JPH07103463B2 - Method for producing alloyed zinc plated steel sheet with excellent deep drawability - Google Patents
Method for producing alloyed zinc plated steel sheet with excellent deep drawabilityInfo
- Publication number
- JPH07103463B2 JPH07103463B2 JP61272975A JP27297586A JPH07103463B2 JP H07103463 B2 JPH07103463 B2 JP H07103463B2 JP 61272975 A JP61272975 A JP 61272975A JP 27297586 A JP27297586 A JP 27297586A JP H07103463 B2 JPH07103463 B2 JP H07103463B2
- Authority
- JP
- Japan
- Prior art keywords
- steel
- steel sheet
- plating
- killed steel
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Physical Vapour Deposition (AREA)
Description
【発明の詳細な説明】 [技術分野] 本発明は深絞り性に優れ、かつ耐パウダリング性に優れ
た合金化蒸着亜鉛メッキ鋼板を製造する方法に関する。Description: TECHNICAL FIELD The present invention relates to a method for producing an alloyed vapor-deposited galvanized steel sheet which is excellent in deep drawability and powdering resistance.
[従来技術] 一般に深絞り加工用鋼板としてAlキルド鋼およびTiキル
ド鋼が知られている。ところでTiキルド鋼をベースとし
た合金化蒸着亜鉛メッキ鋼板はAlキルド鋼と同条件で合
金化処理した場合、加工時にメッキ層のフレーキングを
生じ易い問題がある。この原因はTiキルド鋼はAlキルド
鋼等に比べて鋼中の鉄がメッキ層に拡散し易く、メッキ
層中の平均濃度が過剰になるためであると考えられる。
Tiキルド鋼とAlキルド鋼について蒸着亜鉛メッキを施
し、その後、メッキ層表面まで合金化した場合、亜鉛メ
ッキ層中の鉄の濃度勾配の一例を第1図に示す。図示さ
れるAlキルド鋼ではメッキ表面からメッキ層の深部にか
けて鉄濃度が約5〜6.5%であり、該メッキ層深部から
鋼板との界面の間で鉄濃度勾配が急激に上昇している。
一方、Tiキルド鋼では、表層付近の鉄濃度はAlキルド鋼
と同じ5〜6%であるが、メッキ層中間部から深部にか
けての鉄濃度が、Alキルド鋼に比べ高くなっている。こ
のようにTiキルド鋼はAlキルド鋼に比べ、鉄濃度の高い
合金化メッキ層を有することが分る。このため、蒸着亜
鉛メッキされたTiキルド鋼をAlキルド鋼と同条件で合金
化処理を行なうと合金化が過度に進行し、メッキ層中の
平均鉄濃度がAlキルド鋼の場合より、1.5〜2.0%高くな
り、平均鉄濃度が過剰となる結果、耐パウダリング性が
低下し加工時にメッキ層が剥離損傷し易くなる問題があ
る。[Prior Art] Al-killed steel and Ti-killed steel are generally known as deep-drawing steel plates. By the way, an alloyed vapor-deposited galvanized steel sheet based on Ti killed steel has a problem that flaking of a plated layer is likely to occur during processing when alloyed under the same conditions as Al killed steel. It is considered that this is because the iron in the Ti-killed steel is more likely to diffuse into the plating layer than the Al-killed steel and the average concentration in the plating layer becomes excessive.
FIG. 1 shows an example of the concentration gradient of iron in the zinc-plated layer when Ti-killed steel and Al-killed steel are vapor-deposited by galvanizing and then alloyed up to the surface of the plated layer. In the illustrated Al-killed steel, the iron concentration is about 5 to 6.5% from the plating surface to the deep portion of the plating layer, and the iron concentration gradient sharply rises from the deep portion of the plating layer to the interface with the steel sheet.
