の表面に形成さ
れた光学膜の樹脂と接する層にAlF3 ,MgF2 ,C
eF3 ,NdF3 あるいはこれらを含む混合物を用いて
いるので、シランカップリング剤による表面処理効果が
高く、樹脂層の接着強度を充分に得ることができる。
In the above structure, AlF 3 , MgF 2 , C is formed in the layer of the optical film formed on the surface of the glass substrate in contact with the resin.
Since eF 3 , NdF 3 or a mixture containing these is used, the surface treatment effect of the silane coupling agent is high, and the adhesive strength of the resin layer can be sufficiently obtained.

【0010】また、本発明の複合型光学部品のガラス基
板の表面に形成されたAlF3 ,MgF2 ,CeF3
NdF3 あるいはこれらを含む混合物、及び光学膜を構
成する各層はガラスとの密着性が非常によいので、接合
面の強度上の問題を生じることがない。
Further, AlF 3 , MgF 2 , CeF 3 , formed on the surface of the glass substrate of the composite optical component of the present invention,
Since NdF 3 or a mixture containing these, and each layer constituting the optical film have very good adhesion to glass, no problem occurs in the strength of the bonding surface.

【0011】[0011]

【実施例1】図1は、本発明の実施例1の複合型光学部
品の断面を示している。レンズ1は、硝材LAH61
((株)オハラ製)により作成されている。この硝材の
屈折率は1.74であり、SiO2 の含有率は5%以下
である。レンズ1の樹脂層4を成形しない側の面上には
光学膜2が形成されている。以下、この光学膜2の作成
方法を説明する。まず、レンズ1を樹脂層4を成形しな
い側の面を下にしてチャンバー径が800mmの真空蒸
着装置にセットした後、真空蒸着チャンバー内を3×1
-3Pa以下の真空に排気する。基板の加熱は300℃
で行った。その後、MgF2 を電子線加熱蒸着法によ
り、光学的膜厚にして130nm蒸着して第一層を形成
する。この光学膜2はガラス表面の反射防止膜として機
能するものである。レンズ1の樹脂層4を成形する側の
面上には光学膜3が形成されている。以下、この光学膜
3の作成方法を説明する。まず、レンズ1を樹脂層4を
成形する側の面を下にして真空蒸着装置にセットした
後、真空蒸着チャンバー内を3×10-3Pa以下の真空
に排気する。基板の加熱は300℃で行った。その後、
AlF3 を電子線加熱蒸着法により、光学的膜厚にして
15nm蒸着して第一層を形成する。表1は本実施例の
光学膜3の構成を示す。
Example 1 FIG. 1 shows a cross section of a composite optical component of Example 1 of the present invention. The lens 1 is made of glass material LAH61.
It is made by (Ohara Co., Ltd.). The glass material has a refractive index of 1.74 and a SiO 2 content of 5% or less. An optical film 2 is formed on the surface of the lens 1 on which the resin layer 4 is not formed. Hereinafter, a method for forming the optical film 2 will be described. First, the lens 1 is set in a vacuum deposition apparatus having a chamber diameter of 800 mm with the surface on which the resin layer 4 is not formed facing down, and then the inside of the vacuum deposition chamber is set to 3 × 1.
Evacuate to a vacuum of 0 -3 Pa or less. Substrate heating at 300 ° C
I went there. After that, MgF 2 is vapor-deposited with an electron beam to an optical thickness of 130 nm by an electron beam vapor deposition method to form a first layer. This optical film 2 functions as an antireflection film on the glass surface. An optical film 3 is formed on the surface of the lens 1 on which the resin layer 4 is molded. Hereinafter, a method for forming the optical film 3 will be described. First, the lens 1 is set in a vacuum deposition apparatus with the surface on the side where the resin layer 4 is molded facing down, and then the inside of the vacuum deposition chamber is evacuated to a vacuum of 3 × 10 −3 Pa or less. The substrate was heated at 300 ° C. afterwards,
AlF 3 is vapor-deposited by electron beam heating to have an optical film thickness of 15 nm to form a first layer. Table 1 shows the configuration of the optical film 3 of this example.