On the other hand, in the Ti killed steel, the iron concentration in the vicinity of the surface layer is 5 to 6%, which is the same as that in the Al killed steel, but the iron concentration from the middle portion to the deep portion of the plating layer is higher than that of the Al killed steel. Thus, it can be seen that Ti-killed steel has an alloyed plating layer with a higher iron concentration than Al-killed steel. Therefore, when alloying treatment of vapor-deposited zinc-plated Ti-killed steel under the same conditions as Al-killed steel, alloying proceeds excessively, and the average iron concentration in the plating layer is 1.5-1.5% higher than that of Al-killed steel. As a result of 2.0% increase and the average iron concentration becoming excessive, there is a problem that the powdering resistance is lowered and the plating layer is likely to be peeled and damaged during processing.
[問題解決の知見] 本発明者等は、以上のようにTiキルド鋼に合金化蒸着亜
鉛メッキを施す場合に、Alキルド鋼と同条件で合金化処
理を施すと合金化が過度に進行し、耐パウダリング性が
低下する問題のあることを見出し、この問題を解消する
方法として、低炭素Tiキルド鋼について、その蒸着メッ
キ直前の基板温度を出来るだけ低く維持し、かつ合金化
温度と時間を所定の範囲に制限することにより、合金層
中の平均Fe温度(平均Fe量率とも呼ぶ)を8.0〜12.0重
量%に制御すれば、耐パウダリング性の良好な合金化亜
鉛メッキTiキルド鋼を得ることが出来る知見を得た。[Discovery of Problem Solving] The inventors of the present invention have found that, when alloyed vapor deposition zinc plating is performed on Ti killed steel as described above, alloying proceeds excessively when alloying treatment is performed under the same conditions as Al killed steel. We found that there is a problem that the powdering resistance is reduced, and as a method to solve this problem, for low carbon Ti killed steel, keep the substrate temperature immediately before vapor deposition plating as low as possible, and alloying temperature and time. If the average Fe temperature in the alloy layer (also called the average Fe content ratio) is controlled to 8.0 to 12.0 wt% by limiting the content to a predetermined range, the alloyed zinc-plated Ti-killed steel with good powdering resistance can be obtained. The knowledge that can obtain
本発明によれば、C≦0.010重量%,Si<0.15重量%,Mn:
0.15〜0.85重量%,Ti:0.05〜0.30重量%を含有する低炭
素チタンキルド鋼の鋼板を蒸着亜鉛メッキするにあた
り,メッキ直前の鋼板温度を180〜280℃に設定し,その
後,バッチ焼鈍炉内の非酸化性雰囲気下において加熱温
度が220〜320℃,加熱時間が1〜50時間の範囲であって
且つ該温度と時間の関係が第3図の斜線域で囲われる範
囲となる条件で合金化処理を施すことを特徴とする深絞
り性に優れた合金化亜鉛メッキ鋼板の製造方法を提供す
る。According to the present invention, C ≦ 0.010 wt%, Si <0.15 wt%, Mn:
When vapor-depositing a low carbon titanium killed steel sheet containing 0.15 to 0.85% by weight and Ti: 0.05 to 0.30% by weight, the temperature of the steel sheet immediately before the plating was set to 180 to 280 ° C, and then in the batch annealing furnace. Alloying is carried out in a non-oxidizing atmosphere with a heating temperature of 220 to 320 ° C. and a heating time of 1 to 50 hours, and the relationship between the temperature and time is the range surrounded by the shaded area in FIG. Provided is a method for producing an alloyed galvanized steel sheet having excellent deep drawability, which is characterized by performing a treatment.
ここで,第3図の斜線域で囲われる範囲は,横軸(X
軸)を加熱時間(hr)の対数目盛り,縦軸(Y軸)を加
熱温度(℃)の標準目盛りとしたとき,図中の点A,B,C,
D,EおよびFを直線で結んで形成される多角形の範囲で
ある。これら各点を座標は,図中に表示したとおりA
(1hr,320℃),B(2hr,320℃),C(50hr,270℃),D(50
hr,220℃),E(15hr,220℃),F(1hr,280℃)である。Here, the range surrounded by the shaded area in FIG. 3 is the horizontal axis (X
When the axis is the logarithmic scale of the heating time (hr) and the vertical axis (Y-axis) is the standard scale of the heating temperature (° C), points A, B, C, and
It is a range of a polygon formed by connecting D, E and F with a straight line. The coordinates of these points are as shown in the figure.
(1hr, 320 ℃), B (2hr, 320 ℃), C (50hr, 270 ℃), D (50
hr, 220 ° C), E (15 hr, 220 ° C), F (1 hr, 280 ° C).
本発明においては、次の組成(重量%)を有する低炭素
Tiキルド鋼が用いられる。In the present invention, a low carbon having the following composition (% by weight)
Ti killed steel is used.
深絞り用鋼板として用いられるTiキルド鋼は極低炭素鋼
であり、通常C≦0.010重量%のものが用いられる。ま
たSiはSi<0.15重量%が好ましい。Siが0.15より多い
と、メッキ密着性が低下する。この密着性を向上させる
には基板温度を上げる必要があるが、Tiキルド鋼の場
合、Feの拡散が早く基板温度を上げると、メッキ層と鋼
板との界面に脆弱な合金層が発生する問題が生じる。し
たがって、Tiキルド鋼のSi含有量は0.05wt%以下が望ま
しい。Mnは主に強度を高める成分であり、0.15〜0.85重
量%が好ましい。0.05重量%より少ないと充分な強度が
保たれず、他方、0.85%を越えても、メッキ密着性その
他の品質上の問題は生じないが0.85wt%以上のMnを含有
しても、それ以上の強度の上昇は望めない。 The Ti-killed steel used as a deep-drawing steel plate is an ultra-low carbon steel, and usually C ≦ 0.010% by weight is used. Further, Si is preferably Si <0.15% by weight. If the Si content is more than 0.15, the plating adhesion will decrease. To improve this adhesion, it is necessary to raise the substrate temperature, but in the case of Ti-killed steel, if the diffusion of Fe is rapid and the substrate temperature is raised, a fragile alloy layer occurs at the interface between the plating layer and the steel sheet. Occurs. Therefore, the Si content of Ti killed steel is preferably 0.05 wt% or less. Mn is a component that mainly increases the strength, and is preferably 0.15 to 0.85% by weight. If it is less than 0.05% by weight, sufficient strength cannot be maintained. On the other hand, if it exceeds 0.85%, plating adhesion and other quality problems do not occur, but if it contains 0.85% by weight or more of Mn, You can't expect the strength of to increase.
Tiは0.05〜0.30重量%である。これは通常の深絞り用Ti
キルド鋼と同程度の含有量である。一般に深絞り用鋼板
としてTi鋼中のCを固定するために通常Cの4倍量程度
の含有量が必要であり、更に鋼中の不純物としての窒素
量を勘案し、上記含有量に定められる。Ti is 0.05 to 0.30% by weight. This is a normal deep drawing Ti
The content is similar to that of killed steel. Generally, as a deep-drawing steel plate, a content of about 4 times the content of C is usually required to fix C in Ti steel, and the content is determined in consideration of the amount of nitrogen as an impurity in the steel. .
その他に、不可避的不純物としてP≦0.020重量%、S
≦0.020重量%、solAl≦0.050重量%が含まれる。これ
らは普通鋼の不純物レベルと同一である。In addition, as inevitable impurities, P ≦ 0.020% by weight, S
≦ 0.020 wt%, solAl ≦ 0.050 wt% are included. These are the same as the impurity levels of ordinary steel.