【0012】[0012]

【表1】 [Table 1]

【0013】こうして得られた光学膜3の表面上には非
球面の形状を有したUV硬化型ウレタンアクリレート系
の樹脂層4が形成されている。以下、樹脂層4の作成方
法を説明する。まず、光学膜3の表面上にエタノールで
希釈したシランカップリング剤「KBM−503」(信
越化学(株)製)をスピンコートした後、110℃、2
0分の条件で乾燥させることにより表面処理を行う。こ
の後、液状のUV硬化型ウレタンアクリレート系の樹脂
をレンズ1の中心部に適量塗布し、この上から非球面等
所望の形状に形成された金型を樹脂に気泡が入らないよ
うに静かに押し付け、樹脂層4の厚さが中心で100μ
mになるところで停止する。次に、レンズ1の下部から
高圧水銀灯により紫外線(主に365nm)を照射し、
樹脂を硬化させた後、金型を離型する。
A UV-curable urethane acrylate resin layer 4 having an aspherical shape is formed on the surface of the optical film 3 thus obtained. Hereinafter, a method for forming the resin layer 4 will be described. First, a silane coupling agent “KBM-503” (manufactured by Shin-Etsu Chemical Co., Ltd.) diluted with ethanol was spin-coated on the surface of the optical film 3, and then 110 ° C., 2
Surface treatment is performed by drying under the condition of 0 minutes. After that, a proper amount of liquid UV-curable urethane acrylate resin is applied to the central portion of the lens 1, and a mold formed in a desired shape such as an aspherical surface is gently applied so that air bubbles do not enter the resin. When pressed, the thickness of the resin layer 4 is 100μ at the center
Stop at m. Next, ultraviolet rays (mainly 365 nm) are irradiated from the lower part of the lens 1 by a high pressure mercury lamp,
After the resin is cured, the mold is released.

【0014】成形された樹脂層4の上面には光学膜5が
形成されている。以下、同様に光学膜5の作成方法を説
明する。まず、成形された樹脂層4の面を下にしてレン
ズ1を真空蒸着装置にセットした後、真空蒸着チャンバ
ー内を1×10-3Pa以下の真空に排気する。基板の加
熱を行わなかった。その後、SiO2 を電子電加熱蒸着
法により、光学的膜厚にして60nm蒸着して第一層を
形成する。次に酸化セリウム(CeO2 )を電子線加熱
蒸着法により、光学的膜厚にして35nm蒸着して第二
層を形成する。続いてSiO2 を電子線加熱蒸着法によ
り、光学的膜厚にして185nm蒸着して第三層を形成
する。この光学膜5は、樹脂層表面の反射防止膜として
機能するものである。以上のような工程により、本実施
例の複合型光学部品を製造する。
An optical film 5 is formed on the upper surface of the molded resin layer 4. Hereinafter, a method of forming the optical film 5 will be described in the same manner. First, the lens 1 is set in a vacuum vapor deposition apparatus with the surface of the molded resin layer 4 facing down, and then the inside of the vacuum vapor deposition chamber is evacuated to a vacuum of 1 × 10 −3 Pa or less. The substrate was not heated. After that, SiO 2 is vapor-deposited to an optical film thickness of 60 nm by an electron heating vapor deposition method to form a first layer. Next, cerium oxide (CeO 2 ) is vapor-deposited by an electron beam heating vapor deposition method so as to have an optical film thickness of 35 nm to form a second layer. Subsequently, SiO 2 is vapor-deposited to an optical thickness of 185 nm by an electron beam heating vapor deposition method to form a third layer. The optical film 5 functions as an antireflection film on the surface of the resin layer. The composite optical component of this embodiment is manufactured through the above steps.

【0015】[0015]

【実施例2】本実施例において、光学膜3以外は実施例
1と同様の条件で行った。以下、光学膜3の作成方法を
説明する。まず、実施例1と同様の条件で排気・基板加
熱を行った後に、MgF2 を電子線加熱蒸着法により、
光学的膜厚にして10nm蒸着して第一層を形成する。
表2は本実施例の光学膜3の構成を示す。
Example 2 In this example, the same conditions as in Example 1 were used except for the optical film 3. Hereinafter, a method for forming the optical film 3 will be described. First, after exhausting and heating the substrate under the same conditions as in Example 1, MgF 2 was deposited by an electron beam heating vapor deposition method.
The first layer is formed by vapor deposition to an optical thickness of 10 nm.
Table 2 shows the configuration of the optical film 3 of this example.

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【実施例3】本実施例においても、光学膜3以外は実施
例1と同様の条件で行った。以下、光学膜3の作成方法
を説明する。まず、実施例1と同様の条件で排気・基板
加熱を行った後に、NdF3 を電子線加熱蒸着法によ
り、光学的膜厚にして20nm蒸着して第一層を形成す
る。表3は本実施例の光学膜3の構成を示す。
[Embodiment 3] Also in this embodiment, the same conditions as in Embodiment 1 are used except for the optical film 3. Hereinafter, a method for forming the optical film 3 will be described. First, after exhausting and heating the substrate under the same conditions as in Example 1, NdF 3 is vapor-deposited by electron beam heating to an optical film thickness of 20 nm to form a first layer. Table 3 shows the configuration of the optical film 3 of this example.

【0018】[0018]

【表3】 [Table 3]

【0019】[0019]

【実施例4】本実施例において、光学膜3以外は実施例
1と同様の条件で行った。以下、光学膜3の作成方法を
説明する。まず、実施例1と同様の条件で排気・基板加
熱を行った後に、NdF3 とAlF3 が重量比にして
8:2で混合された混合物を電子線加熱蒸着法により、
光学的膜厚にして30nm蒸着して第一層を形成する。
表4は本実施例の光学膜3の構成を示す。
Example 4 In this example, the same conditions as in Example 1 were carried out except for the optical film 3. Hereinafter, a method for forming the optical film 3 will be described. First, after exhausting and heating the substrate under the same conditions as in Example 1, a mixture in which NdF 3 and AlF 3 were mixed at a weight ratio of 8: 2 was prepared by an electron beam heating vapor deposition method.
The first layer is formed by vapor deposition with an optical film thickness of 30 nm.
Table 4 shows the configuration of the optical film 3 of this example.

【0020】[0020]

【表4】 [Table 4]

【0021】[0021]

【実施例5】本実施例ではレンズ1と光学膜3以外は実
施例1と同様の条件で行った。本実施例のレンズ1は、
硝材LAL60(オハラ(株)製)により作成されてい
る。この硝材の屈折率は1.83であり、SiO2 の含
有量は5%以下である。次に、光学膜3の作成方法を説
明する。まず、実施例1と同様の条件で排気・基板加熱
を行った後に、CeF3 を電子線加熱蒸着法により、光
学的膜厚にして130nm蒸着して第一層を形成する。
表5は本実施例の光学膜3の構成を示す。
Fifth Embodiment In this embodiment, the same conditions as in the first embodiment are performed except for the lens 1 and the optical film 3. The lens 1 of this embodiment is
It is made of glass material LAL60 (manufactured by OHARA CORPORATION). The refractive index of this glass material is 1.83, and the content of SiO 2 is 5% or less. Next, a method for forming the optical film 3 will be described. First, after exhausting and heating the substrate under the same conditions as in Example 1, CeF 3 is vapor-deposited to an optical thickness of 130 nm by an electron beam heating vapor deposition method to form a first layer.
Table 5 shows the configuration of the optical film 3 of this example.