上記Tiキルド鋼について、メッキ直前の鋼板温度を180
〜280℃に設定して蒸着亜鉛メッキを施す。一般に蒸着
亜鉛メッキにおいては、メッキ時の基板温度が低く過ぎ
ると亜鉛メッキ層の密着性が不良になるので通常基板温
度を180℃以上に保持する、他方、蒸着メッキにおいて
は亜鉛蒸気が鋼板表面に凝縮してメッキ層を形成するの
で亜鉛の凝縮熱により基盤の温度が上昇する。その他、
蒸着室内の巻付ロールからの熱伝達も基盤温度を上昇さ
せる要因となる。従ってメッキ直前の基板温度が必要以
上に高いと上記凝縮熱や熱伝達により一層基板温度が上
昇し、これに起因してメッキ層と鋼板との界面付近に脆
弱な合金層が発達してメッキ層の密着性を損なう問題を
生じる。一例ではメッキ後の鋼帯温度が360℃前後にな
ると約35秒経過後に0.1〜1.0μの合金層が発達し、鋼帯
温度が410℃以上になると5秒以下で上記層厚の合金層
が発達する。このため上記合金層の発達を防止するた
め、上記温度上昇を考慮しメッキ直前の鋼帯の基板温度
を予め厚目付けの場合には180〜280℃、薄目付けの場合
には180〜300℃に調整している。本発明においてはTiキ
ルド鋼Alキルド鋼に比べ、合金化しやすい為、更に通常
の基板温度より低く、厚目付けの場合に180〜260℃薄目
付けの場合に180〜280℃に調整し、鋼中からメッキ層へ
の鉄の拡散を最少限に抑える。For the above Ti killed steel, the steel plate temperature immediately before plating is set to 180
Set to 280 ℃ and apply evaporated zinc plating. Generally, in vapor deposition zinc plating, if the substrate temperature during plating is too low, the adhesion of the zinc plating layer becomes poor, so the substrate temperature is usually kept at 180 ° C or higher. Since it condenses to form a plating layer, the temperature of the substrate rises due to the heat of condensation of zinc. Other,
Heat transfer from the winding rolls in the vapor deposition chamber also contributes to raising the substrate temperature. Therefore, if the substrate temperature immediately before plating is unnecessarily high, the substrate temperature further rises due to the condensation heat and heat transfer, and as a result, a fragile alloy layer develops near the interface between the plating layer and the steel sheet, and the plating layer Causes a problem of impairing the adhesiveness. In one example, when the steel strip temperature after plating is around 360 ° C, an alloy layer of 0.1 to 1.0μ develops after about 35 seconds, and when the steel strip temperature rises to 410 ° C or more, the alloy layer having the above layer thickness is formed in 5 seconds or less. Develop. For this reason, in order to prevent the development of the alloy layer, the substrate temperature of the steel strip immediately before plating is set to 180 to 280 ° C in the case of thick weighting and to 180 to 300 ° C in the case of thin weighting in consideration of the temperature rise. I am adjusting. In the present invention, as compared with Ti killed steel Al killed steel, because it is easier to alloy, it is lower than the normal substrate temperature, 180 to 260 ℃ in the case of thick basis weight and adjusted to 180 to 280 ℃ in the case of light weight To minimize the diffusion of iron into the plating layer.
上記蒸着メッキの後に合金化処理を施す。An alloying treatment is applied after the vapor deposition plating.
一般にバッチ焼鈍による合金化処理としては、鋼板の酸
化を防止するため、非酸化性雰囲気で、加熱処理を行な
う。コイル形状はタイトコイル、オープンコイルいずれ
の形状でもよい。処理温度、時間はメッキ付着量、およ
び目標Fe量率により変更しうる。第2図の合金化処理の
ヒートサイクルを、第3図に合金化処理範囲を示す。第
2図のヒートサイクルは合金化処理後、100℃以下まで
炉内を非酸化性雰囲気にて冷却した場合を示し、炉内の
非酸化性雰囲気は、N2をベースとし、それにH2を3〜75
%含有した組成をもつガスからなる。またガス中のCO、
CO2濃度はいずれも0〜10%である。Generally, as the alloying treatment by batch annealing, heat treatment is performed in a non-oxidizing atmosphere in order to prevent oxidation of the steel sheet. The coil shape may be either a tight coil or an open coil. The processing temperature and time can be changed depending on the plating deposition amount and the target Fe content rate. The heat cycle of the alloying treatment of FIG. 2 is shown, and the alloying range is shown in FIG. The heat cycle in Fig. 2 shows the case where after the alloying treatment, the inside of the furnace was cooled to 100 ° C or less in a non-oxidizing atmosphere. The non-oxidizing atmosphere in the furnace was based on N 2 and H 2 was added to it. 3-75
It consists of a gas with a composition of% contained. CO in gas,
The CO 2 concentration is 0 to 10% in all cases.