【0022】[0022]

【表5】 [Table 5]

【0023】本実施例に用いたガラスは屈折率が樹脂に
比べて高いため、従来の構成ではガラスと樹脂の界面で
の反射が無視できなかったが、本実施例では光学膜3が
ガラスと樹脂の界面の反射防止膜としても機能するの
で、フレアーや透過率減少などの光学性能上の問題も生
じにくい。
Since the glass used in this example has a higher refractive index than resin, reflection at the interface between glass and resin cannot be ignored in the conventional structure, but in this example, the optical film 3 is made of glass. Since it also functions as an antireflection film on the interface of the resin, problems in optical performance such as flare and reduction in transmittance hardly occur.

【0024】[0024]

【実施例6】本実施例では、光学膜3と光学膜5以外は
実施例5と同様の条件で行った。以下、光学膜3の作成
方法を説明する。まう、実施例5と同様に排気・基板加
熱を行った後に、CeF3 を電子線加熱蒸着法により、
光学的膜厚にして150nm蒸着して第一層を形成す
る。続いてAlF3 を電子線加熱蒸着法により、光学的
膜厚にして15nm蒸着して第二層を形成する。表6は
本実施例の光学膜3の構成を示す。
Example 6 In this example, the same conditions as in Example 5 were used except for the optical films 3 and 5. Hereinafter, a method for forming the optical film 3 will be described. After exhausting and heating the substrate in the same manner as in Example 5, CeF 3 was deposited by an electron beam heating vapor deposition method.
The first layer is formed by vapor deposition to an optical thickness of 150 nm. Subsequently AlF 3 by electron beam evaporation method, to form a second layer and to 15nm deposited an optical film thickness. Table 6 shows the configuration of the optical film 3 of this example.

【0025】[0025]

【表6】 [Table 6]

【0026】次に、光学膜5の作成方法を説明する。ま
ず、実施例1の光学膜5と同様に基板セット・排気を行
った後に、SiO2 を電子線加熱蒸着法により、光学的
膜厚にして25nm蒸着して第一層を形成する。次に、
酸化タングステン(WO3 )を電子線加熱蒸着法によ
り、光学的膜厚にして30nm蒸着して第二層を形成す
る。続いて、SiO2 を電子線加熱蒸着法により、光学
的膜厚にして47nm蒸着して第三層を形成する。更
に、WO3 を電子線加熱蒸着法により、光学的膜厚にし
て250nm蒸着して第四層を形成する。最後に、Si
2 を電子線加熱蒸着法により、光学的膜厚にして12
2nm蒸着して第五層を形成する。本実施例において
も、実施例5と同様に光学膜3がガラスと樹脂の界面の
反射防止膜としても機能するので、フレアーや透過率減
少などの光学性能上の問題も生じにくい。
Next, a method of forming the optical film 5 will be described. First, after setting and evacuating the substrate in the same manner as the optical film 5 of Example 1, SiO 2 is vapor-deposited to an optical film thickness of 25 nm by an electron beam heating vapor deposition method to form a first layer. next,
Tungsten oxide (WO 3 ) is vapor-deposited by electron beam heating to an optical thickness of 30 nm to form a second layer. Then, SiO 2 is vapor-deposited to have an optical film thickness of 47 nm by an electron beam heating vapor deposition method to form a third layer. Further, WO 3 is vapor-deposited to an optical thickness of 250 nm by an electron beam heating vapor deposition method to form a fourth layer. Finally, Si
O 2 was made into an optical film thickness of 12 by electron beam heating vapor deposition.
A second layer is formed by vapor deposition of 2 nm. Also in this embodiment, since the optical film 3 also functions as an antireflection film at the interface between the glass and the resin as in the case of the fifth embodiment, problems in optical performance such as flare and reduction in transmittance are unlikely to occur.

【0027】[0027]

【実施例7】本実施例は光学膜3以外は実施例5と同様
の条件で行った。以下、光学膜3の作成方法を説明す
る。まず、実施例5と同様に排気・基板加熱を行った後
に、MgF2 を電子線加熱蒸着法により、光学的膜厚に
して10nm蒸着して第一層を形成する。続いて、Ce
3 を電子線加熱蒸着法により、光学的膜厚にして10
5nm蒸着して第二層を形成する。表7は本実施例の光
学膜の構成を示す。
Example 7 This example was carried out under the same conditions as in Example 5 except for the optical film 3. Hereinafter, a method for forming the optical film 3 will be described. First, after exhausting and heating the substrate in the same manner as in Example 5, MgF 2 is vapor-deposited to an optical film thickness of 10 nm by the electron beam heating vapor deposition method to form the first layer. Then Ce
F 3 was made to have an optical film thickness of 10 by electron beam heating vapor deposition.
A second layer is formed by vapor deposition of 5 nm. Table 7 shows the configuration of the optical film of this example.

【0028】[0028]

【表7】 [Table 7]

【0029】本実施例においても、実施例5と同様に光
学膜3がガラスと樹脂の界面の反射防止膜としても機能
するので、フレアーや透過率減少などの光学性能上の問
題も生じにくい。
Also in this embodiment, the optical film 3 functions as an antireflection film on the interface between the glass and the resin as in the case of the fifth embodiment, so that problems in optical performance such as flare and reduction in transmittance are unlikely to occur.

【0030】[0030]

【実施例8】本実施例では光学膜3以外は実施例5と同
様の条件で行った。以下、光学膜3の作成方法を説明す
る。まず、実施例5と同様に排気・基板加熱を行った後
に、MgF2 を電子線加熱蒸着法により、光学的膜厚に
して45nm蒸着して第一層を形成する。続いて、酸化
ジルコニウム(ZrO2 )と酸化タンタル(Ta
2 5 )が重量比にして9:1で混合された混合物を電
子線加熱蒸着法により、光学的膜厚にして40nm蒸着
して第二層を形成する。さらに、AlF3 を電子線加熱
蒸着法により、光学的膜厚にして40nm蒸着して第三
層を形成する。表8は本実施例の光学膜の構成を示す。
[Embodiment 8] In this embodiment, the same conditions as in Embodiment 5 are used except for the optical film 3. Hereinafter, a method for forming the optical film 3 will be described. First, after exhausting and heating the substrate in the same manner as in Example 5, MgF 2 is vapor-deposited to an optical film thickness of 45 nm by an electron beam heating vapor deposition method to form a first layer. Then, zirconium oxide (ZrO 2 ) and tantalum oxide (Ta
A mixture in which 2 O 5 ) is mixed in a weight ratio of 9: 1 is vapor-deposited by an electron beam heating vapor deposition method to have an optical thickness of 40 nm to form a second layer. Further, AlF 3 is vapor-deposited to an optical thickness of 40 nm by an electron beam heating vapor deposition method to form a third layer. Table 8 shows the constitution of the optical film of this example.

【0031】[0031]

【表8】 [Table 8]

【0032】本実施例も、実施例5と同様に光学膜3が
ガラスと樹脂の界面の反射防止膜としても機能するの
で、フレアーや透過率減少などの光学性能上の問題も生
じにくい。
In this embodiment as well, since the optical film 3 also functions as an antireflection film at the interface between glass and resin as in the case of the fifth embodiment, problems in optical performance such as flare and reduction in transmittance are unlikely to occur.

【0033】[0033]

【比較例1】この比較例1ではレンズ1に硝材LAH6
0を用い、レンズ1の樹脂を成形する側の面上に光学膜
3を形成することなく、実施例1と同様の条件で樹脂層
3を形成して複合型光学部品を得た。表9はこの比較例
の構成を示す。
[Comparative Example 1] In Comparative Example 1, the glass material LAH6 is used for the lens 1.
No. 0, the resin layer 3 was formed under the same conditions as in Example 1 without forming the optical film 3 on the surface of the lens 1 on which the resin was to be molded to obtain a composite optical component. Table 9 shows the configuration of this comparative example.