第3図は、平均Fe量率8〜12%を含む合金化処理条件の
範囲を示し、図中、実線a内の範囲はAlキルド鋼ベー
ス、破線cdでかこまれた点線領域がTiキルド鋼ベースの
場合を示す。合金化処理時間を1hr以上としたのは、実
験上それ以下の均熱時間では、炉温が低下しなかったた
めであり、又、50時間以下としたのは、それ以上では生
産性が向上しないためである。FIG. 3 shows a range of alloying treatment conditions including an average Fe content rate of 8 to 12%. In the figure, a range within a solid line a is an Al-killed steel base, and a dotted region surrounded by a broken line cd is a Ti-killed steel. The case of the base is shown. The reason why the alloying treatment time was set to 1 hour or more was that the furnace temperature did not decrease in the soaking time that was experimentally shorter than that, and the reason that it was set to 50 hours or less was that productivity was not improved above that time. This is because.
[実施例および比較例] 第4図に示す連続式真空蒸着亜鉛メッキ装置を用いてTi
キルド鋼に亜鉛メッキを施した。なお、図中1は鋼板、
2は前処理炉、3a,3bは真空シールロール室、4a,4は真
空蒸着室、5は冷却室である。操業条件を次表に示す。[Examples and Comparative Examples] Ti was produced using the continuous vacuum evaporation zinc plating apparatus shown in FIG.
Galvanized killed steel. In the figure, 1 is a steel plate,
2 is a pretreatment furnace, 3a and 3b are vacuum seal roll chambers, 4a and 4 are vacuum deposition chambers, and 5 is a cooling chamber. The operating conditions are shown in the following table.
なお、片面メッキを施す場合には、第1真空蒸着メッキ
室4a、または第2真空蒸着メッキ室4bのいずれか一方だ
け真空蒸着Znメッキすればよい。 When performing single-sided plating, it is sufficient to perform vacuum vapor deposition Zn plating on only one of the first vacuum vapor deposition plating chamber 4a and the second vacuum vapor deposition plating chamber 4b.
これらの真空蒸着Znメッキ鋼板をバッチ焼鈍炉中で加熱
し合金化処理し、合金化Znメッキ鋼板を製造した。合金
化処理条件を次表に示す。These vacuum-deposited Zn-plated steel sheets were heated in a batch annealing furnace and alloyed to produce alloyed Zn-plated steel sheets. The alloying treatment conditions are shown in the following table.
付着量、基板温度、加熱温度、加熱時間(すなわち該加
熱温度での保持時間)の組合せと製造された鋼板の表面
外観、加工性(耐パウダリング性)を調べた結果を第1
表に示す。耐パウダリング性は6t、180゜曲げ、曲げ戻
し後に内側のパウダリング発生状況で評価した。すなわ
ち,6t,180゜曲げ,曲げ戻し後の内側にセロテープを貼
付けて剥がし,セロテープに付着したメッキ層の量を観
測し,全面付着したものを「密着不良」,付着量が多量
であったものを「不良」,付着量が僅かであったものを
「良好」とした。また「表面外観」は合金化の前後の外
観変化を目視判定によって評価したものであり,合金化
処理後でもメッキままの外観が残っているものを「Zn残
存」,均一に合金化が終了したものを「良好」とした。
次に、比較のため蒸着時の基板温度および合金化時の加
熱温度、保持時間を第2表に示す条件に設定し、その他
は実施例と同様にして亜鉛メッキの合金化処理を行っ
た。この結果を第2表に示す。 The results of examining the combination of the adhesion amount, the substrate temperature, the heating temperature, the heating time (that is, the holding time at the heating temperature), the surface appearance of the manufactured steel sheet, and the workability (powdering resistance) are first.