【0034】[0034]

【表9】 [Table 9]

【0035】[0035]

【評価例】上記実施例1〜8及び比較例1の複合型光学
部品について以下のような方法で、耐熱衝撃性を評価し
た。 (耐熱衝撃性)温度が−50℃と90℃の環境下に交互
に30分間ずつ放置するサイクルを実施例1〜8及び比
較例1の複合型光学部品について、耐熱衝撃性を評価し
た結果は表10に示す通りである。表10の結果からわ
かるように本発明の複合型光学部品は耐久性が非常に高
く、樹脂や膜の剥離がまったく生じない。
[Evaluation Example] The composite optical components of Examples 1 to 8 and Comparative Example 1 were evaluated for thermal shock resistance by the following method. (Thermal shock resistance) The results of evaluating the thermal shock resistance of the composite optical components of Examples 1 to 8 and Comparative Example 1 in a cycle in which the temperature was alternately left for 30 minutes in an environment of −50 ° C. and 90 ° C. It is as shown in Table 10. As can be seen from the results in Table 10, the composite type optical component of the present invention has very high durability and no peeling of resin or film occurs.

【0036】[0036]

【表10】 [Table 10]

【0037】次に実施例5〜8及び比較例1の複合型光
学部品におけるガラスと樹脂層との界面の反射特性を図
2〜図6に示す。図から判るように実施例5〜8の複合
型光学部品は比較例に比べてガラスと樹脂層界面の反射
が可視域(400〜700nm)において有効に反射防
止されている。
Next, FIGS. 2 to 6 show the reflection characteristics at the interface between the glass and the resin layer in the composite optical components of Examples 5 to 8 and Comparative Example 1. As can be seen from the figure, in the composite optical components of Examples 5 to 8, the reflection at the interface between the glass and the resin layer is effectively prevented in the visible range (400 to 700 nm) as compared with the comparative example.

【0038】[0038]

【発明の効果】以上のように本発明の複合型光学部品に
よれば、ガラス基板の表面に、エネルギー硬化性樹脂と
接する層が少なくともAlF3 ,MgF2 ,CeF3
NdF 3 あるいはそれらを含む混合物からなる1層以上
の光学膜を形成しているので、SiO2 の含有量が少な
いガラスであっても、ガラスと樹脂の接合面に充分な接
着強度を有することができる。
As described above, the composite optical component of the present invention
According to this, the energy curable resin is applied to the surface of the glass substrate.
At least the contact layer is AlF3, MgF2, CeF3
NdF 3Or one or more layers consisting of a mixture containing them
Since the optical film of2Is low in content
Even if the glass is a good one, the contact surface between the glass and the resin should have sufficient contact.
It can have a wear strength.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の複合型光学部品の断面図である。FIG. 1 is a sectional view of a composite optical component of the present invention.

【図2】実施例5の反射特性図である。2 is a reflection characteristic diagram of Example 5. FIG.

【図3】実施例6の反射特性図である。3 is a reflection characteristic diagram of Example 6. FIG.

【図4】実施例7の反射特性図である。FIG. 4 is a reflection characteristic diagram of Example 7.

【図5】実施例8の反射特性図である。5 is a reflection characteristic diagram of Example 8. FIG.

【図6】比較例1の反射特性図である。6 is a reflection characteristic diagram of Comparative Example 1. FIG.

【符号の説明】[Explanation of symbols]

1 レンズ 2,3 光学膜 4 樹脂層 5 光学膜 1 lens 2,3 optical film 4 resin layer 5 optical film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ガラス基板と、少なくとも1層からなる
光学膜と、エネルギー硬化性樹脂層とが順に接合されて
おり、前記光学膜におけるエネルギー硬化性樹脂層と接
する面がフッ化アルミニウム,フッ化マグネシウム,フ
ッ化セリウム,フッ化ネオジウムあるいはこれらを含む
混合物となっていることを特徴とする複合型光学部品。
1. A glass substrate, an optical film having at least one layer, and an energy curable resin layer are sequentially bonded, and a surface of the optical film in contact with the energy curable resin layer is aluminum fluoride or fluorinated. A composite optical component characterized by being magnesium, cerium fluoride, neodymium fluoride or a mixture containing these.
JP5352195A 1993-08-20 1993-12-30 Composite optical component Withdrawn JPH07110403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5352195A JPH07110403A (en) 1993-08-20 1993-12-30 Composite optical component