Shown in the table. The powdering resistance was evaluated based on the occurrence of powdering on the inner side after bending back for 6 tons and 180 °. That is, after the tape was bent at 6t, 180 °, and after bending back, cellophane tape was attached and peeled off, and the amount of the plating layer adhering to the cellophane tape was observed. “Poor” was defined as “poor”, and those with a small amount of adhesion were defined as “good”. "Surface appearance" is an evaluation of the appearance change before and after alloying by visual judgment. If the appearance as plated remains after alloying, "Zn remains", and alloying is completed uniformly. The thing was made into "good."
Next, for comparison, the substrate temperature during vapor deposition, the heating temperature during alloying, and the holding time were set to the conditions shown in Table 2, and the galvanizing alloying treatment was performed in the same manner as in the other examples. The results are shown in Table 2.
上記結果から明らかなように、本実施例の合金化亜鉛メ
ッキ鋼板はいずれも良好な表面外観と加工性を具えてい
るが、比較例のものは合金層中に亜鉛が残存し、あるい
は加工性に劣る。 As is clear from the above results, all of the galvannealed steel sheets of this example have a good surface appearance and workability, but the comparative examples have zinc remaining in the alloy layer, or workability. Inferior to.
[発明の効果] 本発明の製造方法によれば、チタンキルド鋼に合金化亜
鉛メッキを施す際、最適な鉄量率の合金化層を形成する
ことができ、表面外観、深絞り性および耐パウダリング
性に優れた合金化亜鉛メッキ鋼板を得ることができる。[Effects of the Invention] According to the production method of the present invention, an alloyed layer having an optimum iron content rate can be formed when alloying zinc-plated titanium killed steel, and the surface appearance, deep drawability, and powder resistance. It is possible to obtain an alloyed galvanized steel sheet having excellent ringability.
第1図はチタンキルド鋼とアルミキルド鋼について合金
層中の鉄濃度を示すグラフ、第2図は合金処理のヒート
サイクルを示すグラフ、第3図は合金化時間と処理温度
との関係を示すグラフ、第4図は連続式真空蒸着メッキ
装置の一例を示す概略図である。 図面中 1−鋼板,2−前処理炉,3a,3b−真空シールロー
ル室,4a,4b−真空蒸着室,5−冷却室FIG. 1 is a graph showing the iron concentration in the alloy layer for titanium killed steel and aluminum killed steel, FIG. 2 is a graph showing the heat cycle of alloy treatment, and FIG. 3 is a graph showing the relationship between alloying time and treatment temperature. FIG. 4 is a schematic view showing an example of a continuous vacuum vapor deposition plating apparatus. In the drawing 1-steel plate, 2-pretreatment furnace, 3a, 3b-vacuum seal roll chamber, 4a, 4b-vacuum deposition chamber, 5-cooling chamber
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/14 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication C22C 38/14
Claims (2)
〜0.85重量%,Ti:0.05〜0.30重量%を含有する低炭素チ
タンキルド鋼の鋼板を蒸着亜鉛メッキするにあたり,メ
ッキ直前の鋼板温度を180〜280℃に設定し,その後,バ
ッチ焼鈍炉内の非酸化性雰囲気下において加熱温度が22
0〜320℃,加熱時間が1〜50時間の範囲であって且つ該
温度と時間の関係が第3図の斜線域で囲われる範囲とな
る条件で合金化処理を施すことを特徴とする深絞り性に
優れた合金化亜鉛メッキ鋼板の製造方法。1. C ≦ 0.010% by weight, Si <0.15% by weight, Mn: 0.15
〜0.85wt%, Ti: 0.05〜0.30wt%, low carbon titanium killed steel sheet is vapor-deposited by galvanizing. The heating temperature is 22 in an oxidizing atmosphere.
The alloying treatment is performed under the conditions that the temperature is 0 to 320 ° C., the heating time is 1 to 50 hours, and the relationship between the temperature and time is the range surrounded by the shaded area in FIG. A method for producing an alloyed galvanized steel sheet having excellent drawability.
〜12.0重量%である特許請求の範囲第1項記載の製造方
法。2. The alloyed galvanized layer has an average iron concentration of 8.0.