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-227946 1993-08-20
JP22794693 1993-08-20
JP5352195A JPH07110403A (en) 1993-08-20 1993-12-30 Composite optical component

Publications (1)

Publication Number Publication Date
JPH07110403A true JPH07110403A (en) 1995-04-25

Family

ID=26527964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5352195A Withdrawn JPH07110403A (en) 1993-08-20 1993-12-30 Composite optical component

Country Status (1)

Country Link
JP (1) JPH07110403A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220739A (en) * 2005-02-08 2006-08-24 Casio Comput Co Ltd Ceramic hybrid lens
JP2008083188A (en) * 2006-09-26 2008-04-10 Olympus Corp Composite optical element and method of manufacturing the same
WO2009038134A1 (en) * 2007-09-19 2009-03-26 Nikon Corporation Resin composite-type optical element and process for rpoducing the resin composite-type optical element
JP2011505592A (en) * 2007-11-30 2011-02-24 コーニング インコーポレイテッド Dense and homogeneous fluoride film for DUV device and method for producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220739A (en) * 2005-02-08 2006-08-24 Casio Comput Co Ltd Ceramic hybrid lens
JP2008083188A (en) * 2006-09-26 2008-04-10 Olympus Corp Composite optical element and method of manufacturing the same
WO2009038134A1 (en) * 2007-09-19 2009-03-26 Nikon Corporation Resin composite-type optical element and process for rpoducing the resin composite-type optical element
JPWO2009038134A1 (en) * 2007-09-19 2011-01-06 株式会社ニコン Resin composite type optical element and method for manufacturing the same
US7901787B2 (en) 2007-09-19 2011-03-08 Nikon Corporation Resin composite-type optical element and process for producing the resin composite-type optical element
JP2011505592A (en) * 2007-11-30 2011-02-24 コーニング インコーポレイテッド Dense and homogeneous fluoride film for DUV device and method for producing the same

Similar Documents

Publication Publication Date Title
EP2180356A1 (en) Optical article and method for manufacturing the same
US20100328605A1 (en) Optical article including a layer siox as main component and manufacturing method of the same
JP2012128135A (en) Optical article and method for manufacturing the same
JPH07110403A (en) Composite optical component
JPS60502173A (en) Anti-reflection coating for optical components made of organic materials
CN113109896B (en) Anti-reflection wide-infrared-prevention high-temperature-resistant resin lens and preparation method thereof
JP3221764B2 (en) Anti-reflection coating for optical parts made of synthetic resin
JP2011095658A (en) Rear surface reflection mirror
JPH07104102A (en) Water repellant reflection preventive film for glass-made optical parts and production thereof
JPH052101A (en) Optical component
JPH05100104A (en) Composite type optical parts
JP3012712B2 (en) Optical member having antireflection film
JPH06305778A (en) Composite optical parts
JPH0511101A (en) Optical member having antireflection film
JPH047481B2 (en)
JPS60130704A (en) Antireflection film for plastic substrate
JP3395018B2 (en) Optical components
JPH06271339A (en) Laminated optical parts
JP3068243B2 (en) Optical member having antireflection film
JPH11258407A (en) Antireflection film
JPH10311902A (en) Fogproof antireflective optical article and optical apparatus
JPH07270601A (en) Optical thin film
JP2628589B2 (en) Anti-reflection coating for polyurethane lens
JP2001202874A (en) Picture display device and method of manufacturing the same
JPH03132601A (en) Antireflection film of optical parts made of plastic and production thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010306