The manufacturing method according to claim 1, wherein the amount is ˜12.0% by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61272975A JPH07103463B2 (en) | 1986-11-18 | 1986-11-18 | Method for producing alloyed zinc plated steel sheet with excellent deep drawability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61272975A JPH07103463B2 (en) | 1986-11-18 | 1986-11-18 | Method for producing alloyed zinc plated steel sheet with excellent deep drawability |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63128168A JPS63128168A (en) | 1988-05-31 |
JPH07103463B2 true JPH07103463B2 (en) | 1995-11-08 |
Family
ID=17521396
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61272975A Expired - Lifetime JPH07103463B2 (en) | 1986-11-18 | 1986-11-18 | Method for producing alloyed zinc plated steel sheet with excellent deep drawability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07103463B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01283358A (en) * | 1988-02-09 | 1989-11-14 | Nisshin Steel Co Ltd | Production of zinc alloyed galvanized titanium killed steel sheet having superior deep drawability |
TW243541B (en) * | 1991-08-31 | 1995-03-21 | Samsung Electronics Co Ltd |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54110143A (en) * | 1978-02-17 | 1979-08-29 | Mitsubishi Heavy Ind Ltd | Zinc vacuum plating method and equipment |
JPS5983765A (en) * | 1982-11-05 | 1984-05-15 | Nisshin Steel Co Ltd | Manufacture of vacuum deposited galvanized steel sheet efficient in adhesion of plated metal |
-
1986
- 1986-11-18 JP JP61272975A patent/JPH07103463B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63128168A (en) | 1988-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108690944B (en) | Method for producing hot-dip coated steel sheet having excellent blackening resistance and corrosion resistance | |
WO2022161049A1 (en) | Aluminum plated steel sheet, thermoformed component, and manufacturing methods | |
US4837091A (en) | Diffusion alloy steel foil | |
JP2587725B2 (en) | Method for producing P-containing high tensile alloyed hot-dip galvanized steel sheet | |
JP2971243B2 (en) | Method for producing high strength galvannealed steel sheet containing P | |
CA1245952A (en) | Diffusion alloy steel foil | |
US4144379A (en) | Drawing quality hot-dip coated steel strip | |
US5409553A (en) | Process for manufacturing galvannealed steel sheets having high press-formability and anti-powdering property | |
JPH07103463B2 (en) | Method for producing alloyed zinc plated steel sheet with excellent deep drawability | |
JPS645108B2 (en) | ||
JPH11140587A (en) | Galvannealed steel sheet excellent in plating adhesion | |
JP2525165B2 (en) | Method for manufacturing high strength galvanized steel sheet | |
JP2769350B2 (en) | Manufacturing method of hot-dip coated steel sheet | |
JPH0748662A (en) | Manufacturing method of hot-dip galvanized steel sheet with excellent plating adhesion and appearance | |
US5518769A (en) | Process for manufacturing galvannealed steel sheet having excellent anti-powdering property | |
JPS6028909B2 (en) | Steel plate with excellent chemical conversion treatment properties | |
JPH0688192A (en) | Galvannealed steel sheet having excellent workability and its production | |
JPH0741923A (en) | Manufacturing method of hot-dip galvanized steel sheet with excellent plating adhesion and appearance | |
JPH05106001A (en) | Method for plating molten zinc on steel sheet containing silicon | |
JP3385089B2 (en) | Method for producing high-strength hot-dip galvanized steel sheet with good plating appearance | |
JP3383125B2 (en) | Hot-dip aluminized steel sheet with excellent corrosion resistance and heat resistance, and its manufacturing method | |
KR910007949B1 (en) | Manufacturing method of alloyed galvanized titanium killed steel sheet having excellent deep drawing property | |
US4878960A (en) | Process for preparing alloyed-zinc-plated titanium-killed steel sheet having excellent deep-drawability | |
JPH0816261B2 (en) | Method for producing galvannealed steel sheet having excellent press formability and powdering resistance | |
JPH07243012A (en) | Method for producing alloyed hot-dip galvanized steel sheet with excellent surface appearance |